Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Dibromido(2,3,9,10-tetramethyl-1,4,8,11-tetraazacyclotetradeca-1,3,8,10-tetraene)cobalt(III) bromide

Hoda El-Ghamry, ${ }^{\text {a* }}$ Raafat Issa, ${ }^{\text {a }}$ Kamal El-Baradie, ${ }^{\text {a }}$ Shigeyuki Masaoka ${ }^{\text {b }}$ and Ken Sakai ${ }^{\text {b }} \ddagger$

${ }^{\text {a }}$ Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt, and ${ }^{\mathbf{b}}$ Department of Chemistry, Faculty of Science, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
Correspondence e-mail: helghamrymo@yahoo.com

Received 2 October 2009; accepted 12 October 2009

Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.016 ; w R$ factor $=0.040 ;$ data-to-parameter ratio $=16.7$.

In the title compound, $\left[\mathrm{CoBr}_{2}\left(\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{~N}_{4}\right)\right] \cdot \mathrm{Br}$, the $\mathrm{Co}^{\mathrm{III}}$ ion is located on an inversion centre and possesses a distorted octahedral coordination geometry in which four nitrogen donors of the ligand molecule are in the equatorial plane and two Br^{-}ions occupy both the axial sites to give a trans isomer. The Br^{-}counter- anion is also located on an inversion centre.

Related literature

For background to macrocyclic ligands and their metal complexes, see: Baird et al. (1993); Chandra \& Verma (2008) and references therein; Chaudhary et al. (2002); Comba et al. (1986); Douglas (1978); Jones et al. (1979). For background to H_{2} evolution catalysis of macrocyclic metal complexes, see: Du et al. (2008); Fihri, Artero, Pereira \& Fontecave (2008); Fihri, Artero, Razavet et al. (2008); Hu et al. (2007); Yamauchi et al. (2009). For the synthesis, see: Jackels et al. (1972).

[^0]
Experimental

Crystal data
$\left[\mathrm{CoBr}_{2}\left(\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{~N}_{4}\right)\right] \cdot \mathrm{Br}$
$M_{r}=547.03$
Triclinic, $P \overline{1}$
$a=7.3888(10) \AA$
$b=7.5157$ (10) \AA
$c=8.1929$ (11) \AA
$\alpha=84.647$ (10) ${ }^{\circ}$
$\beta=84.760(10)^{\circ}$

Data collection

Bruker SMART APEXII CCDdetector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.045, T_{\text {max }}=0.101$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.016$
$w R\left(F^{2}\right)=0.040$
$S=1.15$
1758 reflections
$\gamma=84.094(10)^{\circ}$
$V=449.04(10) \AA^{3}$
$Z=1$
Mo $K \alpha$ radiation
$\mu=7.63 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
$0.60 \times 0.40 \times 0.30 \mathrm{~mm}$

4629 measured reflections 1758 independent reflections 1739 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.015$

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: KENX (Sakai, 2004); software used to prepare material for publication: SHELXL97, TEXSAN (Molecular Structure Corporation, 2001), KENX and ORTEPII (Johnson, 1976).

This work was supported in part by a Grant-in-Aid for Scientific Research (A) (No. 17205008), a Grant-in-Aid for Specially Promoted Research (No. 18002016) and a Grant-inAid for the Global COE Program ('Science for Future Molecular Systems') from the Ministry of Education, Culture, Sports, Science, and Technology of Japan. HE acknowledges the Egyptian Channel System for financial support to promote the joint research project between Tanta and Kyushu Universities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2468).

References

Baird, H. W., Jackels, S. C. \& Lachgar, A. (1993). J. Cryst. Spectrosc. Res. 23, 485-488.
Bruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
Chandra, S. \& Verma, S. (2008). Spectrochim. Acta, A71, 458-464.
Chaudhary, A., Dave, S., Swaroop, R. \& Singh, R. (2002). J. Indian Chem. Soc. 79, 371-373.
Comba, P., Curtis, N. F., Lawrance, G. A., Sargeson, A. M. \& Skelton, B. W. (1986). Inorg. Chem. 25, 4260-4267.

Douglas, B. E. (1978). Inorg. Syn., Vol. XVIII. 258.
Du, P., Knowles, K. \& Eisenberg, R. (2008). J. Am. Chem. Soc. 130, 1257612577.

Fihri, A., Artero, V., Pereira, A. \& Fontecave, M. (2008). Dalton Trans. pp. 5567-5569.
Fihri, A., Artero, V., Razavet, M., Baffert, C., Leibl, W. \& Fontecave, M. (2008). Angew. Chem. Int. Ed. 47, 564-567.

Hu, X., Bunschwig, B. S. \& Peters, J. C. (2007). J. Am. Chem. Soc. 129, 89888998.

metal-organic compounds

Jackels, S. C., Farmery, K., Barefield, E. K., Rose, N. J. \& Busch, D. H. (1972). Inorg. Chem. 11, 2893-2900.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Jones, R. D., Summerville, D. A. \& Basolo, F. (1979). Chem. Rev. 79, 139-179. Molecular Structure Corporation (2001). TEXSAN. MSC, 3200 Research Forest Drive, The Woodlands, Texsas, USA.

Sakai, K. (2004). KENX. Kyushu University, Japan.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Yamauchi, K., Masaoka, S. \& Sakai, K. (2009). J. Am. Chem. Soc. 131, 84048406.

supporting information

Acta Cryst. (2009). E65, m1378-m1379 [https://doi.org/10.1107/S160053680904166X]

Dibromido(2,3,9,10-tetramethyl-1,4,8,11-tetraazacyclotetradeca-1,3,8,10-tetraene)cobalt(III) bromide

Hoda El-Ghamry, Raafat Issa, Kamal El-Baradie, Shigeyuki Masaoka and Ken Sakai

S1. Comment

Most of the known synthetic macrocyclic ligands and their metal complexes have been prepared and characterized during the last few decades. Most commonly they are quadridentates containing nitrogen donor atoms, although compounds containing oxygen and sulfur donors are also known (Douglas, 1978). Metal template synthesis of multidentate and macromonocyclic ligands have been established over the last three decades as offering high yield and selective routes to new ligands and their complexes (Comba et al., 1986). Transition metal macrocyclic complexes have received much attention as active part of metalloenzymes (Chaudhary et al., 2002) as biomimic model compounds (Jones et al., 1979) due to their resemblance with natural proteins like hemerythrin and enzymes. They also played an important role as catalysts in oxidation and epoxidation processes (Chandra et al., 2008). There are some recent reports about some macrocyclic $\mathrm{Co}^{\mathrm{II}}$ and $\mathrm{Co}^{\mathrm{III}}$ complexes which showed high activity towards H_{2} evolution electrochemically (Hu et al., 2007) or photochemically (Fihri, Artero, Pereira \& Fontecave, 2008; Fihri, Artero, Razavet et al., 2008; Du et al., 2008). The title compound has been observed to evolve H_{2} electrocatalytically in acetonitrile (Hu et al., 2007). Unfortunately, it is found that this compound does not show any catalytic activity towards H_{2} evolution in a well known photosystem consisting of tris ($2,2^{\prime}$-bipyridine)ruthenium(II) as a photosensitizer, methylviologen (N, N^{\prime}-dimethyl-4, 4^{\prime}-bipyridinium) as an electron mediator, and ethylenediaminetetraacetic acid disodium salt as a sacrificial electron donor. Because of our ongoing studies on the H_{2}-evolving activity of $\mathrm{Pt}^{\mathrm{II}}$ based molecular catalysts (Yamauchi et al., 2009), attempts have been made to obtain the $\mathrm{Pt}^{t I}$ complex of the present macrocyclic ligand. However the metal exchange from $\mathrm{Co}^{\text {III }}$ to $\mathrm{Pt}^{\text {II }}$ has been unsuccessful so far, presunably due to the extremely high stability of the $\mathrm{Co}^{\text {III }}$ complex, during the course of these studies we have succeeded in the x-ray crystal structure determination of the present compound.
The $\mathrm{Co}^{\text {III }}$ ion and the Br^{-}ion involved as a counter anion are respectively located at crystallographic inversion centers. Because of these requirements four nitrogen donors, two of them are independent, comprise a crystalloaphically planar geometry and the $\mathrm{Co}^{\text {III }}$ ion is also located exactly on the same plane. The vector defined by the $\mathrm{Co}-\mathrm{Br}$ bond is slightly declined from the vector which is peependicular to the basal plane consisting of the four nitrogen donor atoms which can be recognized from the $\mathrm{N}-\mathrm{Co}-\mathrm{Br}$ angles; $\left[\mathrm{N} 2 — \mathrm{Co1}-\mathrm{Br} 1=91.78(4)^{\circ}\right.$ and $\left.\mathrm{N} 1 — \mathrm{Co} 1 — \mathrm{Br} 1=89.14(4)^{\circ}\right]$. It is also observed that the $\mathrm{Co}-\mathrm{N}, \mathrm{N}=\mathrm{C}$ and $\mathrm{N} — \mathrm{C}$ bond distances of 1.9208 (13), 1.288 (2) and 1.472 (2) \AA, respectively, are in accordance with the reported values for similar $\mathrm{Co}^{\text {III }}$ imine type macrocyclic complexes [2,9-dimethyl-3,10- di-phenyl-1,4,8,11-tetraazacyclotetradeca-1,3,8,10-tetraene)cobalt(III); $\mathrm{Co}-\mathrm{N}, \mathrm{N}=\mathrm{C}$ and $\mathrm{N}-\mathrm{C}$ distances are 1.923 (13), 1.278 (3) and 1.478 (3) Å, respectively] (Baird et al., 1993). The N2, C4, C5 $5^{\mathrm{i}}, \mathrm{C} 6^{\mathrm{i}}$ and $\mathrm{N} 1^{\mathrm{i}}$ atoms form an envelope geometry in which the triangle defined by atoms $\mathrm{C} 4, \mathrm{C} 5^{\mathrm{i}}$ and C^{i} is canted by $60.77(11)^{\circ}$ with respect to the least square plane defined by $\mathrm{N} 1^{\mathrm{i}}, \mathrm{C} 6^{\mathrm{i}}, \mathrm{C} 4$ and N 2 atoms [symmetry code: (i) $-x+1,-y+1,-z+2$]. No remarkable intercationic or cation-anion interactions are found in the crystal.

S2. Experimental

The title compound was synthesized according to the method reported by Jackels et al. (1972). Elemental analysis calculated for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{Br}_{3} \mathrm{Co}$: C 30.74, H 4.42 , N 10.42%. Found: C 30.40, H 4.50, N 10.04%. ESI-TOF MS (positive ion, methanol): $\mathrm{m} / \mathrm{z} 466.9\left[M^{+}\right]$. IR ($v, \mathrm{~cm}^{-1}$): 3204(w), 2980(m), 2933(s), 2889(s), 2766(w), 2005(m), 1615(w), 1597(m), $1476(\mathrm{~m}), 1461(\mathrm{~s}), 1426(\mathrm{~m}), 1408(\mathrm{~m}), 1372(\mathrm{w}), 1333(\mathrm{w}), 1288(\mathrm{~m}), 1214(\mathrm{~s}), 1187(\mathrm{~m}), 1026(\mathrm{~m}), 938(\mathrm{~s}), 868(\mathrm{~m}), 831(\mathrm{w})$, $806(\mathrm{w}), 777(s), 560(\mathrm{w}), 444(s)$. Recrystallization of the crude product by a method reported in the same paper resulted in the formation of dark green crystals suitable for X-ray diffraction analysis.

S3. Refinement

All H atoms were placed in idealized positions (methyl $\mathrm{C}-\mathrm{H}=0.96 \AA$, methylene $\mathrm{C}-\mathrm{H}=0.97 \AA$), and included in the refinement in a riding-model approximation, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}\left(\right.$ methyl C) and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}($ methylene C). In the final difference Fourier map, the highest peak was located $0.97 \AA$ from atom Br1. The deepest hole was located $1.92 \AA$ from atom Br 1 .

Br2

Figure 1
The molecular structure of (I) showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50\% probability level.

Figure 2
A stereoview for the crystal packing of (I).
Dibromido(2,3,9,10-tetramethyl-1,4,8,11-tetraazacyclotetradeca-1,3,8,10- tetraene)cobalt(III) bromide

Crystal data

$\left[\mathrm{CoBr}_{2}\left(\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{~N}_{4}\right)\right] \cdot \mathrm{Br}$
$M_{r}=547.03$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=7.3888(10) \AA$
$b=7.5157$ (10) \AA
$c=8.1929(11) \AA$
$\alpha=84.647(10)^{\circ}$
$\beta=84.76(1)^{\circ}$
$\gamma=84.094(10)^{\circ}$
$V=449.04(10) \AA^{3}$

Data collection

Bruker SMART APEX CCD-detector diffractometer
Radiation source: sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.045, T_{\text {max }}=0.101$
$Z=1$
$F(000)=268$
? \# Insert any comments here.
$D_{\mathrm{x}}=2.023 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 4684 reflections
$\theta=2.5-28.3^{\circ}$
$\mu=7.63 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Brocks, dark green
$0.60 \times 0.40 \times 0.30 \mathrm{~mm}$

4629 measured reflections
1758 independent reflections
1739 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.015$
$\theta_{\text {max }}=26.0^{\circ}, \theta_{\text {min }}=2.5^{\circ}$
$h=-9 \rightarrow 9$
$k=-9 \rightarrow 9$
$l=-10 \rightarrow 10$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.016$
$w R\left(F^{2}\right)=0.040$
$S=1.15$
1758 reflections

105 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0205 P)^{2}+0.2736 P\right]$
where $P=\left(F_{o}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.39 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.72 \mathrm{e}^{-3}$

Extinction correction: SHELXL
Extinction coefficient: 0.036 (4)

Special details

Experimental. The first 50 frames were rescanned at the end of data collection to evaluate any possible decay phenomenon. Since it was judged to be negligible, no decay correction was applied to the data.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Least-squares planes (x, y, z in crystal coordinates) and deviations from them (* indicates atom used to define plane)
$4.5770(0.0058) x+4.5950(0.0059) y-3.7053(0.0042) z=0.8322(0.0063)$

* 0.0209 (0.0009) C4 * -0.0208 (0.0009) C6_\$1 * $-0.0182(0.0008) \mathrm{N} 2 * 0.0181(0.0008) \mathrm{N} 1 _\$ 1$

Rms deviation of fitted atoms $=0.0195$

- 2.0878 (0.0161) $x+6.6317$ (0.0050) $y-1.8850(0.0100) z=2.7313$ (0.0098)

Angle to previous plane (with approximate e.s.d.) $=60.77(0.11)$

* $0.0000(0.0000) \mathrm{C} 4$ * $0.0000(0.0000) \mathrm{C} 5 _\$ 1$ * 0.0000 (0.0000) C6_\$1

Rms deviation of fitted atoms $=0.0000$
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
Br1	$0.32441(2)$	$0.29517(2)$	$1.169271(18)$	$0.01131(7)$
Br2	0.0000	0.0000	0.5000	$0.01880(8)$
Co1	0.5000	0.5000	1.0000	$0.00682(8)$
N1	$0.57154(18)$	$0.31635(18)$	$0.85246(16)$	$0.0103(3)$
N2	$0.30942(18)$	$0.55749(18)$	$0.85385(16)$	$0.0097(3)$
C1	$0.4642(2)$	$0.3094(2)$	$0.7383(2)$	$0.0117(3)$
C2	$0.3142(2)$	$0.4563(2)$	$0.7350(2)$	$0.0109(3)$
C3	$0.1898(2)$	$0.4778(3)$	$0.5990(2)$	$0.0169(4)$
H3A	0.1135	0.3808	0.6109	0.025^{*}
H3B	0.2612	0.4768	0.4951	0.025^{*}
H3C	0.1150	0.5898	0.6038	0.025^{*}
C4	$0.1733(2)$	$0.7132(2)$	$0.8684(2)$	$0.0143(3)$
H4A	0.0653	0.6924	0.8167	0.017^{*}
H4B	0.2226	0.8187	0.8109	0.017^{*}
C5	$0.8791(2)$	$0.2526(2)$	$0.9535(2)$	$0.0145(3)$
H5A	0.9114	0.3638	0.8933	0.017^{*}
H5B	0.9864	0.1668	0.9480	0.017^{*}
C6	$0.7296(2)$	$0.1820(2)$	$0.8706(2)$	$0.0148(3)$
H6A	0.7777	0.1473	0.7628	0.018^{*}
H6B	0.6902	0.0758	0.9349	0.018^{*}
C7	$0.4802(3)$	$0.1698(2)$	$0.6181(2)$	$0.0174(4)$
H7A	0.5370	0.2163	0.5150	0.026^{*}

H7B	0.3608	0.1382	0.6021	0.026^{*}
H7C	0.5531	0.0652	0.6598	0.026^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	$0.01353(10)$	$0.01049(10)$	$0.01015(10)$	$-0.00325(6)$	$-0.00175(6)$	$0.00102(6)$
Br2	$0.01990(13)$	$0.01933(14)$	$0.01523(13)$	$0.00443(10)$	$0.00017(9)$	$0.00027(10)$
Co1	$0.00848(15)$	$0.00660(14)$	$0.00573(15)$	$-0.00006(11)$	$-0.00254(11)$	$-0.00114(11)$
N1	$0.0123(7)$	$0.0092(6)$	$0.0097(6)$	$-0.0010(5)$	$-0.0021(5)$	$-0.0005(5)$
N2	$0.0107(6)$	$0.0098(6)$	$0.0085(6)$	$-0.0012(5)$	$-0.0019(5)$	$0.0003(5)$
C1	$0.0148(8)$	$0.0110(7)$	$0.0096(7)$	$-0.0023(6)$	$-0.0010(6)$	$-0.0010(6)$
C2	$0.0122(8)$	$0.0120(7)$	$0.0091(7)$	$-0.0035(6)$	$-0.0022(6)$	$0.0002(6)$
C3	$0.0185(9)$	$0.0210(9)$	$0.0125(8)$	$0.0014(7)$	$-0.0081(7)$	$-0.0044(7)$
C4	$0.0145(8)$	$0.0140(8)$	$0.0143(8)$	$0.0047(6)$	$-0.0057(6)$	$-0.0020(6)$
C5	$0.0133(8)$	$0.0136(8)$	$0.0162(8)$	$0.0036(6)$	$-0.0031(6)$	$-0.0020(7)$
C6	$0.0168(8)$	$0.0120(8)$	$0.0162(8)$	$0.0038(6)$	$-0.0046(7)$	$-0.0063(6)$
C7	$0.0232(9)$	$0.0159(8)$	$0.0147(8)$	$0.0005(7)$	$-0.0058(7)$	$-0.0077(7)$

Geometric parameters ($A,{ }^{\circ}$)

Br1-Col	2.3792 (2)	C3-H3C	0.9600
Col-N2	1.9208 (13)	C4-H4A	0.9700
Col-N1	1.9210 (13)	C4-H4B	0.9700
N1-C1	1.288 (2)	C5-C6	1.513 (2)
N1-C6	1.472 (2)	C5-H5A	0.9700
N2-C2	1.286 (2)	C5-H5B	0.9700
N2-C4	1.469 (2)	C6-H6A	0.9700
C1-C2	1.482 (2)	C6-H6B	0.9700
C1-C7	1.494 (2)	C7-H7A	0.9600
C2-C3	1.495 (2)	C7-H7B	0.9600
C3-H3A	0.9600	C7-H7C	0.9600
C3-H3B	0.9600		
$\mathrm{N} 2{ }^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{N} 2$	180.000 (1)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5
$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{N} 1^{\text {i }}$	98.31 (6)	$\mathrm{H} 3 \mathrm{~A}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5
$\mathrm{N} 2{ }^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{N} 1$	98.31 (6)	H3B-C3-H3C	109.5
N2-Col-N1	81.69 (6)	N2-C4-H4A	109.3
N1- ${ }^{\text {i }}$ Co1-N1	180.0	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.3
N2-Co1- $\mathrm{Br}^{1}{ }^{\text {i }}$	88.22 (4)	N2-C4-H4B	109.3
N1-Co1- $\mathrm{Br}^{1}{ }^{\text {i }}$	90.86 (4)	C5 $5^{\text {i }} \mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	109.3
N2 ${ }^{\text {i }}$ - $\mathrm{Co} 1-\mathrm{Br} 1$	88.22 (4)	H4A-C4-H4B	108.0
N2-Co1-Br1	91.78 (4)	C6-C5-H5A	108.8
N1- ${ }^{\text {i }}$ Col- ${ }^{\text {Crl }}$	90.86 (4)	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	108.8
N1-Co1-Br1	89.14 (4)	C6-C5-H5B	108.8
C1-N1-C6	120.39 (14)	C4-C5-H5B	108.8
C1-N1-Co1	115.40 (11)	H5A-C5-H5B	107.7
C6-N1-Co1	124.08 (10)	N1-C6-C5	112.00 (13)

$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 4$	$121.39(14)$
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{Co} 1$	$115.56(11)$
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{Co} 1$	$122.93(11)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$113.55(14)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 7$	$125.76(15)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7$	$120.68(14)$
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 1$	$113.57(14)$
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3$	$126.51(15)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$119.89(14)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.5
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.5
$\mathrm{H} 3 \mathrm{~A}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.5
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$-178.89(14)$
$\mathrm{Co} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$5.11(18)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 7$	$1.7(3)$
$\mathrm{Co} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 7$	$-174.28(13)$
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 1$	$178.26(14)$
$\mathrm{Co} 1-\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 1$	$2.11(18)$
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3$	$0.0(3)$
$\mathrm{Co} 1-\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3$	$-176.16(14)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2$	$-4.8(2)$

Symmetry code: (i) $-x+1,-y+1,-z+2$.

[^0]: \ddagger Additional correspondence author, e-mail: ksakai@chem.kyushu-univ.jp.

