

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Racemic (RS_C, SR_S) -(2-{[1-allyloxycarbonyl-3-(methylsulfanyl)propyl]iminomethyl]phenyl- $\kappa^3 S, N, C^1$)chloridoplatinum(II)

Katsuhiro Isozaki,^a* Akira Sato^b and Kazushi Miki^{a,c}

^aOrganic Nanomaterials Center, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan, ^bMaterials Analysis Center, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan, and CApplied Scoences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan Correspondence e-mail: isozaki.katsuhiro@nims.go.jp

Received 10 October 2009; accepted 15 October 2009

Key indicators: single-crystal X-ray study; T = 180 K; mean σ (C–C) = 0.005 Å; R factor = 0.020; wR factor = 0.052; data-to-parameter ratio = 16.3.

The title compound, $[Pt(C_{15}H_{18}NO_2S)Cl]$, was obtained by the cyclometallation reaction of cis-bis(benzonitrile)dichloridoplatinum(II) with N-benzylidene-L-methionine allyl ester in refluxing toluene. The Pt^{II} atom has a square-planar geometry and is tetra-coordinated by the Cl atom and the C, N and S atoms from the benzylidene methionine ester ligand. In the crystal structure, the S atoms show opposite chiral configurations with respect to the α -carbon of the methionine, reducing steric repulsion between the methyl and allyl ester groups.

Related literature

For cyclometallated Pt^{II} complexes having terdentate benzylidenamine ligands cyclometallated benzylideneamine, see: Capapé et al. (2005); Caubet et al. (2003); Riera et al. (2000). For organometallic amino acid complexes, see: Severin et al. (1998).

12273 measured reflections

 $R_{\rm int} = 0.024$

3105 independent reflections

2854 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

$[Pt(C_{15}H_{18}NO_2S)Cl]$	$V = 1604.6 (4) \text{ Å}^3$
$M_r = 506.90$	Z = 4
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 8.6000 (13) Å	$\mu = 9.04 \text{ mm}^{-1}$
b = 9.5093 (14) Å	$T = 180 { m K}$
c = 19.679 (3) Å	$0.50 \times 0.10 \times 0.10$ mm
$\beta = 94.398 \ (2)^{\circ}$	

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2003) $T_{\min} = 0.610, \ T_{\max} = 0.862$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.020$ 191 parameters $wR(F^2) = 0.052$ H-atom parameters constrained $\Delta \rho_{\rm max} = 1.36 \text{ e} \text{ Å}^{-3}$ S = 1.07 $\Delta \rho_{\rm min} = -0.48$ e Å⁻³ 3105 reflections

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

This work was supported financially by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Young Scientists (Start-up, 19850030).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2471).

References

- Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Capapé, A., Crespo, M., Granell, J., Font-Bardía, M. & Solans, X. (2005). J. Organomet. Chem. 690, 4309-4318.
- Caubet, A., López, C., Solans, X. & Font-Barda, M. (2003). J. Organomet. Chem. 669, 164-171.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Riera, X., Caubet, A., Lopez, C., Moreno, V., Solans, X. & Font-Bardia, M. (2000). Organometallics, 19, 1384-1390.
- Severin, K., Bergs, R. & Beck, W. (1998). Angew. Chem. Int. Ed. 37, 1634-1654. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2009). E65, m1401 [https://doi.org/10.1107/S160053680904238X]

Racemic (RS_C , SR_S)-(2-{[1-allyloxycarbonyl-3-(methylsulfanyl)propyl]iminomethyl}phenyl- $\kappa^3 S$,N, C^1)chloridoplatinum(II)

Katsuhiro Isozaki, Akira Sato and Kazushi Miki

S1. Comment

Research on cyclometallated complexes (Capapé *et al.*, 2005; Riera *et al.*, 2000) has been focused because of their fundamental applications as luminescent materials (Caubet *et al.*, 2003) and catalysts for a range of cross-coupling reactions. Amino acids, possessing natural chiral backbone and strong coordinating groups, are one of the potent candidates for designing stable cyclometallated complexes with highly controlled stereo-structure (Severin *et al.*, 1998). Here, we report the crystal structure of the platinum (II) complex (1), containing chiral methionine-derived *C*,*N*,*S*-terdentate ligand.

The crystal structure of title compound (1) is presented in Fig. 1. The Pt(II) atom is tetracoordinated in a square-planar environment by a Cl atom and C, N, S atoms from benzylidene methionine ester ligand. In the [Pt ($C_{15}H_{18}NO_2S$)Cl] (1), S atoms showed opposite chiral configurations to the α -carbon of methionine for reducing steric repulsion between methyl and allyl ester groups (Fig. 2).

S2. Experimental

The methionine-derived ligand was synthesized from three step reactions, esterification, deprotection, condensation using Fmoc-*L*-methionine as a starting material (Fig. 3). A suspension of cis-[PtCl₂(PhCN)₂] and methionine-derived ligand was refluxed under nitrogen atmosphere for 3 h. The crude mixture was purified by SiO₂ flash column chromatography. Single crystals for X-ray analyses were obtained from a CH₂Cl₂ solution.

S3. Refinement

H atoms were positioned geometrically and refined as riding atoms, with C_{arene} —H and C_{allyl} —H = 0.93 Å, C_{methyl} —H = 0.96 Å, C_{alkyl} —H = 0.97Å and C_{α} —H = 0.98 Å, and with $U_{iso}(H) = 1.2U_{eq}(C_{arene}, C_{alkyl})$ and $U_{iso}(H) = 1.5U_{eq}(C_{methyl})$. Electron density synthesis with coefficients F_{o} —Fc: Highest peak 1.36 at 0.0428, 0.4390, 0.1909 (0.86 Å from Pt1)

ORTEP drawing of $(\mathbf{R}_{C_1}, \mathbf{S}_{S_2})$ -1 with 50% probability displacement.

Figure 3

Synthetic scheme of the amino acid-derived ligand for 1.

 $(RS_{C_{f}}SR_{s})-(2-\{[1-allyloxycarbony]-3-(methylsulfanyl)propyl]iminomethyl\}phenyl- \kappa^{3}S_{f}N_{f}C^{1})chloridoplatinum(II)$

Crystal data

[Pt(C₁₅H₁₈NO₂S)Cl] $M_r = 506.90$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 8.6000 (13) Å b = 9.5093 (14) Å c = 19.679 (3) Å $\beta = 94.398$ (2)° V = 1604.6 (4) Å³ Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2003) $T_{\min} = 0.610, T_{\max} = 0.862$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.020$ $wR(F^2) = 0.052$ S = 1.073105 reflections 191 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 968 $D_x = 2.098 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1024 reflections $\theta = 2.8-26.0^{\circ}$ $\mu = 9.04 \text{ mm}^{-1}$ T = 180 KPrism, orange $0.50 \times 0.10 \times 0.10 \text{ mm}$

12273 measured reflections 3105 independent reflections 2854 reflections with $I > 2\sigma(I)$ $R_{int} = 0.024$ $\theta_{max} = 26.0^{\circ}, \theta_{min} = 2.4^{\circ}$ $h = -9 \rightarrow 10$ $k = -11 \rightarrow 11$ $l = -24 \rightarrow 24$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.033P)^2 + 0.6405P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.003$ $\Delta\rho_{max} = 1.36 \text{ e } \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.48 \text{ e } \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{\rm iso} * / U_{\rm eq}$ х Ζ v Pt1 0.01942 (6) 0.456604 (14) 0.848674 (12) 0.309063 (6) S4 0.02394(18)0.63428 (10) 0.87893(9)0.22448(5)C11 0.60649 (11) 1.00955 (10) 0.37235(5)0.0338(2)C3 0.3033 (4) 0.37990 (18) 0.0224 (7) 0.8222(3)N4 0.3141(3)0.7078(3)0.26035 (14) 0.0222(6)C6 0.1849(5)0.9473(5)-0.0659(2)0.0518(12)H6A 0.1530 0.8793 -0.09800.062* H6B 0.2203 1.0341 -0.08010.062* **O**7 0.1383(4)0.8499(3)0.16257 (16) 0.0423(7)C9 0.2011 (4) 0.6636(3)0.29340 (19) 0.0258 (8) Н9 0.5959 0.031* 0.1318 0.2752 C11 0.1695(5)0.8600(4)0.4821(2)0.0331 (9) 0.040* H11 0.1639 0.9067 0.5234 012 0.2371 (3) 0.7266 (3) 0.07819 (13) 0.0377 (6) C13 0.1798(5)0.9200(5)0.0011(3)0.0497 (11) 0.060* H13 0.2122 0.9893 0.0324 C15 0.1855 (4) 0.36017 (17) 0.7230(3)0.0242(7)C16 0.5768(4)0.7677(4)0.15222 (17) 0.0277(7)0.033* H16A 0.5139 0.8229 0.1190 0.6699 0.033* H16B 0.7388 0.1311 C17 0.2223(4)0.7597 (4) 0.14303 (18) 0.0292(8)C18 0.0640(4)0.6922(4)0.40057 (19) 0.0322 (8) H18 -0.01000.6246 0.3868 0.039* C19 0.44249 (18) 0.0274 (7) 0.2922 (4) 0.8882(4)H19 0.3685 0.9524 0.4580 0.033* C20 0.0548(4)0.7633(4)0.46131 (18) 0.0366 (9) H20 -0.02770.7465 0.4881 0.044* C21 0.1259(5)0.7871(5)0.0261(2)0.0469 (11) 0.056* H21A 0.1100 0.7217 -0.0116H21B 0.8009 0.0453 0.056* 0.0264 C27 0.8092(4)0.7906(4)0.2577(2)0.0355(9)H27A 0.7881 0.6922 0.2627 0.053* 0.8298 0.3012 H27B 0.8434 0.053* H27C 0.8892 0.8029 0.2268 0.053* C28 0.3198(4)0.6605(3)0.18980 (18) 0.0246 (8)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H28	0.2675	0.5689	0.1867	0.030*
C29	0.4852 (4)	0.6366 (3)	0.16894 (19)	0.0270 (8)
H29A	0.5436	0.5870	0.2056	0.032*
H29B	0.4793	0.5756	0.1293	0.032*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pt1	0.01859 (9)	0.02131 (9)	0.01877 (9)	-0.00125 (4)	0.00404 (6)	-0.00029 (4)
S4	0.0227 (4)	0.0254 (4)	0.0247 (5)	0.0004 (3)	0.0077 (3)	0.0000 (3)
Cl1	0.0320 (5)	0.0411 (5)	0.0291 (5)	-0.0148 (4)	0.0066 (4)	-0.0086 (4)
C3	0.0202 (18)	0.0253 (16)	0.0217 (18)	-0.0021 (13)	0.0012 (14)	0.0065 (13)
N4	0.0247 (15)	0.0216 (14)	0.0206 (14)	-0.0022 (11)	0.0042 (11)	-0.0008 (11)
C6	0.046 (3)	0.062 (3)	0.050 (3)	0.009 (2)	0.020 (2)	0.018 (2)
O7	0.0392 (17)	0.0494 (18)	0.0387 (17)	0.0171 (13)	0.0061 (14)	0.0016 (12)
C9	0.0243 (19)	0.0242 (18)	0.029 (2)	-0.0058 (13)	0.0012 (15)	-0.0004 (13)
C11	0.030 (2)	0.047 (2)	0.022 (2)	-0.0010 (16)	0.0050 (16)	-0.0026 (15)
012	0.0289 (14)	0.0599 (18)	0.0244 (13)	0.0047 (13)	0.0030 (11)	0.0035 (12)
C13	0.036 (2)	0.052 (3)	0.062 (3)	0.007 (2)	0.005 (2)	0.001 (2)
C15	0.0224 (17)	0.0290 (18)	0.0211 (17)	-0.0015 (13)	0.0013 (13)	0.0021 (13)
C16	0.0244 (18)	0.036 (2)	0.0236 (17)	0.0017 (15)	0.0079 (14)	-0.0030 (15)
C17	0.0224 (18)	0.037 (2)	0.0287 (19)	-0.0002 (15)	0.0044 (14)	0.0039 (16)
C18	0.024 (2)	0.042 (2)	0.030 (2)	-0.0109 (16)	0.0030 (15)	0.0034 (17)
C19	0.0253 (19)	0.0330 (18)	0.0240 (18)	-0.0018 (15)	0.0021 (14)	-0.0021 (15)
C20	0.028 (2)	0.059 (3)	0.0234 (19)	-0.0062 (18)	0.0097 (15)	0.0058 (17)
C21	0.036 (2)	0.071 (3)	0.033 (2)	0.000 (2)	-0.0041 (18)	0.009 (2)
C27	0.0222 (19)	0.043 (2)	0.041 (2)	0.0063 (16)	0.0015 (16)	-0.0047 (18)
C28	0.029 (2)	0.0233 (18)	0.0219 (18)	-0.0019 (13)	0.0018 (15)	-0.0044 (12)
C29	0.027 (2)	0.0287 (18)	0.0255 (19)	0.0064 (14)	0.0037 (15)	-0.0075 (14)

Geometric parameters (Å, °)

Pt1—C3	2.006 (4)	C13—C21	1.446 (7)
Pt1—N4	2.009 (3)	C13—H13	0.9300
Pt1—Cl1	2.3037 (9)	C15—C18	1.392 (5)
Pt1—S4	2.3618 (9)	C16—C29	1.524 (5)
S4—C27	1.801 (4)	C16—H16A	0.9700
S4—C16	1.810(3)	C16—H16B	0.9700
C3—C19	1.392 (5)	C17—C28	1.524 (5)
C3—C15	1.417 (5)	C18—C20	1.381 (5)
N4—C9	1.281 (4)	C18—H18	0.9300
N4—C28	1.464 (4)	C19—H19	0.9300
C6—C13	1.348 (6)	C20—H20	0.9300
С6—Н6А	0.9300	C21—H21A	0.9700
С6—Н6В	0.9300	C21—H21B	0.9700
O7—C17	1.204 (4)	C27—H27A	0.9600
C9—C15	1.446 (5)	C27—H27B	0.9600
С9—Н9	0.9300	C27—H27C	0.9600

C11—C19	1.386 (5)	C28—C29	1.528 (5)
C11—C20	1.387 (5)	C28—H28	0.9800
C11—H11	0.9300	С29—Н29А	0.9700
O12—C17	1.330 (4)	С29—Н29В	0.9700
O12—C21	1.464 (5)		
C2 D(1)14	00.72 (12)	07 017 012	105 4 (2)
$C3 \longrightarrow Pt1 \longrightarrow N4$	80.72 (13)	0/-017-012	125.4 (3)
C3—Pt1—C11	94.46 (10)	0/-01/-028	124.4 (3)
N4—Pt1—C11	1/5.18 (8)	012	110.1 (3)
C3—Pt1—S4	179.20 (10)	C20—C18—C15	119.1 (3)
N4—Pt1—S4	98.56 (8)	C20—C18—H18	120.4
Cl1—Pt1—S4	86.26 (3)	C15—C18—H18	120.4
C27—S4—C16	100.53 (18)	C11—C19—C3	121.2 (3)
C27—S4—Pt1	104.77 (14)	C11—C19—H19	119.4
C16—S4—Pt1	109.27 (12)	C3—C19—H19	119.4
C19—C3—C15	116.5 (3)	C18—C20—C11	119.6 (3)
C19—C3—Pt1	130.7 (3)	C18—C20—H20	120.2
C15—C3—Pt1	112.8 (2)	С11—С20—Н20	120.2
C9—N4—C28	117.6 (3)	C13—C21—O12	111.9 (4)
C9—N4—Pt1	115.8 (2)	C13—C21—H21A	109.2
C28—N4—Pt1	126.4 (2)	O12—C21—H21A	109.2
С13—С6—Н6А	120.0	C13—C21—H21B	109.2
С13—С6—Н6В	120.0	O12—C21—H21B	109.2
H6A—C6—H6B	120.0	H21A—C21—H21B	107.9
N4—C9—C15	117.4 (3)	S4—C27—H27A	109.5
N4—C9—H9	121.3	S4—C27—H27B	109.5
С15—С9—Н9	121.3	H27A—C27—H27B	109.5
C19—C11—C20	121.1 (4)	S4—C27—H27C	109.5
C19—C11—H11	119.4	H27A—C27—H27C	109.5
C20—C11—H11	119.4	H27B—C27—H27C	109.5
C17—O12—C21	118.2 (3)	N4—C28—C17	109.0 (3)
C6—C13—C21	122.5 (5)	N4—C28—C29	113.6 (3)
С6—С13—Н13	118.8	C17—C28—C29	114.2 (3)
C21—C13—H13	118.8	N4—C28—H28	106.5
C18—C15—C3	122.4 (3)	C17—C28—H28	106.5
C18—C15—C9	124.2(3)	C29—C28—H28	106.5
C3-C15-C9	113.3 (3)	$C_{16} - C_{29} - C_{28}$	116.4 (3)
$C_{29} - C_{16} - S_{4}$	115.0(2)	C16—C29—H29A	108.2
C29—C16—H16A	108.5	C28—C29—H29A	108.2
S4—C16—H16A	108 5	C16—C29—H29B	108.2
C29—C16—H16B	108.5	C28—C29—H29B	108.2
S4-C16-H16B	108.5	$H_{29A} - C_{29} - H_{29B}$	107.4
H16A—C16—H16B	107.5		107.4
N4—Pt1—S4—C27	-107.41 (16)	C21—O12—C17—C28	165.9 (3)
Cl1—Pt1—S4—C27	72.70 (14)	C3—C15—C18—C20	1.8 (6)
Cl1—Pt1—S4—C16	179.70 (13)	C9—C15—C18—C20	-175.2 (3)
N4—Pt1—C3—C19	-176.3 (4)	C20-C11-C19-C3	1.1 (6)

Cl1—Pt1—C3—C19	3.6 (3)	C15—C3—C19—C11	-1.6 (5)
N4—Pt1—C3—C15	1.1 (2)	Pt1-C3-C19-C11	175.8 (3)
Cl1—Pt1—C3—C15	-179.0 (2)	C15-C18-C20-C11	-2.4 (6)
C3—Pt1—N4—C9	-1.8 (3)	C19—C11—C20—C18	1.0 (6)
S4—Pt1—N4—C9	178.5 (2)	C6-C13-C21-O12	128.9 (4)
C3-Pt1-N4-C28	172.9 (3)	C17—O12—C21—C13	90.1 (5)
S4—Pt1—N4—C28	-6.8 (3)	C9—N4—C28—C17	86.9 (4)
C28—N4—C9—C15	-173.0 (3)	Pt1-N4-C28-C17	-87.7 (3)
Pt1—N4—C9—C15	2.2 (4)	C9—N4—C28—C29	-144.4 (3)
C19—C3—C15—C18	0.1 (5)	Pt1-N4-C28-C29	40.9 (4)
Pt1-C3-C15-C18	-177.7 (3)	O7—C17—C28—N4	-9.1 (5)
C19—C3—C15—C9	177.5 (3)	O12-C17-C28-N4	174.3 (3)
Pt1-C3-C15-C9	-0.3 (4)	O7—C17—C28—C29	-137.4 (4)
N4—C9—C15—C18	176.1 (3)	O12-C17-C28-C29	46.0 (4)
N4—C9—C15—C3	-1.2 (4)	S4—C16—C29—C28	69.7 (4)
C27—S4—C16—C29	83.2 (3)	N4-C28-C29-C16	-78.1 (4)
Pt1-S4-C16-C29	-26.7 (3)	C17—C28—C29—C16	47.8 (4)
C21—O12—C17—O7	-10.6 (6)		