organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(2-Methyl-1-phenylsulfonyl-1*H*-indol-3yl)phenylmethyl acetate

B. Saravanan,^a V. Dhayalan,^b A. K. Mohanakrishnan,^b G. Chakkaravarthi^c and V. Manivannan^a*

^aDepartment of Research and Development, PRIST University, Vallam, Thanjavur 613 403, Tamil Nadu, India, ^bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and ^cDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India Correspondence e-mail: manivan_1999@yahoo.com

Received 22 October 2009; accepted 25 October 2009

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.004 Å; R factor = 0.047; wR factor = 0.146; data-to-parameter ratio = 17.3.

In the title compound, $C_{24}H_{21}NO_4S$, the indole ring system makes dihedral angles of 77.8 (1) and 85.4 (1)°, respectively, with the S- and C-bound phenyl rings. The molecular structure is stabilized by a weak intramolecular C-H···O hydrogen bond. In the crystal, a weak intermolecular C-H···O hydrogen bond and a C-H··· π interaction are also observed.

Related literature

For the biological activity of indole derivatives, see: Chai *et al.* (2006); Olgen & Coban (2003). For related structures, see: Chakkaravarthi *et al.* (2007, 2008).

Experimental

Crystal data C₂₄H₂₁NO₄S

 $M_r = 419.48$

Monoclinic, $P2_1/n$	
a = 14.3655 (6) Å	
b = 8.3432 (4) Å	
c = 18.6261 (8) Å	
$\beta = 108.086 (2)^{\circ}$	
V = 2122.12 (16) Å ³	

Data collection

Bruker Kappa APEXII	23327 measured reflections
diffractometer	4712 independent reflections
Absorption correction: multi-scan	3030 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.043$
$T_{\min} = 0.951, \ T_{\max} = 0.968$	

Z = 4

Mo $K\alpha$ radiation

 $0.28 \times 0.24 \times 0.18 \; \mathrm{mm}$

 $\mu = 0.18 \text{ mm}^{-1}$

T = 295 K

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.047$	2 restraints
$wR(F^2) = 0.146$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{\rm max} = 0.26 \text{ e} \text{ Å}^{-3}$
4712 reflections	$\Delta \rho_{\rm min} = -0.35 \text{ e} \text{ Å}^{-3}$
273 parameters	

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C13-H13···O1	0.93	2.39	2.977 (4)	121
C24-H24 B ···O2 ⁱ	0.96	2.58	3.429 (4)	147
C15-H15 A ···C g 1 ⁱⁱ	0.96	2.97	3.590 (3)	124

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) -x, -y, -z + 1. Cg1 is the centroid of the C17-C22 ring.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*.

The authors acknowledge SAIF, IIT, Madras, for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2478).

References

- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chai, H., Zhao, C. & Gong, P. (2006). Bioorg. Med. Chem. 14, 911-917.
- Chakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2007). Acta Cryst. E63, 03698.
- Chakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, 0542.
- Olgen, S. & Coban, T. (2003). Biol. Pharm. Bull. 26, 736-738.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2009). E65, o2906 [https://doi.org/10.1107/S1600536809044365]

(2-Methyl-1-phenylsulfonyl-1*H*-indol-3-yl)phenylmethyl acetate

B. Saravanan, V. Dhayalan, A. K. Mohanakrishnan, G. Chakkaravarthi and V. Manivannan

S1. Comment

In continuation of our studies of indole derivatives, which are known to exhibit antihepatitis B virus (Chai *et al.*, 2006) and anti-oxidant activity (Olgen & Coban, 2003), we report the crystal structure of the title compound, (I). The bond lengths and bond angles of the title compound are agree with the reported similar structures (Chakkaravarthi *et al.*, 2007,2008).

The phenyl rings C1—C6 and C17—C22 make dihedral angles of 77.8 (1) and 85.4 (1)°, respectively, with the indole ring system. The two phenyl rings are inclined at an angle of 62.2 (1)° with respect to each other. The torsion angles C7—N1—S1—O2 and C14—N1—S1—O1 [-36.8 (2) and 51.1 (2)°, respectively] indicate a *syn* conformation of the sulfonyl moiety. The sum of the bond angles around N1 [351.2 (2)°] indicates that N1 is *sp*²-hybridized.

The molecular structure is controlled by a weak intramolecular C—H···O hydrogen bond and the crystal packing of (I) (Fig. 2) is through weak intermolecular C—H···O hydrogen bonds and C—H··· π (Table 1) interactions.

S2. Experimental

To a solution of 1-phenylsulfonyl-(2-methyl-1*H*-indol-3-yl) (phenyl)methanol (0.5 g, 1.32 mmol) in dry DCM (20 ml) acetic anhydride (0.27 g, 2.64 mmol) and pyridine (0.2 g, 2.52 mmol) were added. It was then stirred at room temperature for 7 h under N_2 atmosphere. The reaction mixture was poured over crushed ice (100 g) containing 2 ml of Conc. HCl, extracted with CHCl₃ (3 × 10 ml) and dried (Na₂SO₄). Removal of solvent followed by recrystallization from CDCl₃ afforded the compound as crystals.

S3. Refinement

H atoms were positioned geometrically and refined using riding model with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic C—H, C—H = 0.98 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for C—H, and C—H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl. The components of the anisotropic displacement parameters in direction of the bond of S1 and O2; C3 and C4 were restrained to be equal within an effective standard deviation of 0.001 using the DELU command in *SHELXL* (Sheldrick, 2008).

Figure 2

The packing of (I), viewed down the b axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.

(2-Methyl-1-phenylsulfonyl-1*H*-indol-3-yl)phenylmethyl acetate

Crystal data

$C_{24}H_{21}NO_4S$	F(000) = 880
$M_r = 419.48$	$D_{\rm x} = 1.313 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 6715 reflections
a = 14.3655 (6) Å	$\theta = 2.3 - 25.3^{\circ}$
b = 8.3432 (4) Å	$\mu = 0.18 \; \mathrm{mm^{-1}}$
c = 18.6261 (8) Å	T = 295 K
$\beta = 108.086 \ (2)^{\circ}$	Block, colourless
$V = 2122.12 (16) Å^3$	$0.28 \times 0.24 \times 0.18 \text{ mm}$
Z = 4	
Data collection	
Bruker Kappa APEXII	23327 measured reflections
diffractometer	4712 independent reflections
Radiation source: fine-focus sealed tube	3030 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.043$
ω and φ scans	$\theta_{\rm max} = 27.4^{\circ}, \ \theta_{\rm min} = 2.2^{\circ}$
Absorption correction: multi-scan	$h = -18 \rightarrow 18$
(SADABS; Sheldrick, 1996)	$k = -9 \rightarrow 10$
$T_{\min} = 0.951, \ T_{\max} = 0.968$	$l = -23 \rightarrow 24$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.047$	Hydrogen site location: inferred from
$wR(F^2) = 0.146$	neighbouring sites
<i>S</i> = 1.01	H-atom parameters constrained
4712 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0657P)^2 + 0.817P]$
273 parameters	where $P = (F_o^2 + 2F_c^2)/3$
2 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.26 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.35 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and	l isotropic or e	quivalent isotropic	c displacement	parameters ((A^2)	J
		1		P	/	1

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.39968 (15)	0.2073 (3)	0.58199 (12)	0.0515 (5)	
C2	0.49717 (19)	0.1911 (4)	0.58978 (19)	0.0807 (8)	
H2	0.5361	0.2802	0.5897	0.097*	
C3	0.5362 (2)	0.0363 (4)	0.5978 (2)	0.0976 (10)	
H3	0.6024	0.0216	0.6039	0.117*	
C4	0.4786 (2)	-0.0927 (4)	0.59684 (17)	0.0836 (8)	
H4	0.5056	-0.1949	0.6014	0.100*	
C5	0.3827 (2)	-0.0755 (3)	0.58934 (16)	0.0741 (7)	
Н5	0.3439	-0.1652	0.5885	0.089*	
C6	0.34286 (18)	0.0747 (3)	0.58297 (14)	0.0645 (7)	
H6	0.2772	0.0875	0.5793	0.077*	
C7	0.15867 (14)	0.3154 (3)	0.49542 (11)	0.0430 (5)	
C8	0.11839 (14)	0.2508 (2)	0.42695 (11)	0.0416 (5)	
C9	0.18128 (14)	0.2795 (3)	0.38139 (11)	0.0448 (5)	
C10	0.17326 (19)	0.2446 (3)	0.30680 (13)	0.0623 (6)	
H10	0.1193	0.1894	0.2762	0.075*	
C11	0.2471 (2)	0.2937 (4)	0.27933 (16)	0.0780 (8)	
H11	0.2429	0.2711	0.2295	0.094*	
C12	0.3271 (2)	0.3760 (4)	0.32454 (18)	0.0768 (8)	
H12	0.3758	0.4084	0.3044	0.092*	
C13	0.33684 (17)	0.4113 (3)	0.39800 (16)	0.0624 (7)	
H13	0.3913	0.4662	0.4283	0.075*	
C14	0.26243 (14)	0.3622 (2)	0.42576 (12)	0.0450 (5)	
C15	0.11753 (18)	0.3291 (4)	0.55899 (14)	0.0671 (7)	
H15A	0.0505	0.2942	0.5427	0.101*	
H15B	0.1207	0.4388	0.5752	0.101*	
H15C	0.1547	0.2633	0.6002	0.101*	
C16	0.02422 (14)	0.1601 (3)	0.40188 (11)	0.0441 (5)	
H16	-0.0023	0.1524	0.4443	0.053*	
C17	0.03687 (14)	-0.0071 (3)	0.37520 (12)	0.0462 (5)	
C18	0.10644 (19)	-0.1056 (3)	0.42217 (16)	0.0698 (7)	
H18	0.1445	-0.0681	0.4691	0.084*	
C19	0.1201 (2)	-0.2590 (4)	0.4002 (2)	0.0888 (10)	
H19	0.1675	-0.3240	0.4324	0.107*	

C20	0.0652 (3)	-0.3164 (4)	0.3322 (2)	0.0871 (9)	
H20	0.0751	-0.4199	0.3175	0.105*	
C21	-0.0047 (2)	-0.2208 (4)	0.28573 (17)	0.0763 (8)	
H21	-0.0434	-0.2600	0.2393	0.092*	
C22	-0.01860 (17)	-0.0670 (3)	0.30661 (13)	0.0570 (6)	
H22	-0.0661	-0.0028	0.2740	0.068*	
C23	-0.13810 (17)	0.2461 (4)	0.33675 (15)	0.0638 (7)	
C24	-0.1970 (2)	0.3458 (4)	0.27301 (16)	0.0905 (10)	
H24A	-0.2652	0.3353	0.2684	0.136*	
H24B	-0.1863	0.3107	0.2271	0.136*	
H24C	-0.1777	0.4559	0.2822	0.136*	
N1	0.24997 (11)	0.3880 (2)	0.49744 (10)	0.0460 (4)	
01	0.41254 (12)	0.5105 (2)	0.55926 (11)	0.0776 (6)	
O2	0.31180 (12)	0.4240 (2)	0.63643 (10)	0.0722 (5)	
03	-0.04306 (10)	0.25213 (18)	0.34207 (8)	0.0521 (4)	
04	-0.16788 (13)	0.1681 (4)	0.37807 (14)	0.1077 (8)	
S 1	0.34717 (4)	0.39792 (7)	0.57453 (3)	0.0550 (2)	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	<i>U</i> ¹³	U^{23}
C1	0.0450 (12)	0.0497 (13)	0.0509 (12)	0.0019 (10)	0.0020 (9)	0.0002 (10)
C2	0.0482 (14)	0.0716 (19)	0.117 (2)	0.0010 (13)	0.0178 (15)	0.0069 (16)
C3	0.0590 (17)	0.089 (2)	0.143 (3)	0.0230 (13)	0.0295 (18)	0.018 (2)
C4	0.091 (2)	0.0648 (18)	0.093 (2)	0.0246 (12)	0.0245 (17)	0.0178 (15)
C5	0.0770 (18)	0.0534 (16)	0.0851 (19)	0.0061 (13)	0.0152 (15)	0.0120 (13)
C6	0.0546 (14)	0.0528 (15)	0.0786 (17)	0.0003 (11)	0.0098 (12)	0.0062 (12)
C7	0.0348 (10)	0.0437 (12)	0.0481 (11)	0.0009 (8)	0.0095 (8)	-0.0012 (9)
C8	0.0350 (10)	0.0425 (11)	0.0461 (11)	0.0017 (8)	0.0110 (8)	0.0030 (8)
C9	0.0403 (11)	0.0432 (12)	0.0510 (12)	0.0054 (9)	0.0142 (9)	0.0070 (9)
C10	0.0609 (14)	0.0761 (18)	0.0529 (13)	0.0012 (12)	0.0222 (11)	0.0023 (12)
C11	0.0809 (19)	0.101 (2)	0.0631 (15)	0.0118 (17)	0.0387 (15)	0.0146 (15)
C12	0.0630 (17)	0.089 (2)	0.093 (2)	0.0123 (15)	0.0453 (16)	0.0327 (17)
C13	0.0435 (12)	0.0586 (16)	0.0878 (18)	0.0013 (10)	0.0243 (12)	0.0209 (13)
C14	0.0359 (10)	0.0392 (12)	0.0596 (13)	0.0060 (8)	0.0146 (9)	0.0117 (9)
C15	0.0537 (14)	0.091 (2)	0.0574 (14)	-0.0115 (13)	0.0185 (11)	-0.0183 (13)
C16	0.0354 (10)	0.0514 (13)	0.0408 (10)	-0.0007 (9)	0.0050 (8)	0.0027 (9)
C17	0.0374 (10)	0.0471 (13)	0.0515 (12)	-0.0045 (9)	0.0102 (9)	0.0053 (9)
C18	0.0609 (15)	0.0552 (16)	0.0789 (17)	0.0024 (12)	0.0009 (13)	0.0109 (13)
C19	0.082 (2)	0.0535 (18)	0.121 (3)	0.0137 (15)	0.0171 (19)	0.0200 (17)
C20	0.103 (2)	0.0510 (17)	0.120 (3)	0.0054 (17)	0.052 (2)	-0.0065 (17)
C21	0.089 (2)	0.0676 (19)	0.0777 (18)	-0.0066 (16)	0.0334 (16)	-0.0204 (15)
C22	0.0571 (13)	0.0588 (15)	0.0527 (13)	0.0017 (11)	0.0135 (11)	-0.0047 (11)
C23	0.0402 (12)	0.0856 (19)	0.0601 (14)	0.0121 (12)	0.0077 (11)	-0.0171 (13)
C24	0.0653 (17)	0.114 (3)	0.0726 (17)	0.0443 (17)	-0.0071 (14)	-0.0203 (16)
N1	0.0352 (9)	0.0430 (10)	0.0556 (10)	-0.0032 (7)	0.0082 (7)	-0.0001 (8)
01	0.0533 (10)	0.0505 (11)	0.1134 (15)	-0.0194 (8)	0.0033 (9)	-0.0008 (10)
O2	0.0649 (10)	0.0761 (12)	0.0635 (9)	0.0035 (9)	0.0021 (7)	-0.0289 (9)

supporting information

03	0.0376 (8)	0.0569 (10)	0.0549 (9)	0.0070 (6)	0.0041 (6)	0.0029 (7)
04	0.0438 (10)	0.180 (3)	0.1018 (16)	0.0050 (13)	0.0256 (11)	0.0205 (17)
S 1	0.0428 (3)	0.0439 (3)	0.0671 (4)	-0.0055 (2)	0.0009 (2)	-0.0092 (3)

Geometric parameters (A,)	Geometric	parameters	(Å,	9
----------------------------	-----------	------------	-----	---

C1—C2	1.369 (3)	C14—N1	1.418 (3)	
C1—C6	1.378 (3)	C15—H15A	0.9600	
C1—S1	1.747 (2)	C15—H15B	0.9600	
C2—C3	1.398 (4)	C15—H15C	0.9600	
С2—Н2	0.9300	C16—O3	1.448 (2)	
C3—C4	1.354 (5)	C16—C17	1.510 (3)	
С3—Н3	0.9300	C16—H16	0.9800	
C4—C5	1.349 (4)	C17—C22	1.373 (3)	
C4—H4	0.9300	C17—C18	1.377 (3)	
C5—C6	1.368 (4)	C18—C19	1.376 (4)	
С5—Н5	0.9300	C18—H18	0.9300	
С6—Н6	0.9300	C19—C20	1.354 (5)	
С7—С8	1.339 (3)	C19—H19	0.9300	
C7—N1	1.434 (3)	C20—C21	1.362 (4)	
C7—C15	1.483 (3)	C20—H20	0.9300	
С8—С9	1.438 (3)	C21—C22	1.373 (4)	
C8—C16	1.493 (3)	C21—H21	0.9300	
C9—C14	1.386 (3)	C22—H22	0.9300	
C9—C10	1.389 (3)	C23—O4	1.184 (3)	
C10-C11	1.375 (4)	C23—O3	1.339 (3)	
C10—H10	0.9300	C23—C24	1.481 (4)	
C11—C12	1.379 (4)	C24—H24A	0.9600	
C11—H11	0.9300	C24—H24B	0.9600	
C12—C13	1.364 (4)	C24—H24C	0.9600	
C12—H12	0.9300	N1—S1	1.6653 (17)	
C13—C14	1.386 (3)	O1—S1	1.4181 (18)	
С13—Н13	0.9300	O2—S1	1.4137 (19)	
C2—C1—C6	120.7 (2)	H15A—C15—H15C	109.5	
C2-C1-S1	120.0 (2)	H15B—C15—H15C	109.5	
C6-C1-S1	119.25 (18)	O3—C16—C8	107.17 (17)	
C1—C2—C3	117.7 (3)	O3—C16—C17	110.88 (16)	
C1—C2—H2	121.1	C8—C16—C17	112.41 (17)	
С3—С2—Н2	121.1	O3—C16—H16	108.8	
C4—C3—C2	120.7 (3)	C8—C16—H16	108.8	
С4—С3—Н3	119.7	C17—C16—H16	108.8	
С2—С3—Н3	119.7	C22—C17—C18	118.1 (2)	
C5—C4—C3	121.1 (3)	C22—C17—C16	123.24 (19)	
С5—С4—Н4	119.4	C18—C17—C16	118.7 (2)	
С3—С4—Н4	119.4	C19—C18—C17	120.5 (3)	
C4—C5—C6	119.5 (3)	C19—C18—H18	119.7	
C4—C5—H5	120.2	C17-C18-H18	119.7	

С6—С5—Н5	120.2	C20—C19—C18	120.8 (3)
C5—C6—C1	120.2 (2)	C20-C19-H19	119.6
С5—С6—Н6	119.9	C18-C19-H19	119.6
С1—С6—Н6	119.9	C19—C20—C21	119.2 (3)
C8-C7-N1	108.42 (17)	C19—C20—H20	120.4
C8-C7-C15	129.05(19)	$C_{21} - C_{20} - H_{20}$	120.4
N1 C7 C15	122.00(19)	$C_{21} C_{20} C_{120}$	120.7
$C_{7} = C_{7} = C_{13}$	122.29(10) 100.27(18)	$C_{20} = C_{21} = C_{22}$	120.7(3)
$C_{1} = C_{2} = C_{1}$	109.27(18)	$C_{20} = C_{21} = H_{21}$	119.0
C/-C8-C16	125.70 (18)	C22—C21—H21	119.6
C9—C8—C16	125.02 (18)	C21—C22—C17	120.7 (2)
C14—C9—C10	119.6 (2)	C21—C22—H22	119.6
C14—C9—C8	107.29 (18)	C17—C22—H22	119.6
C10—C9—C8	133.1 (2)	O4—C23—O3	122.6 (2)
C11—C10—C9	118.4 (3)	O4—C23—C24	126.7 (3)
C11—C10—H10	120.8	O3—C23—C24	110.7 (3)
С9—С10—Н10	120.8	C23—C24—H24A	109.5
C10-C11-C12	121.0 (3)	C23—C24—H24B	109.5
C10-C11-H11	119.5	$H_{24A} - C_{24} + H_{24B}$	109 5
C12— $C11$ — $H11$	119.5	C_{23} C_{24} H_{24} C_{24}	109.5
$C_{12} = C_{11} = I_{11}$	117.5	223 - 224 - 1124C	109.5
C_{12} C_{12} C_{12} C_{12} C_{12}	121.0 (2)	$H_24A - C_24 - H_24C$	109.5
	119.1	П24В—С24—П24С	109.5
CII—CI2—HI2	119.1	C14— $N1$ — $C7$	107.05 (16)
C12—C13—C14	117.4 (2)	C14—N1—S1	120.16 (13)
C12—C13—H13	121.3	C7—N1—S1	123.97 (14)
C14—C13—H13	121.3	C23—O3—C16	117.29 (19)
C9—C14—C13	121.9 (2)	O2—S1—O1	119.30 (12)
C9—C14—N1	107.96 (17)	O2—S1—N1	107.07 (10)
C13—C14—N1	130.1 (2)	O1—S1—N1	106.87 (10)
C7—C15—H15A	109.5	O2—S1—C1	109.33 (11)
C7—C15—H15B	109.5	O1—S1—C1	108.81 (11)
H15A - C15 - H15B	109 5	N1 - S1 - C1	104 41 (9)
C7-C15-H15C	109.5		101.11())
e/—e15—m5e	109.5		
$C(C_1, C_2, C_3)$	0.7(4)	C_{0}^{0} C16 C17 C19	52 1 (2)
$C_0 - C_1 - C_2 - C_3$	0.7(4)	$C_{0} = C_{10} = C_{17} = C_{18}$	33.1(3)
SI = CI = C2 = C3	1/8.1 (2)	C_{22} $-C_{17}$ $-C_{18}$ $-C_{19}$	0.6 (4)
C1—C2—C3—C4	0.8 (5)	C16—C17—C18—C19	179.7 (2)
C2—C3—C4—C5	-1.1 (5)	C17—C18—C19—C20	-0.3 (5)
C3—C4—C5—C6	-0.3 (5)	C18—C19—C20—C21	-0.5(5)
C4—C5—C6—C1	1.9 (4)	C19—C20—C21—C22	1.1 (5)
C2—C1—C6—C5	-2.1 (4)	C20—C21—C22—C17	-0.8 (4)
S1—C1—C6—C5	-179.5 (2)	C18—C17—C22—C21	-0.1 (3)
N1—C7—C8—C9	-0.4 (2)	C16—C17—C22—C21	-179.1 (2)
C15—C7—C8—C9	174.1 (2)	C9—C14—N1—C7	0.9 (2)
N1—C7—C8—C16	178.36 (18)	C13—C14—N1—C7	178.2 (2)
C15—C7—C8—C16	-7.1 (4)	C9—C14—N1—S1	149.55 (15)
C7—C8—C9—C14	0.9 (2)	C13—C14—N1—S1	-33.1 (3)
C16-C8-C9-C14	-177 81 (19)	C8 - C7 - N1 - C14	-0.3(2)
C7 C8 C0 C10	-177.2(2)	C_{15} C_{7} N_{1} C_{14}	-175.2(2)
-10 - 10	1//.2(2)	$U_{1} - U_{1} - U_{1} - U_{1} - U_{1}$	1/3.3(2)

C16—C8—C9—C10	4.0 (4)	C8—C7—N1—S1	-147.47 (16)
C14—C9—C10—C11	0.1 (4)	C15—C7—N1—S1	37.6 (3)
C8—C9—C10—C11	178.1 (2)	O4—C23—O3—C16	-0.8 (4)
C9-C10-C11-C12	-0.2 (4)	C24—C23—O3—C16	-179.9 (2)
C10-C11-C12-C13	0.4 (5)	C8—C16—O3—C23	-146.89 (19)
C11—C12—C13—C14	-0.5 (4)	C17—C16—O3—C23	90.1 (2)
C10-C9-C14-C13	-0.3 (3)	C14—N1—S1—O2	-179.98 (16)
C8—C9—C14—C13	-178.72 (19)	C7—N1—S1—O2	-36.81 (19)
C10-C9-C14-N1	177.35 (19)	C14—N1—S1—O1	51.11 (18)
C8—C9—C14—N1	-1.1 (2)	C7—N1—S1—O1	-165.73 (17)
C12—C13—C14—C9	0.4 (3)	C14—N1—S1—C1	-64.10 (17)
C12-C13-C14-N1	-176.6 (2)	C7—N1—S1—C1	79.06 (18)
C7—C8—C16—O3	115.6 (2)	C2-C1-S1-O2	-117.5 (2)
C9—C8—C16—O3	-65.9 (2)	C6—C1—S1—O2	59.9 (2)
C7—C8—C16—C17	-122.4 (2)	C2-C1-S1-O1	14.3 (3)
C9—C8—C16—C17	56.2 (3)	C6-C1-S1-O1	-168.25 (19)
O3—C16—C17—C22	-7.9 (3)	C2-C1-S1-N1	128.2 (2)
C8—C16—C17—C22	-127.9 (2)	C6-C1-S1-N1	-54.4 (2)
O3—C16—C17—C18	173.0 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	$D \cdots A$	D—H···A
С13—Н13…О1	0.93	2.39	2.977 (4)	121
C24—H24 B ···O2 ⁱ	0.96	2.58	3.429 (4)	147
C15—H15 <i>A</i> ··· <i>Cg</i> 1 ⁱⁱ	0.96	2.97	3.590 (3)	124

Symmetry codes: (i) x-1/2, -y+1/2, z-1/2; (ii) -x, -y, -z+1.