

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Carbonylchlorido(1-methylsulfanylpenta-1,3-dien-1-yl-5-ylidene)bis(triphenylphosphane)osmium(II)

Paul M. Johns, Warren R. Roper, Scott D. Woodgate and L. James Wright*

Department of Chemistry, The University of Auckland, Private Bag 92019, Auckland, New Zealand

Correspondence e-mail: lj.wright@auckland.ac.nz

Received 25 September 2009; accepted 29 September 2009

Key indicators: single-crystal X-ray study; T = 203 K; mean σ (C–C) = 0.005 Å; R factor = 0.022; wR factor = 0.060; data-to-parameter ratio = 17.6.

The crystal structure of the title compound, $[Os(C_6H_7S)Cl-(C_{18}H_{15}P)_2(CO)]$, confirms the formulation as an osmabenzene. There is a slightly distorted octahedral coordination environment at the Os^{II} ion, with the triphenylphosphane ligands mutually *trans* and the chloride *cis* to the carbon bearing the –SMe substituent. Within the metallacyclic ring, the C–C distances are appropriate for aromatic bonds and the two Os–C distances are shorter than typical Os–C single bonds. The maximum deviation from the least-squares plane through the osmabenzene ring occurs for the carbon bearing the SMe substituent [0.1037 (18) Å].

Related literature

For the synthesis and properties of metallabenzenes, see: Bleeke (2001); Landorf & Haley (2006); Wright (2006). For the synthesis and properties of osmabenzenes, see: Elliott *et al.* (1982, 1989); Rickard *et al.* (2000, 2001). For a discussion of ring planarity in metallabenzenes, see: Zhu *et al.* (2007). For spectroscopic data, see: Maddock *et al.* (1996).

Experimental

Crystal data $[Os(C_6H_7S)Cl(C_{18}H_{15}P)_2(CO)]$ $M_r = 889.38$ metal-organic compounds

Mo $K\alpha$ radiation

 $0.33 \times 0.28 \times 0.11 \text{ mm}$

 $\mu = 3.75 \text{ mm}^{-1}$

T = 203 K

Z = 4

Monoclinic, $P2_1/n$	
a = 13.5565 (1) Å	
b = 15.7136 (2) Å	
c = 18.2264 (3) Å	
$\beta = 109.978 \ (1)^{\circ}$	
V = 3648.97 (8) Å ³	

Data collection

Siemens SMART CCD area-	22209 measured reflections
detector diffractometer	7812 independent reflections
Absorption correction: multi-scan	6032 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.023$
$T_{\min} = 0.491, \ T_{\max} = 0.739$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.022$	444 parameters
$vR(F^2) = 0.060$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{\rm max} = 1.01 \text{ e } \text{\AA}^{-3}$
812 reflections	$\Delta \rho_{\rm min} = -0.53 \text{ e} \text{ Å}^{-3}$

Table 1

Selected bond lengths (Å).

Os1-C1	2.109 (3)	C2-C3	1.370 (4)
Os1-C5	2.026 (3)	C3-C4	1.393 (5)
C1-C2	1.410 (4)	C4-C5	1.367 (4)

Data collection: *SMART* (Siemens, 1995); cell refinement: *SAINT* (Siemens, 1995); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

We thank the University of Auckland for granting a doctoral scholarship to SDW and the Marsden Fund for granting a doctoral scholarship to PMJ.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2916).

References

- Bleeke, J. R. (2001). Chem. Rev. 101, 1205-1227.
- Elliott, G. P., McAuley, N. M. & Roper, W. R. (1989). Inorg. Synth. 26, 184-189.
- Elliott, G. P., Roper, W. R. & Waters, J. M. (1982). J. Chem. Soc. Chem. Commun. pp. 811-813.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Landorf, C. W. & Haley, M. M. (2006). Angew. Chem. Int. Ed. 45, 3914-3936.
- Maddock, S. M., Rickard, C. E. F., Roper, W. R. & Wright, L. J. (1996). Organometallics, 15, 1793–1803.
- Rickard, C. E. F., Roper, W. R., Woodgate, S. D. & Wright, L. J. (2000). Angew. Chem. Int. Ed. 39, 750–752.
- Rickard, C. E. F., Roper, W. R., Woodgate, S. D. & Wright, L. J. (2001). Organomet. Chem. 623, 109–115.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Wright, L. J. (2006). Dalton Trans. pp. 1821-1827.
- Zhu, J., Jia, G. & Lin, Z. (2007). Organometallics, 26, 1986-1995.

supporting information

Acta Cryst. (2009). E65, m1319 [https://doi.org/10.1107/S1600536809039695]

Carbonylchlorido(1-methylsulfanylpenta-1,3-dien-1-yl-5-ylidene)bis(triphenyl-phosphane)osmium(II)

Paul M. Johns, Warren R. Roper, Scott D. Woodgate and L. James Wright

S1. Comment

Metallabenzenes are now a well established class of organometallic compounds and a considerable number of studies involving the syntheses, reactivity and aromatic character of these materials have been made. To obtain further data relating to the nature of the delocalized bonding in osmabenzenes (Rickard *et al.*, 2000; Rickard *et al.*, 2001) we have obtained the single-crystal *X*-ray structure of the title complex $[Os(C_5H_4{SMe-1})Cl(CO)(PPh_3)_2]$. The geometry about Os is approximately octahedral with the two PPh₃ ligands mutually *trans*. Within the metallacyclic ring the Os—C1 and Os—C5 distances are shorter than those observed for normal Os—C single bonds suggesting there is some multiple character to these bonds (see Table 1). The C—C distances in this ring are very close to those found in simple aromatic compounds and come within the range of distances reported for other metallabenzenes (Bleeke, 2001; Landorf & Haley, 2006; Wright, 2006). The osmabenzene ring is not planar and the atoms that show the greatest displacement from the mean plane through Os and the five ring carbons are C1 (0.1037 (18) Å) and Os (0.1000 (13) Å). Non-planarity has been observed for a number of other metallabenzenes. This phenomenon has been investigated theoretically and shown not to compromise the electron delocalization within the ring (Zhu *et al.*, 2007).

S2. Experimental

[Os(C₃H₄{S-1})(CO)(PPh₃)₂] (Elliott *et al.*, 1982; Elliott *et al.*, 1989) (200 mg, 0.238 mmol) was dissolved in dry dichloromethane (25 ml) and methyl trifluoromethanesulfonate (534 μ L, 0.48 mmol) was added. NaCl (27.8 mg, 0.476 mmol) dissolved in water (1 ml) was added to the blue solution and the mixture stirred for one hour. The dichloromethane layer was seperated and then eluted through a chromatography column (silica gel support, 2.5 cm *x* 1.5 cm) using dichloromethane as the eluent. The fast-moving dark blue band was collected and recrystallized from dichloromethane/ethanol (25 ml/10 ml) to give crystals of the title compound (188 mg, 89%). The crystal used for the singlecrystal X-ray diffraction study was also grown from dichloromethane/ethanol. MS: Calcd for C₄₃H₃₇OOsP₂S [M–Cl]⁺ 853.1624. Found: 853.1603 *m/z*. Anal. Found: C, 57.50; H 4.19. C₄₃H₃₇ClOOsP₂S requires C, 58.07; H, 4.19%. ¹H NMR (CDCl₃, δ): 1.70 (s, 3H, SCH₃), 6.57 (apparent t, 1H, *H4*, ³J_{HH} = 8.5 Hz), 6.65 (d, 1H, *H2*, ³J_{HH} = 8.8 Hz), 7.07 (d apparent t, 1H, *H3*, ³J_{HH} = 8.8 Hz, ⁴J_{HH} = 1.7 Hz), 7.45–7.69 (m, 30H, PPh₃), 13.27 (d, 1H, *H5*, ³J_{HH} = 9.3 Hz). ¹³C {¹H} NMR (CDCl₃, δ): 23.21 (s, SCH₃), 121.60 (s, *C2*), 123.75 (s, *C4*), 126.89 (t'(Maddock *et al.*, 1996), *o*-PPh₃, ²⁴J_{CP} = 10.1 Hz), 129.32 (s, *p*-PPh₃), 133.22 (t', *i*-PPh₃, ^{1,3}J_{CP} = 53.3 Hz), 134.62 (t', *m*-PPh₃, ^{3,5}J_{CP} = 11.1 Hz), 145.81 (s, *C3*), 191.61 (t, *CO*, ²J_{CP} = 11.1 Hz), 220.96 (t, *C5*, ²J_{CP} = 6.3 Hz), 237.42 (t, *C1*, ²J_{CP} = 9.1 Hz).

S3. Refinement

Hydrogen atoms were placed in calculated positions and refined using the riding model [C— H 0.93–0.97 Å, with U_{iso} (H) = 1.2 or 1.5 times U_{eq} (C). The highest density peak and deepest hole are located 0.84 Å and 0.54 Å from atoms Os1 and

Cl1 respectively.

Figure 1

The molecular structure of $[Os(C_5H_4{SMe-1})Cl(CO)(PPh_3)_2]$ showing 50% probability displacement ellipsoids for non-hydrogen atoms. H atoms omitted for clarity.

Carbonylchlorido(1-methylsulfanylpenta-1,3-dien-1-yl-5- ylidene)bis(triphenylphosphane)osmium(II)

Crystal data	
$[Os(C_6H_7S)Cl(C_{18}H_{15}P)_2(CO)]$	V = 3648.97 (8) Å ³
$M_r = 889.38$	Z = 4
Monoclinic, $P2_1/n$	F(000) = 1768
Hall symbol: -P 2yn	$D_{\rm x} = 1.619 {\rm ~Mg} {\rm ~m}^{-3}$
a = 13.5565 (1) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 15.7136 (2) Å	Cell parameters from 8192 reflections
c = 18.2264 (3) Å	$\theta = 1.6 - 28.3^{\circ}$
$\beta = 109.978 \ (1)^{\circ}$	$\mu = 3.75 \text{ mm}^{-1}$

T = 203 KPlates, blue

Data collection

2 una contection	
Siemens SMART CCD area-detector diffractometer	22209 measured reflections 7812 independent reflections
Radiation source: fine-focus sealed tube	6032 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.023$
ωscans	$\theta_{\rm max} = 27.0^\circ, \theta_{\rm min} = 1.6^\circ$
Absorption correction: multi-scan	$h = -17 \rightarrow 16$
(SADABS; Sheldrick, 1996)	$k = 0 \rightarrow 19$
$T_{\min} = 0.491, T_{\max} = 0.739$	$l = 0 \rightarrow 23$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.022$	H-atom parameters constrained
$wR(F^2) = 0.060$	$w = 1/[\sigma^2(F_o^2) + (0.0268P)^2 + 2.9139P]$
S = 1.01	where $P = (F_o^2 + 2F_c^2)/3$
7812 reflections	$(\Delta/\sigma)_{\rm max} = 0.004$
444 parameters	$\Delta \rho_{\rm max} = 1.01 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.53 \text{ e} \text{ Å}^{-3}$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map

 $0.33 \times 0.28 \times 0.11 \text{ mm}$

 $\Delta \rho_{\rm min} = -0.53 \ {\rm e \ A^{-}}$ Extinction correction: SHELXL97 (Sheldrick, 2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.00065 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit *S* are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based

on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Os1	0.503721 (7)	0.750195 (6)	0.123794 (5)	0.01728 (5)	
C11	0.52137 (6)	0.89985 (5)	0.17787 (4)	0.03293 (16)	
P1	0.35379 (5)	0.75535 (4)	0.16571 (4)	0.02055 (14)	
P2	0.65608 (5)	0.75710 (4)	0.08534 (4)	0.02050 (14)	
S1	0.41485 (6)	0.90387 (5)	0.00041 (4)	0.02726 (15)	
01	0.6180 (2)	0.6574 (2)	0.26956 (18)	0.0572 (7)	
C1	0.4083 (2)	0.79638 (18)	0.01381 (16)	0.0235 (6)	
C2	0.3413 (2)	0.74700 (19)	-0.04778 (18)	0.0314 (7)	
H2A	0.2937	0.7754	-0.0907	0.038*	
C3	0.3422 (2)	0.6598 (2)	-0.04821 (18)	0.0351 (7)	
H3A	0.2913	0.6336	-0.0909	0.042*	
C4	0.4089 (3)	0.6051 (2)	0.00668 (19)	0.0353 (7)	
	· · ·				

H4A	0.4057	0.5466	-0.0047	0.042*
C5	0.4789 (2)	0.63212 (18)	0.07632 (18)	0.0280 (6)
H5A	0.5222	0.5893	0.1069	0.034*
C6	0.5838 (2)	0.6926 (2)	0.2226 (2)	0.0331 (7)
C7	0.3395 (3)	0.9277 (2)	-0.10003 (18)	0.0413 (8)
H7A	0.3550	0.9851	-0.1122	0.062*
H7B	0.2652	0.9229	-0.1079	0.062*
H7C	0.3577	0.8878	-0.1340	0.062*
C11	0.3842 (2)	0.76453 (17)	0.27235 (16)	0.0235 (6)
C12	0.3095 (3)	0.7412 (2)	0.30511 (19)	0.0353 (7)
H12A	0.2436	0.7214	0.2727	0.042*
C13	0.3310 (3)	0.7467 (2)	0.3850(2)	0.0426 (9)
H13A	0.2797	0.7303	0.4063	0.051*
C14	0.4268 (3)	0.7760 (2)	0.43332 (18)	0.0374 (8)
H14A	0.4411	0.7795	0.4875	0.045*
C15	0.5017 (2)	0.8001 (2)	0.40201 (17)	0.0326 (7)
H15A	0.5673	0.8203	0.4347	0.039*
C16	0.4802 (2)	0.79462 (19)	0.32186 (16)	0.0278 (6)
H16A	0.5316	0.8115	0.3008	0.033*
C21	0.2689 (2)	0.6613 (2)	0.14554 (17)	0.0290 (7)
C22	0.3159 (3)	0.5816 (2)	0.16040 (18)	0.0359 (7)
H22A	0.3894	0.5775	0.1759	0.043*
C23	0.2570 (3)	0.5082 (2)	0.1529 (2)	0.0493 (10)
H23A	0.2900	0.4547	0.1634	0.059*
C24	0.1479 (3)	0.5146 (3)	0.1294 (2)	0.0570(12)
H24A	0.1070	0.4652	0.1243	0.068*
C25	0.1005 (3)	0.5922 (3)	0.1140 (2)	0.0549 (11)
H25A	0.0270	0.5958	0.0976	0.066*
C26	0.1597 (3)	0.6659 (2)	0.12214 (19)	0.0406 (8)
H26A	0.1262	0.7192	0.1119	0.049*
C31	0.2631 (2)	0.8443 (2)	0.12691 (16)	0.0253 (6)
C32	0.2611 (2)	0.9141 (2)	0.17292 (19)	0.0314 (7)
H32A	0.3027	0.9141	0.2261	0.038*
C33	0.1988 (3)	0.9836 (2)	0.1415 (2)	0.0401 (8)
H33A	0.1983	1.0304	0.1734	0.048*
C34	0.1374 (2)	0.9848 (2)	0.0637 (2)	0.0428 (9)
H34A	0.0958	1.0326	0.0424	0.051*
C35	0.1373(2)	0.9154 (2)	0.0172 (2)	0.0409 (8)
H35A	0.0947	0.9157	-0.0357	0.049*
C36	0.1997 (2)	0.8454(2)	0.04829 (18)	0.0335(7)
H36A	0.1994	0.7984	0.0163	0.040*
C41	0.6232 (2)	0.78681 (19)	-0.01726(16)	0.0249 (6)
C42	0.5683(2)	0.7288 (2)	-0.07572(18)	0.0325(7)
H42A	0.5528	0.6740	-0.0622	0.039*
C43	0.5370(3)	0.7532 (2)	-0.1540(2)	0.0442 (9)
H43A	0.5027	0.7138	-0.1932	0.053*
C44	0.5558(3)	0.8340 (3)	-0.1742(2)	0.0459 (9)
H44A	0.5347	0.8497	-0.2271	0.055*
		0.0.71	···	

C15	0 (055 (2)	0.8025 (2)	0 1170 (2)	0.042(.0)
C45	0.6055 (3)	0.8925 (2)	-0.11/0 (2)	0.0426 (9)
H45A	0.6161	0.9485	-0.1309	0.051*
C46	0.6399 (2)	0.8687 (2)	-0.03906 (19)	0.0321 (7)
H46A	0.6749	0.9085	-0.0005	0.038*
C51	0.7660 (2)	0.82842 (19)	0.13641 (17)	0.0265 (6)
C52	0.7716 (2)	0.8719 (2)	0.2035 (2)	0.0363 (8)
H52A	0.7183	0.8653	0.2252	0.044*
C53	0.8567 (3)	0.9258 (2)	0.2393 (2)	0.0502 (10)
H53A	0.8599	0.9559	0.2846	0.060*
C54	0.9353 (3)	0.9348 (2)	0.2086 (2)	0.0512 (10)
H54A	0.9913	0.9723	0.2321	0.061*
C55	0.9324 (3)	0.8887 (3)	0.1431 (2)	0.0523 (10)
H55A	0.9878	0.8931	0.1233	0.063*
C56	0.8481 (3)	0.8365 (2)	0.1071 (2)	0.0413 (8)
H56A	0.8458	0.8060	0.0623	0.050*
C61	0.7313 (2)	0.65751 (18)	0.09802 (17)	0.0233 (6)
C62	0.7491 (2)	0.6108 (2)	0.03920 (18)	0.0320 (7)
H62A	0.7202	0.6292	-0.0129	0.038*
C63	0.8093 (3)	0.5370 (2)	0.0568 (2)	0.0389 (8)
H63A	0.8204	0.5057	0.0164	0.047*
C64	0.8526 (2)	0.5094 (2)	0.13256 (19)	0.0334 (7)
H64A	0.8927	0.4592	0.1440	0.040*
C65	0.8371 (3)	0.5558 (2)	0.19159 (19)	0.0364 (7)
H65A	0.8668	0.5375	0.2436	0.044*
C66	0.7779 (2)	0.6290 (2)	0.17438 (18)	0.0353 (7)
H66A	0.7688	0.6606	0.2153	0.042*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Os1	0.01787 (6)	0.01638 (6)	0.01841 (6)	-0.00104 (4)	0.00725 (4)	0.00086 (4)
Cl1	0.0314 (4)	0.0327 (4)	0.0342 (4)	-0.0012 (3)	0.0105 (3)	0.0008 (3)
P1	0.0185 (3)	0.0244 (4)	0.0191 (3)	-0.0022 (3)	0.0069 (3)	0.0012 (3)
P2	0.0199 (3)	0.0218 (4)	0.0214 (3)	-0.0007 (3)	0.0091 (3)	0.0001 (3)
S1	0.0287 (4)	0.0259 (4)	0.0262 (4)	0.0020 (3)	0.0081 (3)	0.0052 (3)
01	0.0490 (16)	0.068 (2)	0.0625 (19)	0.0120 (15)	0.0288 (15)	0.0092 (16)
C1	0.0216 (13)	0.0274 (15)	0.0245 (14)	-0.0001 (11)	0.0117 (11)	0.0008 (12)
C2	0.0269 (14)	0.0362 (17)	0.0276 (15)	-0.0031 (13)	0.0048 (12)	-0.0002 (13)
C3	0.0302 (16)	0.0405 (19)	0.0320 (17)	-0.0140 (14)	0.0072 (13)	-0.0079 (14)
C4	0.0419 (18)	0.0235 (15)	0.0453 (19)	-0.0079 (14)	0.0210 (15)	-0.0047 (14)
C5	0.0300 (15)	0.0228 (14)	0.0366 (17)	-0.0020 (12)	0.0187 (13)	-0.0002 (12)
C6	0.0261 (16)	0.0375 (19)	0.0424 (19)	-0.0048 (14)	0.0207 (15)	-0.0094 (15)
C7	0.049 (2)	0.044 (2)	0.0268 (16)	0.0060 (16)	0.0071 (15)	0.0135 (14)
C11	0.0260 (14)	0.0235 (14)	0.0205 (13)	-0.0003 (11)	0.0073 (11)	0.0017 (11)
C12	0.0294 (15)	0.051 (2)	0.0290 (16)	-0.0121 (14)	0.0145 (13)	-0.0062 (14)
C13	0.0410 (18)	0.064 (3)	0.0313 (17)	-0.0146 (17)	0.0228 (15)	-0.0024 (16)
C14	0.0458 (19)	0.0481 (19)	0.0208 (15)	-0.0048 (16)	0.0143 (14)	-0.0001 (14)
C15	0.0336 (17)	0.0376 (18)	0.0224 (15)	-0.0039 (13)	0.0041 (13)	0.0000 (13)

supporting information

C16	0.0281 (15)	0.0322 (16)	0.0240 (14)	-0.0053 (13)	0.0101 (12)	0.0019 (12)
C21	0.0314 (15)	0.0355 (17)	0.0206 (14)	-0.0126 (13)	0.0096 (12)	-0.0002 (12)
C22	0.0433 (19)	0.0350 (18)	0.0321 (17)	-0.0121 (15)	0.0166 (15)	0.0006 (14)
C23	0.079 (3)	0.0332 (19)	0.040 (2)	-0.0201 (19)	0.0262 (19)	0.0002 (16)
C24	0.070 (3)	0.061 (3)	0.037 (2)	-0.043 (2)	0.0148 (19)	-0.0004 (19)
C25	0.0381 (19)	0.078 (3)	0.043 (2)	-0.030(2)	0.0065 (16)	0.006 (2)
C26	0.0288 (16)	0.052 (2)	0.0386 (19)	-0.0146 (15)	0.0088 (14)	0.0055 (16)
C31	0.0167 (12)	0.0344 (17)	0.0274 (15)	0.0017 (12)	0.0107 (11)	0.0069 (12)
C32	0.0275 (15)	0.0335 (17)	0.0340 (16)	0.0028 (13)	0.0116 (13)	0.0033 (14)
C33	0.0327 (17)	0.0363 (19)	0.054 (2)	0.0054 (14)	0.0179 (16)	0.0041 (16)
C34	0.0255 (16)	0.043 (2)	0.062 (2)	0.0101 (14)	0.0178 (16)	0.0202 (18)
C35	0.0217 (15)	0.064 (2)	0.0350 (18)	0.0087 (15)	0.0067 (13)	0.0186 (17)
C36	0.0256 (15)	0.0463 (19)	0.0299 (16)	0.0022 (14)	0.0110 (13)	0.0041 (14)
C41	0.0243 (14)	0.0291 (15)	0.0246 (14)	0.0035 (12)	0.0127 (12)	0.0050 (12)
C42	0.0258 (15)	0.0433 (18)	0.0278 (16)	-0.0019 (13)	0.0084 (13)	0.0027 (13)
C43	0.0329 (17)	0.071 (3)	0.0270 (16)	-0.0006 (17)	0.0081 (14)	-0.0040 (17)
C44	0.0354 (18)	0.073 (3)	0.0328 (18)	0.0145 (18)	0.0162 (15)	0.0186 (18)
C45	0.0390 (18)	0.048 (2)	0.049 (2)	0.0121 (16)	0.0245 (17)	0.0231 (17)
C46	0.0315 (16)	0.0301 (16)	0.0377 (17)	0.0078 (13)	0.0158 (14)	0.0064 (13)
C51	0.0216 (13)	0.0247 (15)	0.0318 (16)	-0.0023 (11)	0.0072 (12)	0.0013 (12)
C52	0.0231 (15)	0.0390 (19)	0.0425 (19)	0.0009 (13)	0.0057 (14)	-0.0112 (15)
C53	0.0356 (18)	0.045 (2)	0.058 (2)	0.0001 (16)	0.0003 (17)	-0.0200 (18)
C54	0.0326 (18)	0.037 (2)	0.072 (3)	-0.0124 (15)	0.0012 (18)	-0.0025 (19)
C55	0.0328 (18)	0.066 (3)	0.059 (2)	-0.0197 (18)	0.0167 (18)	0.008 (2)
C56	0.0372 (18)	0.051 (2)	0.0406 (19)	-0.0133 (16)	0.0191 (16)	-0.0053 (16)
C61	0.0217 (13)	0.0223 (14)	0.0284 (15)	0.0008 (11)	0.0117 (11)	0.0008 (12)
C62	0.0350 (16)	0.0359 (17)	0.0262 (15)	0.0035 (14)	0.0117 (13)	0.0004 (13)
C63	0.0455 (19)	0.0341 (18)	0.0397 (18)	0.0071 (15)	0.0177 (16)	-0.0108 (14)
C64	0.0316 (16)	0.0246 (15)	0.0435 (19)	0.0037 (13)	0.0120 (14)	0.0012 (14)
C65	0.0362 (17)	0.0371 (18)	0.0347 (17)	0.0111 (14)	0.0106 (14)	0.0067 (14)
C66	0.0381 (18)	0.0425 (19)	0.0258 (16)	0.0130 (14)	0.0118 (14)	0.0029 (14)

Geometric parameters (Å, °)

Os1—C6	1.976 (4)	C25—H25A	0.9400
Os1—C1	2.109 (3)	C26—H26A	0.9400
Os1—C5	2.026 (3)	C31—C32	1.387 (4)
Os1—P2	2.3996 (7)	C31—C36	1.397 (4)
Os1—P1	2.4047 (7)	C32—C33	1.379 (4)
Os1—Cl1	2.5293 (8)	C32—H32A	0.9400
P1-C21	1.832 (3)	C33—C34	1.378 (5)
P1—C31	1.836 (3)	С33—Н33А	0.9400
P1-C11	1.850 (3)	C34—C35	1.380 (5)
P2—C41	1.829 (3)	C34—H34A	0.9400
P2-C61	1.839 (3)	C35—C36	1.385 (4)
P2—C51	1.843 (3)	С35—Н35А	0.9400
S1—C1	1.713 (3)	C36—H36A	0.9400
S1—C7	1.805 (3)	C41—C46	1.388 (4)

O1—C6	0.992 (4)	C41—C42	1.406 (4)
C1—C2	1.410 (4)	C42—C43	1.396 (5)
C2—C3	1.370 (4)	C42—H42A	0.9400
C2—H2A	0.9400	C43—C44	1.371 (5)
C3—C4	1.393 (5)	C43—H43A	0.9400
С3—НЗА	0.9400	C44—C45	1.380 (5)
C4—C5	1.367 (4)	C44—H44A	0.9400
C4—H4A	0.9400	C45—C46	1.388 (4)
C5—H5A	0.9400	C45—H45A	0.9400
C7—H7A	0.9700	C46—H46A	0.9400
C7—H7B	0.9700	C51-C52	1 380 (4)
C7—H7C	0.9700	$C_{51} - C_{56}$	1 394 (4)
C_{11} C_{12}	1 389 (4)	$C_{52} - C_{53}$	1.391(1) 1 400 (4)
C_{11} C_{12}	1 389 (4)	C52—H52A	0.9400
C_{12} C_{13}	1.387(4)	C52 - C54	1 370 (6)
C12—H12A	0.9400	C53—H53A	0.9400
C12 - C12	1 376 (5)	C54-C55	1 386 (6)
C13 H13A	0.9400	C54 H54A	0.9400
C14 $C15$	1.378(A)	C55 C56	1.378(5)
C14 H14A	0.9400	C55_H55A	0.9400
C_{14} C_{15} C_{16}	1.391(A)	C56 H56A	0.9400
C15_H15A	0.9400	$C_{50} = H_{50} \times C_{51}$	1 386 (4)
C16 H16A	0.9400	C61 - C66	1.300 (4)
C_{10} C_{21} C_{22}	1 380 (5)	C62 C63	1.391(4) 1 302(4)
$C_{21} = C_{22}$	1.305(3)	C62 H62A	0.0400
$C_{21} = C_{20}$	1.393(4) 1.383(4)	C_{02} — C_{02} — C_{02}	1.373(5)
$C_{22} = C_{23}$	0.0400	C63 H63A	1.373(3)
C_{22} — I_{122} A	1 305 (6)	C64 C65	1.374(4)
$C_{23} = C_{24}$	1.393 (0)	C64 H64A	1.374(4)
C_{23} — H_{23} A	0.9400	C65 C66	0.9400
C_{24}	1.502 (0)	C05 = U05	1.576 (4)
C24—H24A	0.9400		0.9400
C25-C26	1.388 (5)	Соо—НооА	0.9400
C6—Os1—C5	85.91 (13)	C23—C24—H24A	119.9
C6—Os1—C1	172.52 (12)	C24—C25—C26	120.7 (4)
C5—Os1—C1	87.18 (12)	C24—C25—H25A	119.7
C6—Os1—P2	91.54 (9)	C26—C25—H25A	119.7
C5—Os1—P2	87.16 (8)	C25—C26—C21	120.2 (4)
C1—Os1—P2	90.95 (7)	C25—C26—H26A	119.9
C6—Os1—P1	89.25 (9)	C21—C26—H26A	119.9
C5—Os1—P1	97.56 (8)	C32—C31—C36	118.5 (3)
C1—Os1—P1	88.84 (7)	C32—C31—P1	121.2 (2)
P2—Os1—P1	175.26 (2)	C36—C31—P1	120.1 (2)
C6—Os1—Cl1	97.00 (10)	C33—C32—C31	120.7 (3)
C5—Os1—Cl1	176.00 (9)	С33—С32—Н32А	119.6
C1—Os1—Cl1	89.78 (8)	C31—C32—H32A	119.6
P2—Os1—C11	95.48 (2)	C34—C33—C32	120.5 (3)
P1—Os1—C11	79.78 (2)	С34—С33—Н33А	119.7

C21—P1—C31	104.19 (15)	С32—С33—Н33А	119.7
C21—P1—C11	99.96 (13)	C33—C34—C35	119.6 (3)
C31—P1—C11	103.00 (13)	С33—С34—Н34А	120.2
C21—P1—Os1	116.76 (10)	С35—С34—Н34А	120.2
C31—P1—Os1	115.50 (9)	C34—C35—C36	120.3 (3)
C11—P1—Os1	115.31 (10)	С34—С35—Н35А	119.8
C41—P2—C61	106.08 (13)	С36—С35—Н35А	119.8
C41—P2—C51	103.53 (14)	C35—C36—C31	120.3 (3)
C61—P2—C51	97.81 (13)	С35—С36—Н36А	119.8
C41—P2—Os1	112.12 (9)	С31—С36—Н36А	119.8
C61 - P2 - Os1	114.88 (9)	C46-C41-C42	118.7 (3)
C51 - P2 - Os1	120.54 (10)	C46—C41—P2	121.5 (2)
C1 - S1 - C7	108.06(15)	C42-C41-P2	1194(2)
$C_2 - C_1 - S_1$	118.7 (2)	C43-C42-C41	119.6(3)
$C_2 = C_1 = O_{S_1}$	125.9(2)	C43 - C42 - H42A	120.2
S1-C1-Os1	115 46 (15)	C41 - C42 - H42A	120.2
$C_{3}-C_{2}-C_{1}$	123.4(3)	C44-C43-C42	120.2 120.6(3)
$C_3 - C_2 - H_2 A$	118 3	C44— $C43$ — $H43A$	119.7
C1 - C2 - H2A	118.3	C42 - C43 - H43A	119.7
$C_{2} - C_{3} - C_{4}$	128.2 (3)	C43 - C44 - C45	119.7 120.1(3)
$C_2 = C_3 = H_3 A$	115.9	C43 - C44 - H44A	110.0
C4-C3-H3A	115.9	C45— $C44$ — $H44A$	119.9
C_{5} C_{4} C_{3}	123 3 (3)	C44 - C45 - C46	120.0(3)
$C_5 - C_4 - H_{4A}$	118.3	C44 - C45 - H45A	120.0 (3)
$C_3 - C_4 - H_4 \Delta$	118.3	C46-C45-H45A	120.0
C4-C5-Os1	130.0(2)	C45 - C45 - C41	120.0 120.9(3)
C4-C5-H5A	115.0	C45 - C46 - H46A	110.6
O_{1} C_{2} H_{2}	115.0	C41 - C46 - H46A	119.6
01 - C6 - 0s1	172.7(4)	C_{2} C_{2	119.0 119.0(3)
S1H7A	1/2.7 (4)	$C_{52} = C_{51} = C_{50}$	117.0(3) 122.6(2)
S1H7B	109.5	$C_{52} = C_{51} = P_2$	122.0(2) 118.4(2)
H7A - C7 - H7B	109.5	C_{51} C_{51} C_{52} C_{53}	110.4(2) 110.9(3)
S1H7C	109.5	$C_{51} - C_{52} - C_{53}$	120.0
H7A - C7 - H7C	109.5	C_{53} C_{52} H_{52A}	120.0
H7B-C7-H7C	109.5	C54 - C53 - C52	120.0 120.4(4)
C_{12} C_{11} C_{16}	109.5 118.0 (3)	C54-C53-H53A	110.9
C_{12} C_{11} P_{1}	110.0(3) 110.8(2)	C52-C53-H53A	119.8
$C_{12} = C_{11} = P_1$	119.0(2) 122.1(2)	$C_{52} = C_{53} = H_{55} R_{55}$	120.0(3)
C_{13} C_{12} C_{11}	122.1(2) 120.8(3)	$C_{53} - C_{54} - C_{55}$	120.0 (5)
C13 - C12 - C11	119.6	C55-C54-H54A	120.0
$C_{13} - C_{12} - H_{12A}$	119.0	$C_{55} = C_{54} = M_{54}$	120.0 110.7(3)
C14-C13-C12	119.0 120.4(3)	$C_{50} = C_{55} = C_{54}$	119.7 (5)
C14 - C13 - C12	120.4 (5)	$C_{50} = C_{55} = H_{55A}$	120.1
C12_C13_H13A	119.8	$C_{5} = C_{5} = C_{5}$	120.1 120.9(3)
C12 - C13 - C13	119.7 (3)	C55_C56_H564	119 5
C13 - C14 - H14	120.1	C51—C56—H56A	119.5
C15 C14 H14A	120.1	C62 - C61 - C66	117.6 (3)
C14 $C15$ $C16$	120.1	C62 - C61 - P2	1260(3)
	119.9 (3)	02-001-12	120.0 (2)

C14—C15—H15A	120.1	C66—C61—P2	116.3 (2)
C16—C15—H15A	120.1	C61—C62—C63	120.4 (3)
C11—C16—C15	121.1 (3)	C61—C62—H62A	119.8
C11—C16—H16A	119.4	С63—С62—Н62А	119.8
C15—C16—H16A	119.4	C64—C63—C62	120.7 (3)
C22—C21—C26	118.4 (3)	С64—С63—Н63А	119.6
C22—C21—P1	118.3 (2)	С62—С63—Н63А	119.6
C26—C21—P1	123.2 (3)	C63—C64—C65	119.5 (3)
C23—C22—C21	121.5 (3)	C63—C64—H64A	120.2
C23—C22—H22A	119.3	C65—C64—H64A	120.2
C21—C22—H22A	119.3	C64—C65—C66	119.9 (3)
C22—C23—C24	119.1 (4)	С64—С65—Н65А	120.1
С22—С23—Н23А	120.5	С66—С65—Н65А	120.1
C24—C23—H23A	120.5	C65—C66—C61	121.8 (3)
C25—C24—C23	120.2 (3)	С65—С66—Н66А	119.1
C25—C24—H24A	119.9	С61—С66—Н66А	119.1