Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

N,N'-Bis(6-methyl-2-pyridyl)oxamide

Pei-Chi Cheng, Chia-Jun Wu and Jhy-Der Chen*

Department of Chemistry, Chung-Yuan Christian University, Chung-Li, Taiwan Correspondence e-mail: jdchen@cycu.edu.tw

Received 5 October 2009; accepted 7 October 2009
Key indicators: single-crystal X-ray study; $T=295 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.040 ; \omega R$ factor $=0.101$; data-to-parameter ratio $=12.8$.

In the crystal structure of the title compound, $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$, the molecules are almost planar (mean deviation $0.028 \AA$) and a weak intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond between the H atom bound to an oxamide N atom and a carbonyl O atom is found. The asymmetric unit consits of one half-molecule which is located on a centre of inversion.

Related literature

For the synthesis, see: Siedel et al. (1970). For a series of $\mathrm{Ag}(\mathrm{I})$ coordination polymers containing N^{1}, N^{2}-bis(2-pyridyl)oxamide ligands, see: Hsu \& Chen (2004); Hu et al. (2004).

Experimental

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2} \\
& M_{r}=270.29 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=3.8925(6) \AA \\
& b=15.964(2) \AA \\
& c=10.8353(14) \AA \\
& \beta=94.461(13)^{\circ}
\end{aligned}
$$

Data collection

Bruker P4 diffractometer
Absorption correction: multi-scan (XSCANS; Siemens, 1995)
$T_{\text {min }}=0.741, T_{\text {max }}=0.762$
1867 measured reflections
1190 independent reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040 \quad 93$ parameters
$w R\left(F^{2}\right)=0.101$
$S=1.01$
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.14 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.12 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O}^{\mathrm{i}}$	0.86	2.24	$2.6718(18)$	111

Symmetry code: (i) $-x+1,-y+1,-z+2$.

Data collection: XSCANS (Siemens, 1995); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We are grateful to the National Science Council of the Republic of China for support. This research was also supported by the project of the specific research fields in Chung-Yuan Christian University, Taiwan, under grant No. CYCU-98-CR-CH.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2161).

References

Hsu, Y.-F. \& Chen, J.-D. (2004). Eur. J. Inorg. Chem. pp. 1488-1493.
Hu, H.-L., Yeh, C.-W. \& Chen, J.-D. (2004). Eur. J. Inorg. Chem. pp. 4696 4701.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Siedel, M. C., Tuyle, G. C. V. \& Weir, W. D. (1970). J. Org. Chem. 35, 16621664.

Siemens (1995). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

supporting information

Acta Cryst. (2009). E65, o2734 [https://doi.org/10.1107/S1600536809040902]
N, N^{\prime}-Bis(6-methyl-2-pyridyl)oxamide

Pei-Chi Cheng, Chia-Jun Wu and Jhy-Der Chen

S1. Comment

A series of $\mathrm{Ag}(\mathrm{I})$ coordination polymers containg N^{l}, N^{2}-bis(2-pyridyl)oxamide ligands have been prepared, which show one-dimensional and two-dimensional structures (Hsu, et al., 2004; Hu, et al., 2004). To investigate the steric effect of the alkyl groups on the structural type of such coordination polymers, we have synthesized the title compound. Within this project its crystal structure was determined.
In its crystal structure weak intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding is found (Tab. 1) and the molecules are almost planar (Fig. 1).

S2. Experimental

2-Amino-6-methylpyridine ($6.2 \mathrm{~g}, 57.3 \mathrm{mmol}$) was dissolved in $200 \mathrm{ml} \mathrm{CH}_{2} \mathrm{Cl}_{2}$, followed by addition of triethyl amine $(10.0 \mathrm{ml}, 72.1 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The mixture was then stirred for 10 min . Oxalyl chloride ($2.5 \mathrm{ml}, 28.7 \mathrm{mmol}$) in 10 ml $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was then added slowly to the above mixture. After continuous stirring for 3 h at 0° give maximu[C, 200 ml hexanes was added to the mixture to induce precipitate. The solid was filtered, washed with water to give a white product. Yield: $2.8 \mathrm{~g}(36 \%)$. Coloress plate crystals suitable for X-ray crystallography were obtained by slow evaporization of the solvent from a solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

S3. Refinement

All the hydrogen atoms were placed into idealized positions and constrained by the riding atom approximation with C -$\mathrm{H}=0.93-0.96 \AA, \mathrm{~N}-\mathrm{H}=0.86 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ or $1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$. The methyl H atoms are disordered and were refined in two different orientations.

Figure 1
Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 30% probability level. Symmetry code: $\mathrm{i}=-x+1,-y+1,-z+2$. The disorder is shown with open bonds.
N, N^{\prime}-Bis(6-methyl-2-pyridyl)oxamide

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$
$M_{r}=270.29$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=3.8925$ (6) Å
$b=15.964$ (2) \AA
$c=10.8353(14) \AA$
$\beta=94.461$ (13) ${ }^{\circ}$
$V=671.26(16) \AA^{3}$
$Z=2$

Data collection

Bruker P4

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
Absorption correction: multi-scan
(XSCANS; Siemens, 1995)
$T_{\text {min }}=0.741, T_{\text {max }}=0.762$
1867 measured reflections
$F(000)=284$
$D_{\mathrm{x}}=1.337 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 23 reflections
$\theta=7.5-12.6^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Plate, colorless
$0.4 \times 0.2 \times 0.1 \mathrm{~mm}$

1190 independent reflections
767 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.028$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=2.3^{\circ}$
$h=-1 \rightarrow 4$
$k=-1 \rightarrow 18$
$l=-12 \rightarrow 12$
3 standard reflections every 97 reflections intensity decay: none

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.101$
$S=1.01$
1190 reflections
93 parameters
0 restraints
Primary atom site location: structure-invariant
direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0467 P)^{2}\right]$
where $P=\left(F_{0}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.14 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.12$ e \AA^{-3}

Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.021 (4)

Special details

Experimental. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
O	$0.2331(4)$	$0.50956(7)$	$0.86392(12)$	$0.0677(5)$	
N1	$0.4420(4)$	$0.25146(8)$	$0.92913(12)$	$0.0454(4)$	
N2	$0.4631(4)$	$0.39274(9)$	$0.95953(12)$	$0.0487(5)$	
H2A	0.5892	0.3784	1.0248	0.058^{*}	
C1	$0.4561(6)$	$0.10020(12)$	$0.92021(19)$	$0.0675(6)$	0.101^{*}
H1A	0.6045	0.1096	0.9939	0.101^{*}	0.50
H1B	0.5773	0.0685	0.8621	0.101^{*}	0.50
H1C	0.2560	0.0696	0.9407	0.101^{*}	0.50
H1D	0.3540	0.0556	0.8706	0.101^{*}	0.50
H1E	0.3812	0.0967	1.0024	0.101^{*}	0.50
H1F	0.7025	0.0955	0.9237	$0.0482(5)$	
C2	$0.3474(5)$	$0.18289(10)$	$0.86378(16)$	$0.0548(6)$	
C3	$0.1571(5)$	$0.18820(12)$	$0.75053(17)$	0.066^{*}	
H3A	0.0947	0.1399	0.7064	$0.0552(6)$	
C4	$0.0617(5)$	$0.26555(11)$	$0.70415(17)$	0.066^{*}	
H4A	-0.0665	0.2698	0.6283	$0.0489(5)$	
C5	$0.1561(5)$	$0.33684(12)$	$0.77004(15)$	0.059^{*}	
H5A	0.0949	0.3899	0.7405	$0.0421(5)$	
C6	$0.3460(5)$	$0.32573(10)$	$0.88206(15)$	$0.94694(16)$	$0.0460(5)$
C7	$0.4079(5)$	$0.47496(11)$			

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O	$0.0921(11)$	$0.0427(8)$	$0.0626(9)$	$0.0079(7)$	$-0.0296(8)$	$0.0000(6)$
N 1	$0.0530(10)$	$0.0360(9)$	$0.0464(9)$	$0.0001(8)$	$-0.0011(7)$	$-0.0017(7)$
N 2	$0.0639(11)$	$0.0342(9)$	$0.0452(8)$	$0.0019(8)$	$-0.0138(7)$	$-0.0021(7)$
C 1	$0.0770(16)$	$0.0412(12)$	$0.0839(14)$	$0.0009(11)$	$0.0040(12)$	$-0.0021(10)$
C 2	$0.0500(12)$	$0.0391(10)$	$0.0562(11)$	$-0.0025(9)$	$0.0076(9)$	$-0.0051(9)$
C 3	$0.0605(13)$	$0.0481(12)$	$0.0558(11)$	$-0.0083(10)$	$0.0035(10)$	$-0.0146(9)$

C4	$0.0585(13)$	$0.0594(13)$	$0.0461(10)$	$-0.0065(11)$	$-0.0056(9)$	$-0.0078(9)$
C5	$0.0549(12)$	$0.0467(11)$	$0.0438(9)$	$0.0028(10)$	$-0.0052(9)$	$0.0006(9)$
C6	$0.0470(11)$	$0.0371(10)$	$0.0419(9)$	$-0.0002(9)$	$0.0016(8)$	$-0.0026(8)$
C7	$0.0551(12)$	$0.0377(11)$	$0.0441(10)$	$0.0024(9)$	$-0.0038(9)$	$0.0005(8)$

Geometric parameters (\AA, ${ }^{\circ}$)

O-C7	1.217 (2)	C1-H1E	0.9600
N1-C6	1.333 (2)	C1-H1F	0.9600
N1-C2	1.340 (2)	C2-C3	1.386 (3)
N2-C7	1.335 (2)	C3-C4	1.373 (3)
N2-C6	1.413 (2)	C3-H3A	0.9300
N2-H2A	0.8600	C4-C5	1.378 (2)
$\mathrm{C} 1-\mathrm{C} 2$	1.502 (3)	C4-H4A	0.9300
C1-H1A	0.9600	C5-C6	1.383 (2)
C1-H1B	0.9600	C5-H5A	0.9300
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	0.9600	C7-C7 ${ }^{\text {i }}$	1.532 (3)
C1-H1D	0.9600		
C6-N1-C2	117.86 (14)	$\mathrm{H} 1 \mathrm{C}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~F}$	141.1
C7-N2-C6	129.90 (15)	H1D-C1-H1F	109.5
C7-N2-H2A	115.1	H1E-C1-H1F	109.5
C6-N2-H2A	115.1	N1-C2-C3	121.61 (16)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.5	N1-C2-C1	116.48 (16)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5	C3-C2-C1	121.91 (16)
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	119.32 (17)
C2-C1- H 1 C	109.5	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	120.3
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	C2-C3-H3A	120.3
$\mathrm{H} 1 \mathrm{~B}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	C3-C4-C5	119.96 (17)
C2-C1-H1D	109.5	C3-C4-H4A	120.0
H1A-C1-H1D	141.1	C5- 4 - 44 A	120.0
$\mathrm{H} 1 \mathrm{~B}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{D}$	56.3	C4-C5-C6	116.85 (16)
$\mathrm{H} 1 \mathrm{C}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{D}$	56.3	C4-C5-H5A	121.6
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{E}$	109.5	C6-C5-H5A	121.6
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{E}$	56.3	N1-C6-C5	124.40 (15)
H1B-C1-H1E	141.1	N1-C6-N2	112.23 (14)
$\mathrm{H} 1 \mathrm{C}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{E}$	56.3	C5-C6-N2	123.37 (15)
H1D-C1-H1E	109.5	$\mathrm{O}-\mathrm{C} 7-\mathrm{N} 2$	126.71 (17)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~F}$	109.5	$\mathrm{O}-\mathrm{C} 7-\mathrm{C} 7^{\text {i }}$	121.3 (2)
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~F}$	56.3	N2-C7-C7 ${ }^{\text {i }}$	111.96 (19)
$\mathrm{H} 1 \mathrm{~B}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~F}$	56.3		

Symmetry code: (i) $-x+1,-y+1,-z+2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$

supporting information

$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O}^{\mathrm{i}}$	0.86	2.24	$2.6718(18)$	111

Symmetry code: (i) $-x+1,-y+1,-z+2$.

