metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Tricarbonyl(η^6 -flavone)chromium(0)

Johannes H. van Tonder,^a Barend C. B. Bezuidenhoudt^a* and J. Marthinus Janse van Rensburg^b

^aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa, and ^bDepartment of Pharmacology, University of Pretoria, PO Box 2034, Pretoria 0001, South Africa Correspondence e-mail: bezuidbc.sci@ufs.ac.za

Received 30 September 2009; accepted 5 October 2009

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; R factor = 0.037; wR factor = 0.105; data-to-parameter ratio = 17.6.

In the title compound, $[Cr(C_{15}H_{10}O_2)(CO)_3]$, the $Cr(CO)_3$ unit exhibits a three-legged piano-stool conformation. The chromium metal centre is coordinated by the phenyl ring of the flavone ligand [Cr-(phenyl centroid)] distance = 1.709 (1) Å]. The ligand is approximately planar, the dihedral angles between the γ -pyrone ring and the phenyl ring and between the γ -pyrone and the phenylene ring being 2.91 (5) and 3.90 (5)°, respectively. The molecular packing shows $\pi - \pi$ stacking between the flavone ligands of neighbouring molecules.

Related literature

For the crystal structure of $Cr(CO)_3(C_{15}H_{12}O_2)$, see: Dominique et al. (1999). For comparison bond distances, see: Allen (2002). For related structures, see: Zeller et al. (2004); Zhang et al. (2005); Czerwinski et al. (2003); Guzei & Czerwinski (2004). For the biological activity of flavonoids, see: Rice-Evans & Packer (2003).

Experimental

Crystal data [Cr(C₁₅H₁₀O₂)(CO)₃]

 $M_r = 358.26$

Triclinic, P1 a = 7.2853 (2) Å b = 9.6427 (3) Å c = 11.6466 (4) Å $\alpha = 78.545 \ (1)^{\circ}$ $\beta = 79.554 (1)^{\circ}$ $\gamma = 70.005 (1)^{\circ}$

Data collection

```
8083 measured reflections
Bruker APEXII CCD
  diffractometer
                                            3600 independent reflections
Absorption correction: multi-scan
                                            3062 reflections with I > 2\sigma(I)
  (SADABS: Bruker, 2004)
                                            R_{\rm int} = 0.022
  T_{\min} = 0.717, \ T_{\max} = 0.864
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$	205 parameters
$wR(F^2) = 0.105$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 0.52 \text{ e } \text{\AA}^{-3}$
3600 reflections	$\Delta \rho_{\rm min} = -0.55 \text{ e } \text{\AA}^{-3}$

V = 747.81 (4) Å³

Mo $K\alpha$ radiation

 $0.45 \times 0.32 \times 0.19 \text{ mm}$

 $\mu = 0.79 \text{ mm}^{-1}$

T = 173 K

7 - 2

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Financial assistance from the University of the Free State and SASOL to JHvT is gratefully acknowledged. We would like to express our gratitude to the School of Chemistry at the University of the Witwatersrand for the use of the diffractometer. Special thanks are due to Dr M.A. Fernandes. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of SASOL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2657).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Czerwinski, C. J., Guzei, I. A., Cordes, T. J., Czerwinski, K. M. & Mlodik, N. A. (2003). Acta Cryst. C59, m499-m500.
- Dominique, S., Lepoivre, A., Lemiere, G., Rapatopoulou, C. P. & Klouras, N. D. (1999). Monatsh. Chem. 130, 305-311.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Guzei, I. A. & Czerwinski, C. J. (2004). Acta Cryst. C60, m615-m617.
- Rice-Evans, C. A. & Packer, L. (2003). Flavonoids in Health and Disease, 2nd ed. New York: Marcel Dekker Inc.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zeller, M., Hunter, A. D. & Takas, N. J. (2004). Acta Cryst. E60, m434-m435. Zhang, Z. T., Wang, X. B., Wang, Q. Y. & Wu, L. N. (2005). J. Chem. Crystallogr. 35, 923-929.

supporting information

Acta Cryst. (2009). E65, m1346 [https://doi.org/10.1107/S1600536809040525]

Tricarbonyl(η^6 -flavone)chromium(0)

Johannes H. van Tonder, Barend C. B. Bezuidenhoudt and J. Marthinus Janse van Rensburg

S1. Comment

Flavanoids are an extensive group of polyphenolic compounds that occur commonly in plants. Many flavonoids are known to show biological activities such as anti-inflammatory, antibacterial and antifungal properties (Rice-Evans & Packer., 2003) The steric influence from a $Cr(CO)_3$ moiety combined with the electronic alteration of an arene ring, *via* metal coordination, made the tricarbonyl(arene)chromium complexes very popular intermediates in regioselective organic synthesis (Dominique *et al.*, 1999).

In the course of our work on flavanoids we isolated and characterized the title compound, (I), $[Cr(CO)_3(C_{15}H_{10}O_2)]$, where $(C_{15}H_{10}O_2) =$ flavone. The title compound crystallized in the triclinic space group P-1, with Z = 2 (Fig.1). The chromium metal centre coordinated to the phenyl ring of the flavone moiety and together with the tricarbonyl group a three-legged piano-stool conformation is exhibited. The Cr—C(arene) distances range from 2.209 (2) to 2.225 (2) Å and the chromium metal centre is displaced by 1.709 (1) Å from the B- η^6 -coordinated arene ring centre. The carbonyl groups are fairly linear with Cr—C(carbonyl)—O angles ranging from 179.0 (2) to 179.4 (2)°. The Cr—C(carbonyl) bonds of Cr —C11, Cr—C12 and Cr—C13 are 1.847 (2), 1.844 (2) and 1.842 (2) Å respectively. While the carbonyl distances of C11 —O1, C12—O2 and C13—O3 are 1.153 (3), 1.155 (3) and 1.153 (3) respectively. These carbonyl distances are well within the normal range, see Allen (2002).

The phenyl ring of the flavone backbone is essentialy planar (r.m.s of fitted atoms C1'-C6' = 0.0083 Å). The γ -pyrone and the benzene ring of the flavone skeleton is in the same plane as the phenyl ring. A small molecular disorder is displayed by the dihedral angle of 2.91° between the γ -pyrone and the phenyl ring and the torsion angle of -178.78 (15)° formed by atoms C2'-C1'-C2—O5. The benzene ring is lifted out of the molecular plane, with a 3.90 (5)° dihedral angle between the γ -pyrone and the benzene ring. Other molecular geometrical parameters is in good agreement with literature values, see Allen (2002). Selected geometrical parameters is presented in Table 1.

The molecular packing displays two types of ligand to ligand π - π stacking. This is on opposite sides of the 2-phenylchromane backbone (Fig.2). One type of packing is where the tricarbonyl-metal moieties of neighbouring molecules are directed away from one another resulting in a ligand to ligand π - π stacking between the γ -pyrone and phenyl rings, with a plane to plane distance of 3.354 Å. The other type of π - π stacking is between the γ -pyrone and benzene rings of neighbouring molecules, with a plane to plane distance of 3.418 Å, this π - π stacking is secondarily stabilized by soft contacts between O1…H5 [2.761 (3) Å] and a O1…H5—C5 angle of 129.8 (1)°.

S2. Experimental

A solution of flavone (1.01 g; 4.5 mmol) and $Cr(CO)_6$ (1.0 g; 4.6 mmol; 1 eq.) in Bu₂O:THF (9:1; 10 ml per 100 mg $Cr(CO)_6$) was degassed with argon, using standard Schlenk techniques, and refluxed (48 h) under an oxygen free atmosphere. The reaction mixture was cooled to room temperature and the solvent evaporated *in vacuo*. Purification through flash column-chromatography yielded tricarbonyl(B- η^6 -flavone)chromium(0) (0.70 g; 42.9%) as an orange solid.

Recrystallization from diethyl ether yielded orange crystals suitable for single-crystal diffraction data collection.

*R*_f 0.11 (H:A:DCM; 7:1:2); Mp 160.6 °C; Note: A, B and C-ring labelling refers to the benzene, phenyl and γ-pyrone rings respectively. ¹H NMR (600 MHz, CDCl₃) δ p.p.m. 8.21 (1*H*, d, J = 7.91 Hz, H-5), 7.72 (1*H*, dd, J = 7.53, 7.91 Hz, H-6), 7.54 (1*H*, d, J = 8.28 Hz, H-8), 7.44 (1*H*, dd, J = 7.53, 8.28 Hz, H-8), 6.61 (1*H*, s, H-3), 6.00 (2*H*, d, J = 6.38 Hz, H-2' and H-6'), 5.57 (1*H*, t, J = 6.14 Hz, H-4'), 5.41 (2*H*, dd, J = 6.14, 6.38 Hz, H-3' and H-5'); ¹³C NMR (151 MHz, CDCl₃) δ p.p.m. 89.91 (C-3' and C-5'), 91.04 (C-2' and C-6'), 93.77 (C-4'), 94.98, 107.38 (C-3), 118.08 (C-8), 124.0, 125.79 (C-5 or C-7), 125.92 (C-5 or C-7), 134.33 (C-6), 156.13, 161.02, 177.56, 231.08(-Cr(CO)3); MS (MS Scheme 4) m/z 358 (*M*+, 4.4), 330 (0.9), 302 (2.1), 274 (11.3), 239 (2.2), 223 (100.0), 210 (0.6), 183 (2.6), 155 (3.5), 121 (29.0), 103 (4.7).

S3. Refinement

The H atoms were positioned geometrically and refined using a riding model with fixed C—H distances of 0.93 Å (CH) $[U_{iso}(H) = 1.2U_{eq}]$ and 0.96 Å.

The highest density peak is 0.36 located 0.76 Å from C3 and the deepest hole is -0.35 located at 0.61 Å from Cr.

Figure 1

A view of (I) showing the atom-numbering scheme with displacement ellipsoids at the 30% probability level.

Figure 2

Indication of molecular packing in the unit-cell, displaying π -stacking. H-atoms are omitted for clarity. Symmetry operators 1) *x*; *y*; *z*. 2) 1 - *x*; 1 - *y*; 1 - *z*. 3) 1 + *x*; 1 + *y*; *z*.

Z = 2

Tricarbonyl(η^6 -flavone)chromium(0)

Crystal data

 $[Cr(C_{15}H_{10}O_2)(CO)_3]$ $M_r = 358.26$ Triclinic, *P*1 Hall symbol: -P 1 a = 7.2853 (2) Å b = 9.6427 (3) Å c = 11.6466 (4) Å a = 78.545 (1)° $\beta = 79.554$ (1)° $\gamma = 70.005$ (1)° V = 747.81 (4) Å³

Data collection

Bruker APEXII CCD	8083 measured reflections
diffractometer	3600 independent reflections
Radiation source: fine-focus sealed tube	3062 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.022$
φ and ω scans	$\theta_{\rm max} = 28^{\circ}, \ \theta_{\rm min} = 1.8^{\circ}$
Absorption correction: multi-scan	$h = -9 \rightarrow 8$
(SADABS; Bruker, 2004)	$k = -12 \rightarrow 12$
$T_{\min} = 0.717, \ T_{\max} = 0.864$	$l = -15 \rightarrow 14$

F(000) = 364 $D_x = 1.591 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{Å} Cell parameters from 3694 reflections $\theta = 2.3-28.2^{\circ}$ $\mu = 0.79 \text{ mm}^{-1}$ T = 173 KIrregular, orange $0.45 \times 0.32 \times 0.19 \text{ mm}$ Refinement

Refinement on F^2	0 restraints
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.037$	$w = 1/[\sigma^2(F_o^2) + (0.0513P)^2 + 0.3895P]$
$wR(F^2) = 0.105$	where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.06	$(\Delta/\sigma)_{\rm max} = 0.001$
3600 reflections	$\Delta ho_{ m max} = 0.52$ e Å ⁻³
205 parameters	$\Delta \rho_{\rm min} = -0.55 \text{ e } \text{\AA}^{-3}$
Special details	

Experimental. The intensity data was collected on a Bruker Apex II CCD diffractometer using an exposure time of 10 s/frame. The 509 frames were collected with a frame width of 0.5° covering up to $\theta = 28^{\circ}$ with 99.8% completeness accomplished.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotrop	pic or equivalent	isotropic displacement	parameters (Å ²))
---	-------------------	------------------------	------------------------------	---

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cr	0.44722 (4)	0.35008 (3)	0.85182 (3)	0.02434 (11)	
05	0.6342 (2)	0.24078 (16)	0.52790 (12)	0.0282 (3)	
O4	1.1793 (2)	0.29078 (17)	0.44675 (15)	0.0349 (4)	
03	0.2698 (2)	0.3373 (2)	1.10514 (14)	0.0421 (4)	
C2	0.6832 (3)	0.3367 (2)	0.57827 (16)	0.0241 (4)	
C3	0.8617 (3)	0.3562 (2)	0.55295 (18)	0.0267 (4)	
H3	0.8879	0.4247	0.591	0.032*	
C10	0.9548 (3)	0.1789 (2)	0.41199 (17)	0.0249 (4)	
C13	0.3382 (3)	0.3412 (2)	1.00763 (19)	0.0292 (3)	
01	0.4968 (3)	0.02553 (19)	0.86574 (17)	0.0499 (5)	
C9	0.7671 (3)	0.1667 (2)	0.44291 (18)	0.0273 (4)	
C12	0.6912 (3)	0.2990 (2)	0.90154 (18)	0.0292 (3)	
O2	0.8445 (2)	0.26801 (19)	0.93196 (16)	0.0425 (3)	
C5	1.0793 (3)	0.1028 (2)	0.32237 (19)	0.0311 (4)	
Н5	1.2083	0.1097	0.2999	0.037*	
C2′	0.5336 (3)	0.5228 (2)	0.72042 (18)	0.0278 (4)	
H2′	0.653	0.5461	0.7082	0.033*	
C1′	0.5171 (3)	0.4148 (2)	0.65939 (17)	0.0257 (4)	
C4	1.0145 (3)	0.2762 (2)	0.46978 (17)	0.0255 (4)	
C6′	0.3370 (3)	0.3817 (2)	0.68058 (18)	0.0306 (4)	
H6′	0.3226	0.3099	0.6406	0.037*	
C11	0.4775 (3)	0.1501 (2)	0.86148 (18)	0.02916 (17)	
C3′	0.3758 (3)	0.5956 (2)	0.79855 (19)	0.0317 (5)	
H3′	0.3872	0.67	0.8369	0.038*	
C8	0.7000 (4)	0.0807 (2)	0.3874 (2)	0.0348 (5)	
H8	0.5712	0.0733	0.4094	0.042*	
C4′	0.2009 (3)	0.5587 (3)	0.8202 (2)	0.0354 (5)	
H4′	0.0964	0.6049	0.876	0.042*	
C5′	0.1799 (3)	0.4541 (3)	0.7601 (2)	0.0361 (5)	

supporting information

H5′	0.0597	0.4319	0.7728	0.043*
C7	0.8262 (4)	0.0070 (3)	0.3002 (2)	0.0398 (5)
H7	0.7839	-0.0528	0.2617	0.048*
C6	1.0148 (4)	0.0180 (2)	0.2667 (2)	0.0381 (5)
H6	1.099	-0.0332	0.2055	0.046*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
Cr	0.01993 (17)	0.02901 (19)	0.02080 (17)	-0.00703 (13)	-0.00249 (12)	0.00247 (12)
O5	0.0261 (7)	0.0341 (7)	0.0279 (7)	-0.0153 (6)	-0.0025 (6)	-0.0027 (6)
O4	0.0274 (8)	0.0387 (8)	0.0435 (9)	-0.0175 (7)	0.0046 (7)	-0.0124 (7)
O3	0.0351 (9)	0.0547 (10)	0.0292 (8)	-0.0129 (8)	0.0047 (7)	-0.0001 (7)
C2	0.0270 (10)	0.0263 (9)	0.0193 (9)	-0.0107 (8)	-0.0069 (8)	0.0040 (7)
C3	0.0283 (10)	0.0280 (10)	0.0264 (10)	-0.0130 (8)	-0.0034 (8)	-0.0029 (8)
C10	0.0284 (10)	0.0215 (9)	0.0242 (9)	-0.0093 (8)	-0.0069 (8)	0.0033 (7)
C13	0.0240 (7)	0.0315 (7)	0.0279 (7)	-0.0069 (6)	-0.0014 (6)	0.0000 (6)
01	0.0698 (13)	0.0385 (9)	0.0470 (10)	-0.0233 (9)	-0.0162 (10)	0.0000 (8)
C9	0.0333 (11)	0.0253 (9)	0.0247 (9)	-0.0127 (8)	-0.0075 (8)	0.0030 (8)
C12	0.0240 (7)	0.0315 (7)	0.0279 (7)	-0.0069 (6)	-0.0014 (6)	0.0000 (6)
O2	0.0299 (6)	0.0450 (6)	0.0502 (6)	-0.0059 (7)	-0.0131 (7)	-0.0045 (8)
C5	0.0355 (11)	0.0258 (10)	0.0305 (10)	-0.0085 (9)	-0.0039 (9)	-0.0034 (8)
C2′	0.0260 (10)	0.0272 (10)	0.0264 (10)	-0.0083 (8)	-0.0029 (8)	0.0044 (8)
C1′	0.0222 (9)	0.0312 (10)	0.0199 (9)	-0.0083 (8)	-0.0037 (7)	0.0052 (7)
C4	0.0284 (10)	0.0241 (9)	0.0244 (9)	-0.0116 (8)	-0.0020 (8)	0.0001 (7)
C6′	0.0258 (10)	0.0405 (12)	0.0239 (10)	-0.0111 (9)	-0.0070 (8)	0.0036 (8)
C11	0.0240 (2)	0.03146 (19)	0.02793 (16)	-0.0069 (6)	-0.0014 (6)	0.0000 (6)
C3′	0.0316 (11)	0.0271 (10)	0.0284 (10)	-0.0026 (8)	-0.0039 (9)	0.0022 (8)
C8	0.0392 (12)	0.0337 (11)	0.0379 (12)	-0.0180 (10)	-0.0123 (10)	-0.0014 (9)
C4′	0.0249 (11)	0.0385 (12)	0.0302 (11)	0.0005 (9)	-0.0026 (9)	0.0039 (9)
C5′	0.0190 (10)	0.0506 (13)	0.0312 (11)	-0.0079 (9)	-0.0061 (8)	0.0081 (10)
C7	0.0534 (15)	0.0326 (11)	0.0410 (13)	-0.0176 (11)	-0.0167 (11)	-0.0055 (10)
C6	0.0457 (14)	0.0303 (11)	0.0368 (12)	-0.0072 (10)	-0.0060 (10)	-0.0095 (9)

Geometric parameters (Å, °)

Cr—C13	1.842 (2)	С9—С8	1.396 (3)
Cr—C12	1.844 (2)	C12—O2	1.155 (3)
Cr—C11	1.847 (2)	C5—C6	1.376 (3)
Cr—C2′	2.206 (2)	С5—Н5	0.95
Cr—C4′	2.209 (2)	C2'—C3'	1.402 (3)
Cr—C6′	2.211 (2)	C2′—C1′	1.420 (3)
Cr—C1′	2.2180 (19)	C2'—H2'	0.95
Cr—C5′	2.221 (2)	C1′—C6′	1.422 (3)
Cr—C3′	2.225 (2)	C6'—C5'	1.407 (3)
O5—C2	1.358 (2)	С6'—Н6'	0.95
О5—С9	1.374 (3)	C3'—C4'	1.404 (3)
O4—C4	1.232 (2)	С3'—Н3'	0.95

supporting information

O3—C13	1.153 (3)	C8—C7	1.373 (3)
C2—C3	1.349 (3)	C8—H8	0.95
C2—C1′	1.473 (3)	C4′—C5′	1.399 (3)
C3—C4	1.446 (3)	C4'—H4'	0.95
С3—Н3	0.95	C5'—H5'	0.95
C10—C9	1.388 (3)	С7—С6	1.393 (4)
C10—C5	1.399 (3)	С7—Н7	0.95
C10-C4	1 469 (3)	С6—Н6	0.95
01-C11	1 153 (3)		0.90
	1.105 (5)		
C_{13} C_{r} C_{12}	88 71 (9)	С6—С5—Н5	120
C13 Cr $C11$	88 80 (9)	C10-C5-H5	120
C12— Cr — $C11$	89.60 (9)	C3'-C2'-C1'	120 78 (19)
C13— Cr — $C2'$	134.26(9)	C3' - C2' - Cr	$72 \ 30 \ (12)$
$C_{12}^{}C_{r}^{}C_{2}^{\prime}$	86 71 (8)	$C_{1}^{2} - C_{2}^{2} - C_{r}^{2}$	71.73 (11)
$C_{12} - C_{1} - C_{2}$	136 58 (0)	$C_{1} = C_{2} = C_{1}$ $C_{3'} = C_{2'} = H_{2'}$	110.6
C_{11} C_{12} C_{13} C	85.07(0)	$C_{3} = C_{2} = H_{2}$	119.0
C13 - C1 - C4	63.97 (9) 125.57 (0)	$C_1 = C_2 = H_2$	119.0
C12— Cf — $C4'$	135.57 (9)	Cr = C2 = H2	128./
$CII = CF = C4^{\circ}$	154.24 (9)	$C_2 = C_1 = C_0^2$	118.15 (19)
$C2^{\prime}$ — Cr — $C4^{\prime}$	66.83 (8)	$C2^{\prime}$ $C1^{\prime}$ $C2^{\prime}$	121.01 (18)
C13— Cr — $C6'$	135.41 (9)		120.83 (18)
C12— Cr — $C6'$	135.54 (9)	C2'—C1'—Cr	70.84 (11)
C11—Cr—C6′	86.67 (9)	C6'—C1'—Cr	70.99 (11)
C2'—Cr—C6'	67.00 (8)	C2—C1′—Cr	128.43 (13)
C4′—Cr—C6′	66.69 (9)	O4—C4—C3	123.10 (18)
C13—Cr—C1′	165.52 (8)	O4—C4—C10	122.58 (19)
C12—Cr—C1′	101.05 (8)	C3—C4—C10	114.29 (17)
C11—Cr—C1′	101.82 (8)	C5'—C6'—C1'	120.8 (2)
C2′—Cr—C1′	37.43 (8)	C5'—C6'—Cr	71.90 (12)
C4′—Cr—C1′	79.57 (8)	C1'—C6'—Cr	71.55 (11)
C6'—Cr—C1'	37.46 (7)	С5'—С6'—Н6'	119.6
C13—Cr—C5′	101.29 (9)	C1′—C6′—H6′	119.6
C12—Cr—C5′	165.57 (9)	Cr—C6′—H6′	129.4
C11—Cr—C5′	100.88 (9)	O1—C11—Cr	179.00 (19)
C2′—Cr—C5′	78.86 (8)	C2'—C3'—C4'	120.1 (2)
C4′—Cr—C5′	36.82 (9)	C2'—C3'—Cr	70.83 (12)
C6'—Cr—C5'	37.02 (8)	C4′—C3′—Cr	70.90 (12)
C1′—Cr—C5′	67.29 (8)	C2'—C3'—H3'	119.9
C13—Cr—C3′	100.70 (9)	C4'—C3'—H3'	119.9
C12— Cr — $C3'$	101.88 (9)	Cr—C3'—H3'	131
C11-Cr-C3'	165 16 (9)	C7 - C8 - C9	117.8(2)
C^{2} C^{2} C^{2} C^{2} C^{3}	36 87 (8)	C7 - C8 - H8	121.1
$C_{4'} - C_{r} - C_{3'}$	36.97 (8)	C9-C8-H8	121.1
$C_{1} = C_{1} = C_{3}$	78 55 (8)	$C_{2}^{$	121.1 120.2(2)
$C_{1}^{\prime} = C_{1}^{\prime} = C_{3}^{\prime}$	67.01(8)	C5' C4' C*	120.2(2) 72.06(12)
$C_1 - C_1 - C_3$ $C_5' - C_7 - C_3'$	66.27(0)	$C_3 - C_4 - C_1$	72.00(13)
$C_2 = C_1 = C_3$	110 01 (15)	$C_{3} - C_{4} - C_{1}$	110.0
$C_2 = C_2 = C_3$	110.71(13)	$C_3 - C_4 - \Pi_4$	119.9
(3-0)	122.39(18)	$C_3 - C_4 - H_4$	119.9

C3—C2—C1′	126.27 (18)	Cr—C4'—H4'	128
O5—C2—C1′	111.14 (16)	C4′—C5′—C6′	119.9 (2)
C2—C3—C4	122.13 (18)	C4′—C5′—Cr	71.11 (12)
С2—С3—Н3	118.9	C6'—C5'—Cr	71.08 (11)
С4—С3—Н3	118.9	C4'—C5'—H5'	120
C9—C10—C5	118.77 (19)	C6'—C5'—H5'	120
C9—C10—C4	119.53 (19)	Cr—C5′—H5′	130.3
C5—C10—C4	121.63 (18)	C8—C7—C6	121.5 (2)
O3—C13—Cr	179.21 (19)	С8—С7—Н7	119.2
O5—C9—C10	122.38 (17)	С6—С7—Н7	119.2
O5—C9—C8	115.70 (19)	C5—C6—C7	120.0 (2)
С10—С9—С8	121.9 (2)	С5—С6—Н6	120
O2—C12—Cr	179.4 (2)	С7—С6—Н6	120
C6—C5—C10	119.9 (2)		
C9—O5—C2—C3	-3.8 (3)	C11—Cr—C6′—C5′	113.02 (14)
C9—O5—C2—C1′	175.14 (15)	C2'—Cr—C6'—C5'	-102.38 (15)
O5—C2—C3—C4	0.1 (3)	C4'—Cr—C6'—C5'	-28.79 (13)
C1′—C2—C3—C4	-178.63 (17)	C1'—Cr—C6'—C5'	-132.57 (19)
C2	4.3 (3)	C3'—Cr—C6'—C5'	-65.58 (14)
C2—O5—C9—C8	-174.35 (17)	C13—Cr—C6′—C1′	160.68 (13)
C5—C10—C9—O5	-178.36 (17)	C12—Cr—C6′—C1′	-28.37 (18)
C4—C10—C9—O5	-1.2 (3)	C11—Cr—C6′—C1′	-114.41 (13)
C5—C10—C9—C8	0.2 (3)	C2′—Cr—C6′—C1′	30.19 (12)
C4—C10—C9—C8	177.37 (18)	C4′—Cr—C6′—C1′	103.78 (14)
C9—C10—C5—C6	0.0 (3)	C5'—Cr—C6'—C1'	132.57 (19)
C4—C10—C5—C6	-177.10 (19)	C3'—Cr—C6'—C1'	66.99 (13)
C13—Cr—C2′—C3′	-29.87 (18)	C1'—C2'—C3'—C4'	2.1 (3)
C12—Cr—C2′—C3′	-114.84 (14)	Cr—C2'—C3'—C4'	-52.98 (17)
C11—Cr—C2′—C3′	159.22 (14)	C1'—C2'—C3'—Cr	55.03 (16)
C4'—Cr—C2'—C3'	28.54 (13)	C13—Cr—C3'—C2'	158.72 (13)
C6'—Cr—C2'—C3'	101.93 (14)	C12—Cr—C3'—C2'	67.79 (14)
C1'—Cr—C2'—C3'	132.14 (18)	C11—Cr—C3'—C2'	-72.2 (4)
C5'—Cr—C2'—C3'	65.10 (13)	C4'—Cr—C3'—C2'	-133.0 (2)
C13—Cr—C2′—C1′	-162.01 (13)	C6'—Cr—C3'—C2'	-66.76 (13)
C12—Cr—C2′—C1′	113.01 (13)	C1'—Cr—C3'—C2'	-29.31 (12)
C11—Cr—C2′—C1′	27.07 (17)	C5'—Cr—C3'—C2'	-103.55 (14)
C4'—Cr—C2'—C1'	-103.61 (13)	C13—Cr—C3'—C4'	-68.25 (15)
C6'—Cr—C2'—C1'	-30.22 (12)	C12—Cr—C3'—C4'	-159.19 (14)
C5'—Cr—C2'—C1'	-67.04 (12)	C11—Cr—C3'—C4'	60.8 (4)
C3'—Cr—C2'—C1'	-132.14 (18)	C2'—Cr—C3'—C4'	133.0 (2)
C3'—C2'—C1'—C6'	-0.5 (3)	C6'—Cr—C3'—C4'	66.26 (13)
Cr—C2′—C1′—C6′	54.75 (15)	C1'—Cr—C3'—C4'	103.72 (14)
C3'—C2'—C1'—C2	-179.27 (17)	C5'—Cr—C3'—C4'	29.48 (13)
Cr—C2′—C1′—C2	-123.97 (17)	O5—C9—C8—C7	178.69 (19)
C3'—C2'—C1'—Cr	-55.30 (17)	C10—C9—C8—C7	0.0 (3)
C3—C2—C1′—C2′	0.1 (3)	C2'—C3'—C4'—C5'	-2.9 (3)
O5—C2—C1′—C2′	-178.79 (16)	Cr—C3′—C4′—C5′	-55.84 (18)

C3—C2—C1′—C6′	-178.62 (18)	C2'—C3'—C4'—Cr	52.95 (17)
O5—C2—C1′—C6′	2.5 (2)	C13—Cr—C4′—C5′	-114.93 (14)
C3—C2—C1′—Cr	-89.2 (2)	C12—Cr—C4′—C5′	161.05 (14)
O5—C2—C1′—Cr	91.89 (19)	C11—Cr—C4′—C5′	-30.55 (19)
C13—Cr—C1′—C2′	62.2 (4)	C2'—Cr—C4'—C5'	102.77 (14)
C12—Cr—C1′—C2′	-69.43 (13)	C6'—Cr—C4'—C5'	28.94 (13)
C11—Cr—C1′—C2′	-161.36 (12)	C1′—Cr—C4′—C5′	65.85 (13)
C4'—Cr—C1'—C2'	65.30 (12)	C3'—Cr—C4'—C5'	131.3 (2)
C6'—Cr—C1'—C2'	130.39 (18)	C13—Cr—C4′—C3′	113.80 (14)
C5'—Cr—C1'—C2'	101.66 (14)	C12—Cr—C4′—C3′	29.78 (19)
C3'—Cr—C1'—C2'	28.90 (12)	C11—Cr—C4′—C3′	-161.82 (14)
C13—Cr—C1′—C6′	-68.2 (4)	C2'—Cr—C4'—C3'	-28.50 (13)
C12—Cr—C1′—C6′	160.18 (13)	C6'—Cr—C4'—C3'	-102.33 (14)
C11—Cr—C1′—C6′	68.24 (14)	C1′—Cr—C4′—C3′	-65.42 (13)
C2'—Cr—C1'—C6'	-130.39 (18)	C5'—Cr—C4'—C3'	-131.3 (2)
C4'—Cr—C1'—C6'	-65.09 (13)	C3'—C4'—C5'—C6'	2.2 (3)
C5'—Cr—C1'—C6'	-28.73 (13)	Cr—C4′—C5′—C6′	-53.67 (18)
C3'—Cr—C1'—C6'	-101.49 (14)	C3'—C4'—C5'—Cr	55.89 (17)
C13—Cr—C1′—C2	177.0 (3)	C1'—C6'—C5'—C4'	-0.7 (3)
C12—Cr—C1′—C2	45.44 (19)	Cr—C6'—C5'—C4'	53.69 (18)
C11—Cr—C1′—C2	-46.49 (19)	C1′—C6′—C5′—Cr	-54.40 (17)
C2'—Cr—C1'—C2	114.9 (2)	C13—Cr—C5′—C4′	67.28 (14)
C4′—Cr—C1′—C2	-179.83 (19)	C12—Cr—C5′—C4′	-65.8 (4)
C6'—Cr—C1'—C2	-114.7 (2)	C11—Cr—C5′—C4′	158.24 (14)
C5'—Cr—C1'—C2	-143.5 (2)	C2'—Cr—C5'—C4'	-66.03 (13)
C3'—Cr—C1'—C2	143.77 (19)	C6'—Cr—C5'—C4'	-132.4 (2)
C2—C3—C4—O4	-178.92 (19)	C1′—Cr—C5′—C4′	-103.38 (14)
C2-C3-C4-C10	2.9 (3)	C3'—Cr—C5'—C4'	-29.55 (13)
C9—C10—C4—O4	179.48 (18)	C13—Cr—C5′—C6′	-160.28 (13)
C5—C10—C4—O4	-3.4 (3)	C12—Cr—C5′—C6′	66.6 (4)
C9—C10—C4—C3	-2.3 (3)	C11—Cr—C5′—C6′	-69.33 (14)
C5—C10—C4—C3	174.81 (18)	C2'—Cr—C5'—C6'	66.40 (13)
C2'—C1'—C6'—C5'	-0.1 (3)	C4′—Cr—C5′—C6′	132.4 (2)
C2—C1′—C6′—C5′	178.61 (18)	C1′—Cr—C5′—C6′	29.05 (12)
Cr—C1′—C6′—C5′	54.56 (17)	C3'—Cr—C5'—C6'	102.88 (14)
C2'—C1'—C6'—Cr	-54.68 (16)	C9—C8—C7—C6	-0.5 (3)
C2—C1′—C6′—Cr	124.05 (17)	C10—C5—C6—C7	-0.4 (3)
C13—Cr—C6′—C5′	28.11 (19)	C8—C7—C6—C5	0.7 (4)
C12—Cr—C6′—C5′	-160.94 (14)		