metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­bis­­(1H-benzimidazole-5,6-di­carboxyl­ato-κN3)cobalt(II) di­methyl­formamide disolvate dihydrate

aCollege of Food Science and Technology, Guang Dong Ocean University, Zhanjiang 524088, People's Republic of China, and bCollege of Science, Guang Dong Ocean University, Zhanjiang 524088, People's Republic of China
*Correspondence e-mail: songwd60@163.com

(Received 19 October 2009; accepted 20 October 2009; online 23 October 2009)

In the mononuclear title compound, [Co(C9H4N2O4)2(H2O)4]·2C3H7NO·2H2O, the CoII atom, which lies on a center of inversion, is coordinated by four water mol­ecules and two N atoms from two two symmetry-related 1H-benzimidazole-5,6-dicarboxyl­ate ligands in a distorted octa­hedral geometry. The packing is governed by inter­molecular O—H⋯O and N—H⋯O hydrogen-bonding inter­actions.

Related literature

For 1H-benzimidazole-5,6-dicarboxyl­ate complexes, see: Song et al. (2009a[Song, W.-D., Wang, H., Hu, S.-W., Qin, P.-W. & Li, S.-J. (2009a). Acta Cryst. E65, m701.],b[Song, W.-D., Wang, H., Li, S.-J., Qin, P.-W. & Hu, S.-W. (2009b). Acta Cryst. E65, m702.],c[Song, W.-D., Wang, H., Qin, P.-W., Li, S.-J. & Hu, S.-W. (2009c). Acta Cryst. E65, m672.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C9H5N2O4)2(H2O)4]·2C3H7NO·2H2O

  • Mr = 723.52

  • Triclinic, [P \overline 1]

  • a = 8.5612 (17) Å

  • b = 9.1475 (18) Å

  • c = 11.642 (2) Å

  • α = 100.82 (3)°

  • β = 102.98 (3)°

  • γ = 114.11 (3)°

  • V = 769.9 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.64 mm−1

  • T = 293 K

  • 0.30 × 0.24 × 0.21 mm

Data collection
  • Rigaku/MSC Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. MSC, The Woodlands, Texas, USA.]) Tmin = 0.831, Tmax = 0.877

  • 6161 measured reflections

  • 2751 independent reflections

  • 2594 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.127

  • S = 0.96

  • 2751 reflections

  • 219 parameters

  • 10 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O5i 0.839 (10) 1.750 (11) 2.588 (3) 177 (5)
O3W—H6W⋯O1ii 0.84 1.98 2.800 (3) 165
O3W—H5W⋯O3iii 0.84 1.85 2.686 (3) 179
O2W—H3W⋯O3iv 0.84 1.80 2.636 (3) 174
O2W—H4W⋯O3W 0.84 2.06 2.811 (3) 148
O1W—H1W⋯O4iv 0.84 1.79 2.624 (3) 170
O1W—H2W⋯O3Wv 0.84 1.94 2.749 (3) 161
N1—H1⋯O5ii 0.86 1.98 2.782 (3) 154
N1—H1⋯O5ii 0.86 1.98 2.782 (3) 154
Symmetry codes: (i) -x+1, -y+2, -z; (ii) -x, -y+1, -z; (iii) x, y-1, z; (iv) -x+1, -y+2, -z+1; (v) -x, -y+1, -z+1.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

From the structuralpoint of view, 1H-benzimidazole-5,6-dicarboxylic acid possesses two nitrogen atoms of imidazole ring and four oxygen atoms of carboxylate groups, and might be used as versatile linker in constructing coordination polymers with abundant hydrogen bonds. And based on this idea a series of coordination polymers fomed by this ligand have been reported by us: Pentaaqua(1H-benzimidazole-5,6- dicarboxylato-kN3)cobalt(II)pentahydrate (Song et al., 2009b), Pentaaqua(1H-benzimidazole-5,6-dicarboxylato-κN3)nickel(II)pentahydrate (Song et al., 2009c), catena-Poly[[diaqua(1,10-phenanthroline-k2N,N') nickel(II)]-µ-1H-benzimidazole-5,6-dicarboxylato-k2N3:O6] (Song et al., 2009a).In the present paper, we synthesized a novel coordination complex [Co(C9H4N2O4)2(H2O)4].2H2O.2C3H7NO.

As shown in Figure 1, the CoII atom exhibits an octahedral coordination sphere, defined by two N atoms from two different 1H-benzimidazole-5,6-dicarboxylate ligands, and four water molecules. The equatorial plane is defined by O1w, O2w, O1wi and O2wi atoms, while N1 and N1i occupy the axial position (symmetry codes: i = -x, 1 - y, 1 - z). The solvent (water and dimethylformamide) molecules are also present in the asymmetic unit. Inter/intramolecular O—H···O and N—H···O hydrogen bonds form a three-dimensional supramolecular network making the structure more stable(Fig 2).The hydrogen bonds are in the normal range(Table 1).

Related literature top

For 1H-benzimidazole-5,6-dicarboxylate complexes, see: Song et al. (2009a,b,c).

Experimental top

A C3H7NO solution (20 mL)containing Co(NO3)2(0.1 mmol)and 1H-benzimidazole-5,6-dicarboxylic acid(0.2 mmol) was stirred for a few minutes in air,and left to stand at room temperature for about a few weeks, then the red crystals were obtained.

Refinement top

Carbon and nitrogen bound H atoms were placed at calculated positions and were treated as riding on the parent C or N atoms with C—H = 0.93 Å, N—H = 0.86 Å, and with Uiso(H) = 1.2 Ueq(C, N). The water H-atoms were located in a difference map, and were refined with a distance restraint of O—H = 0.84 Å; their Uiso values were refined.

Structure description top

From the structuralpoint of view, 1H-benzimidazole-5,6-dicarboxylic acid possesses two nitrogen atoms of imidazole ring and four oxygen atoms of carboxylate groups, and might be used as versatile linker in constructing coordination polymers with abundant hydrogen bonds. And based on this idea a series of coordination polymers fomed by this ligand have been reported by us: Pentaaqua(1H-benzimidazole-5,6- dicarboxylato-kN3)cobalt(II)pentahydrate (Song et al., 2009b), Pentaaqua(1H-benzimidazole-5,6-dicarboxylato-κN3)nickel(II)pentahydrate (Song et al., 2009c), catena-Poly[[diaqua(1,10-phenanthroline-k2N,N') nickel(II)]-µ-1H-benzimidazole-5,6-dicarboxylato-k2N3:O6] (Song et al., 2009a).In the present paper, we synthesized a novel coordination complex [Co(C9H4N2O4)2(H2O)4].2H2O.2C3H7NO.

As shown in Figure 1, the CoII atom exhibits an octahedral coordination sphere, defined by two N atoms from two different 1H-benzimidazole-5,6-dicarboxylate ligands, and four water molecules. The equatorial plane is defined by O1w, O2w, O1wi and O2wi atoms, while N1 and N1i occupy the axial position (symmetry codes: i = -x, 1 - y, 1 - z). The solvent (water and dimethylformamide) molecules are also present in the asymmetic unit. Inter/intramolecular O—H···O and N—H···O hydrogen bonds form a three-dimensional supramolecular network making the structure more stable(Fig 2).The hydrogen bonds are in the normal range(Table 1).

For 1H-benzimidazole-5,6-dicarboxylate complexes, see: Song et al. (2009a,b,c).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atomic numbering scheme with 30% probability displacement ellipsoids. [Symmetry codes: (i) -x, 1 - y, 1 - z.]
[Figure 2] Fig. 2. A view of the three-dimensional network constructed by O—H···O and N—H···O hydrogen bonding interactions.
Tetraaquabis(1H-benzimidazole-5,6-dicarboxylato- κN3)cobalt(II) dimethylformamide disolvate dihydrate top
Crystal data top
[Co(C9H5N2O4)2(H2O)4]·2C3H7NO·2H2OZ = 1
Mr = 723.52F(000) = 377
Triclinic, P1Dx = 1.561 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5612 (17) ÅCell parameters from 3420 reflections
b = 9.1475 (18) Åθ = 3.3–27.4°
c = 11.642 (2) ŵ = 0.64 mm1
α = 100.82 (3)°T = 293 K
β = 102.98 (3)°Block, red
γ = 114.11 (3)°0.30 × 0.24 × 0.21 mm
V = 769.9 (3) Å3
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
2751 independent reflections
Radiation source: fine-focus sealed tube2594 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 25.2°, θmin = 3.3°
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
h = 1010
Tmin = 0.831, Tmax = 0.877k = 1010
6161 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 0.96 w = 1/[σ2(Fo2) + (0.0795P)2 + 1.194P]
where P = (Fo2 + 2Fc2)/3
2751 reflections(Δ/σ)max < 0.001
219 parametersΔρmax = 0.58 e Å3
10 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Co(C9H5N2O4)2(H2O)4]·2C3H7NO·2H2Oγ = 114.11 (3)°
Mr = 723.52V = 769.9 (3) Å3
Triclinic, P1Z = 1
a = 8.5612 (17) ÅMo Kα radiation
b = 9.1475 (18) ŵ = 0.64 mm1
c = 11.642 (2) ÅT = 293 K
α = 100.82 (3)°0.30 × 0.24 × 0.21 mm
β = 102.98 (3)°
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
2751 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
2594 reflections with I > 2σ(I)
Tmin = 0.831, Tmax = 0.877Rint = 0.020
6161 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03810 restraints
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 0.96Δρmax = 0.58 e Å3
2751 reflectionsΔρmin = 0.44 e Å3
219 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1417 (4)0.8422 (3)0.1200 (2)0.0279 (6)
C20.2484 (3)0.8904 (3)0.2467 (2)0.0247 (5)
C30.1906 (3)0.7887 (3)0.3191 (2)0.0269 (5)
H30.25950.82010.40200.032*
C40.0277 (3)0.6389 (3)0.2654 (2)0.0248 (5)
C50.0742 (3)0.5940 (3)0.1405 (2)0.0272 (6)
C60.0194 (4)0.6932 (4)0.0667 (2)0.0309 (6)
H60.08880.66060.01630.037*
C70.1921 (4)0.9449 (4)0.0363 (3)0.0324 (6)
C80.4297 (3)1.0478 (3)0.3103 (2)0.0263 (5)
C90.2117 (4)0.4034 (3)0.2225 (3)0.0310 (6)
H90.29840.30640.22990.037*
C100.6732 (4)0.7964 (4)0.1713 (3)0.0344 (6)
H100.78010.89720.19550.041*
N30.6382 (3)0.7242 (3)0.2550 (2)0.0340 (5)
Co10.00000.50000.50000.02238 (18)
N10.2262 (3)0.4426 (3)0.1168 (2)0.0315 (5)
H10.31370.38460.04730.038*
N20.0630 (3)0.5150 (3)0.3148 (2)0.0282 (5)
C120.4674 (5)0.5710 (5)0.2251 (4)0.0552 (9)
H3A0.37420.60080.23300.083*
H3B0.48290.50940.28120.083*
H3C0.43300.50210.14140.083*
C110.7568 (6)0.8059 (5)0.3848 (3)0.0547 (9)
H4A0.86400.90360.39110.082*
H4B0.79070.72830.41450.082*
H4C0.69370.83930.43400.082*
O10.1079 (3)0.8972 (3)0.0726 (2)0.0582 (7)
O20.3337 (4)1.0933 (3)0.0904 (2)0.0635 (8)
O30.4308 (3)1.1767 (3)0.3708 (2)0.0458 (6)
O40.5660 (3)1.0359 (3)0.3035 (3)0.0524 (6)
O50.5725 (3)0.7391 (3)0.06005 (19)0.0457 (6)
O1W0.0884 (2)0.7574 (2)0.57397 (17)0.0300 (4)
H2W0.02960.77840.61760.045*
H1W0.20070.81330.61260.045*
O2W0.2619 (3)0.5455 (2)0.50191 (19)0.0360 (5)
H4W0.25760.48810.43470.054*
H3W0.36300.63210.53810.054*
O3W0.1590 (3)0.2539 (3)0.3083 (2)0.0498 (6)
H5W0.24520.23120.32750.075*
H6W0.09050.20040.23430.075*
H20.367 (6)1.146 (5)0.041 (3)0.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0271 (13)0.0262 (13)0.0258 (13)0.0076 (11)0.0094 (10)0.0090 (10)
C20.0231 (12)0.0223 (12)0.0259 (13)0.0076 (10)0.0088 (10)0.0076 (10)
C30.0258 (13)0.0260 (13)0.0217 (12)0.0073 (11)0.0052 (10)0.0071 (10)
C40.0247 (12)0.0238 (12)0.0245 (12)0.0089 (10)0.0098 (10)0.0089 (10)
C50.0248 (13)0.0230 (13)0.0260 (13)0.0052 (11)0.0080 (10)0.0062 (10)
C60.0303 (14)0.0302 (14)0.0224 (13)0.0067 (12)0.0060 (11)0.0082 (11)
C70.0322 (14)0.0304 (14)0.0262 (14)0.0071 (12)0.0081 (11)0.0111 (11)
C80.0232 (13)0.0248 (13)0.0257 (13)0.0066 (11)0.0064 (10)0.0101 (11)
C90.0277 (14)0.0244 (13)0.0306 (14)0.0026 (11)0.0088 (11)0.0103 (11)
C100.0334 (15)0.0294 (14)0.0290 (14)0.0074 (12)0.0047 (12)0.0088 (11)
N30.0404 (13)0.0350 (13)0.0270 (12)0.0174 (11)0.0105 (10)0.0122 (10)
Co10.0203 (3)0.0186 (3)0.0219 (3)0.0040 (2)0.00591 (19)0.00645 (19)
N10.0243 (11)0.0260 (12)0.0229 (11)0.0027 (9)0.0002 (9)0.0055 (9)
N20.0271 (11)0.0238 (11)0.0262 (11)0.0046 (9)0.0083 (9)0.0097 (9)
C120.052 (2)0.057 (2)0.060 (2)0.0169 (18)0.0275 (18)0.0332 (18)
C110.085 (3)0.055 (2)0.0270 (16)0.041 (2)0.0084 (16)0.0138 (15)
O10.0560 (15)0.0498 (14)0.0286 (11)0.0072 (11)0.0002 (10)0.0191 (10)
O20.0580 (15)0.0463 (14)0.0325 (12)0.0183 (12)0.0036 (11)0.0210 (11)
O30.0293 (11)0.0302 (11)0.0569 (14)0.0051 (9)0.0109 (10)0.0062 (10)
O40.0218 (10)0.0340 (12)0.0823 (18)0.0077 (9)0.0093 (11)0.0002 (11)
O50.0399 (12)0.0433 (12)0.0270 (11)0.0014 (10)0.0014 (9)0.0144 (9)
O1W0.0238 (9)0.0245 (9)0.0318 (10)0.0058 (8)0.0057 (8)0.0051 (8)
O2W0.0250 (10)0.0296 (10)0.0399 (11)0.0049 (8)0.0114 (8)0.0004 (8)
O3W0.0428 (13)0.0590 (15)0.0395 (12)0.0271 (12)0.0088 (10)0.0033 (11)
Geometric parameters (Å, º) top
C1—C61.381 (4)N3—C121.462 (4)
C1—C21.424 (4)N3—C111.463 (4)
C1—C71.489 (4)Co1—O1W2.086 (2)
C2—C31.387 (4)Co1—O1Wi2.086 (2)
C2—C81.513 (4)Co1—O2Wi2.1007 (19)
C3—C41.393 (4)Co1—O2W2.1007 (19)
C3—H30.9300Co1—N22.146 (2)
C4—N21.395 (3)Co1—N2i2.146 (2)
C4—C51.398 (4)N1—H10.8600
C5—C61.382 (4)C12—H3A0.9600
C5—N11.382 (3)C12—H3B0.9600
C6—H60.9300C12—H3C0.9600
C7—O11.201 (4)C11—H4A0.9600
C7—O21.304 (4)C11—H4B0.9600
C8—O41.234 (3)C11—H4C0.9600
C8—O31.250 (3)O2—H20.839 (10)
C9—N21.315 (4)O1W—H2W0.8400
C9—N11.338 (4)O1W—H1W0.8400
C9—H90.9300O2W—H4W0.8399
C10—O51.253 (3)O2W—H3W0.8399
C10—N31.299 (4)O3W—H5W0.8400
C10—H100.9300O3W—H6W0.8399
C6—C1—C2120.8 (2)O1Wi—Co1—O2W88.64 (8)
C6—C1—C7115.4 (2)O2Wi—Co1—O2W180.0
C2—C1—C7123.8 (2)O1W—Co1—N290.82 (9)
C3—C2—C1120.3 (2)O1Wi—Co1—N289.18 (9)
C3—C2—C8115.8 (2)O2Wi—Co1—N290.29 (9)
C1—C2—C8123.9 (2)O2W—Co1—N289.71 (9)
C2—C3—C4118.9 (2)O1W—Co1—N2i89.18 (9)
C2—C3—H3120.6O1Wi—Co1—N2i90.82 (9)
C4—C3—H3120.6O2Wi—Co1—N2i89.71 (9)
C3—C4—N2131.3 (2)O2W—Co1—N2i90.29 (9)
C3—C4—C5119.7 (2)N2—Co1—N2i179.999 (1)
N2—C4—C5108.9 (2)C9—N1—C5107.1 (2)
C6—C5—N1132.1 (2)C9—N1—H1126.5
C6—C5—C4122.4 (2)C5—N1—H1126.5
N1—C5—C4105.5 (2)C9—N2—C4104.9 (2)
C1—C6—C5117.9 (2)C9—N2—Co1124.00 (18)
C1—C6—H6121.0C4—N2—Co1130.98 (18)
C5—C6—H6121.0N3—C12—H3A109.5
O1—C7—O2121.9 (3)N3—C12—H3B109.5
O1—C7—C1123.1 (3)H3A—C12—H3B109.5
O2—C7—C1115.0 (2)N3—C12—H3C109.5
O4—C8—O3125.2 (3)H3A—C12—H3C109.5
O4—C8—C2117.0 (2)H3B—C12—H3C109.5
O3—C8—C2117.7 (2)N3—C11—H4A109.5
N2—C9—N1113.6 (2)N3—C11—H4B109.5
N2—C9—H9123.2H4A—C11—H4B109.5
N1—C9—H9123.2N3—C11—H4C109.5
O5—C10—N3124.3 (3)H4A—C11—H4C109.5
O5—C10—H10117.8H4B—C11—H4C109.5
N3—C10—H10117.8C7—O2—H2114 (3)
C10—N3—C12120.6 (3)Co1—O1W—H2W113.1
C10—N3—C11120.7 (3)Co1—O1W—H1W113.3
C12—N3—C11118.2 (3)H2W—O1W—H1W110.9
O1W—Co1—O1Wi180.0Co1—O2W—H4W110.8
O1W—Co1—O2Wi88.64 (8)Co1—O2W—H3W130.9
O1Wi—Co1—O2Wi91.36 (8)H4W—O2W—H3W112.2
O1W—Co1—O2W91.36 (8)H5W—O3W—H6W112.2
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O5ii0.84 (1)1.75 (1)2.588 (3)177 (5)
O3W—H6W···O1iii0.841.982.800 (3)165
O3W—H5W···O3iv0.841.852.686 (3)179
O2W—H3W···O3v0.841.802.636 (3)174
O2W—H4W···O3W0.842.062.811 (3)148
O1W—H1W···O4v0.841.792.624 (3)170
O1W—H2W···O3Wi0.841.942.749 (3)161
N1—H1···O5iii0.861.982.782 (3)154
N1—H1···O5iii0.861.982.782 (3)154
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+2, z; (iii) x, y+1, z; (iv) x, y1, z; (v) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Co(C9H5N2O4)2(H2O)4]·2C3H7NO·2H2O
Mr723.52
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.5612 (17), 9.1475 (18), 11.642 (2)
α, β, γ (°)100.82 (3), 102.98 (3), 114.11 (3)
V3)769.9 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.64
Crystal size (mm)0.30 × 0.24 × 0.21
Data collection
DiffractometerRigaku/MSC Mercury CCD
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.831, 0.877
No. of measured, independent and
observed [I > 2σ(I)] reflections
6161, 2751, 2594
Rint0.020
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.127, 0.96
No. of reflections2751
No. of parameters219
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.58, 0.44

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O5i0.839 (10)1.750 (11)2.588 (3)177 (5)
O3W—H6W···O1ii0.841.982.800 (3)165.1
O3W—H5W···O3iii0.841.852.686 (3)178.5
O2W—H3W···O3iv0.841.802.636 (3)173.5
O2W—H4W···O3W0.842.062.811 (3)148.3
O1W—H1W···O4iv0.841.792.624 (3)170.0
O1W—H2W···O3Wv0.841.942.749 (3)160.7
N1—H1···O5ii0.861.982.782 (3)154.3
N1—H1···O5ii0.861.982.782 (3)154.3
Symmetry codes: (i) x+1, y+2, z; (ii) x, y+1, z; (iii) x, y1, z; (iv) x+1, y+2, z+1; (v) x, y+1, z+1.
 

Acknowledgements

The authors acknowledge Guang Dong Ocean University for supporting this work.

References

First citationJacobson, R. (1998). REQAB. MSC, The Woodlands, Texas, USA.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, W.-D., Wang, H., Hu, S.-W., Qin, P.-W. & Li, S.-J. (2009a). Acta Cryst. E65, m701.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSong, W.-D., Wang, H., Li, S.-J., Qin, P.-W. & Hu, S.-W. (2009b). Acta Cryst. E65, m702.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSong, W.-D., Wang, H., Qin, P.-W., Li, S.-J. & Hu, S.-W. (2009c). Acta Cryst. E65, m672.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds