## Structure Reports <br> Online

ISSN 1600-5368

## Poly[[[bis(acetato- $\kappa$ O)copper(II)]- $\mu-1,4-$ diimidazol-1-ylbenzene- $\kappa^{2} N^{3}: N^{3^{\prime}}$ ] dihydrate]

Yi-Fang Deng, Man-Sheng Chen,* Dai-Zhi Kuang* and Chun-Hua Zhang

## Key Laboratory of Functional Organometallic Materials, Hengyang Normal

 University, Department of Chemistry and Materials Science, Hengyang, Hunan 421008, People's Republic of ChinaCorrespondence e-mail: cmsniu@163.com, hnkdz@yahoo.com.cn

Received 22 October 2009; accepted 27 October 2009
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$; $R$ factor $=0.036 ; w R$ factor $=0.096$; data-to-parameter ratio $=12.5$.

In the title linear coordination polymer, $\left\{\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}\right.\right.$ $\left.\left.\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{4}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, the $\mathrm{Cu}^{\text {II }}$ atom is coordinated by two N atoms from two different symmetry-related 1,4-diimidazol-1ylbenzene (dib) ligands and two carboxylate O atoms from two acetate ligands in a square-planar geometry. The Cu atoms are linked by the dib ligands, forming an extended chain. These chains are linked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into a three-dimensional supramolecular network. The $\mathrm{Cu}^{\mathrm{II}}$ atom lies on a center of inversion.

## Related literature

For the potential applications of crystalline materials with framework structures, see: Kitagawa \& Kondo (1998). For copper complexes with the imidazole heterocycle, see: Huang et al. (2004); Masciocchi et al. (2001). For C-O bond lengths, see: Dong et al. (2009). For a related structure, see: Xie et al. (2007).


## Experimental

Crystal data
$\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{4}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$\gamma=76.766(5)^{\circ}$
$M_{r}=427.90$
Triclinic, $P \overline{1}$
$a=4.707(2) \AA$
$b=9.444(3) \AA$
$c=10.901$ (5) $\AA$
$\alpha=72.569(5)^{\circ}$
$\beta=82.956(4)^{\circ}$
$V=449.3(3) \AA^{3}$
$Z=1$
Mo $K \alpha$ radiation
$\mu=1.26 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.24 \times 0.18 \times 0.12 \mathrm{~mm}$

## Data collection

Bruker SMART APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.752, T_{\text {max }}=0.864$

2248 measured reflections 1562 independent reflections 1530 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.041$

## Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036 \quad 2$ restraints
$w R\left(F^{2}\right)=0.096$
H -atom parameters constrained
$S=1.06$
$\Delta \rho_{\text {max }}=0.45 \mathrm{e}^{-3}$
1562 reflections
125 parameters
$\Delta \rho_{\min }=-0.40 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ( $\AA,{ }^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| O1 $W-\mathrm{H} 1 W A \cdots \mathrm{O} 2$ | 0.85 | 1.94 | $2.792(6)$ | 176 |
| O1 $W-\mathrm{H} 1 W B \cdots \mathrm{O} 1 W^{\mathrm{i}}$ | 0.90 | 2.31 | $2.807(7)$ | 114 |
| Symmetry code: (i) $-x+2,-y,-z+2$ |  |  |  |  |

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the Construct Program of the Key Discipline of Hunan Province, the Hengyang Bureau of Science \& Technology (grant No. 2009 K J29) and the Research Award Fund for Outstanding Young Teachers of Hunan Province (2008).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2675).

## References

Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Dong, H., Bi, W. \& Zhu, H. (2009). Asian J. Chem. 21, 5598-5602.
Huang, X. C., Zhang, J. P., Lin, Y. Y., Yu, X. L. \& Chen, X. M. (2004). Chem. Commun. pp. 1100-1101.
Kitagawa, S. \& Kondo, M. (1998). Bull. Chem. Soc. Jpn, 71, 1739-1753.
Masciocchi, N., Bruni, S., Cariati, E., Cariati, F., Galli, S. \& Sironi, A. (2001). Inorg. Chem. 40, 5897-5905.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Xie, J., Chen, X., Liu, G. X. \& Sun, W. Y. (2007). Chin. J. Inorg. Chem. 23, 1295-1298.

## supporting information

Acta Cryst. (2009). E65, m1482 [https://doi.org/10.1107/S160053680904464X]

# Poly[[[bis(acetato- $\kappa$ O) copper(II)]- $\mu$-1,4-diimidazol-1-ylbenzene- $\left.\kappa^{2} N^{3}: N^{3}\right]$ dihydrate] 

Yi-Fang Deng, Man-Sheng Chen, Dai-Zhi Kuang and Chun-Hua Zhang

## S1. Comment

Recently, a great deal of interest in transition metal complex assembly has been devoted to the development of rational synthetic routes to novel one-, two- and three-dimensional crystal frameworks, due to their potential applications in many areas (Kitagawa, et al., 1998). Particularly, copper complexes with the imidazole heterocycle have been investigated extensively to date (Huang, et al., 2004; Masciocchi et al., 2001). Furthermore, many crystal structures of copper(II) compounds with 4,4'-bipyridine have been determined so far. However, ligand 1,4-diimidazol-1-ylbenzene (dib) is similar to the $4,4^{\prime}$-bipyridine, only one structure of copper complex is known (Xie, et al., 2007). So we have recently prepared a new copper(II) coordination polymer, $\left[\mathrm{Cu}(\mathrm{dib})\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}\right]_{\mathrm{n}} .2 \mathrm{nH}_{2} \mathrm{O}$, (I), with 1,4-diimidazol-1-ylbenzene and copper acetate.
In the title compound, the central $\mathrm{Cu}^{\mathrm{II}}$ ion is four-coordinated by two N atoms from two different dib ligands, two carboxylate O atoms from two acetate ligands in a square planar coordination geometry(Fig. 1). There is one free water molecule in the structure, stabilized by hydrogen bonds. The $\mathrm{Cu}-\mathrm{O}$ distances are comparable to those found in other crystallographically characterized $\mathrm{Cu}^{\mathrm{II}}$ complexes (Dong et al., 2009). The Cu atoms are linked by the dib ligands, forming an extended chain. These chains are further connected by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ bonds (Table 2 ) to form a three-dimensional supramolecular architecture (Fig. 2).

## S2. Experimental

A mixture of $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)_{2} .2 \mathrm{H}_{2} \mathrm{O}(0.040 \mathrm{~g}, 0.2 \mathrm{mmol}), 1,4$-diimidazol-1-ylbenzene ( $0.042 \mathrm{~g}, 0.2 \mathrm{mmol}$ ), and $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{ml})$ was sealed in a 25 ml Teflon-lined stainless steel reactor, which was heated at 433 K for 72 h and then it was cooled to room temperature. Block blue crystals of the title compound were collected.

## S3. Refinement

H atoms bonded to C atoms were placed geometrically and treated as riding. The water H atoms found from Fourier difference maps were refined with restraints for $\mathrm{O}-\mathrm{H}$ distances $(0.8499-0.9046 \AA)$ with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{O})$.


Figure 1
The ORTEP drawing of the title compound (I). Displacement ellipsoids are drawn at $30 \%$ probability level.


Figure 2
Projection showing the three-dimensional structure formed by H -bonding interaction of the compound (I).
Poly[[[bis(acetato- $\kappa O$ )copper(II)]- $\mu$-1,4-diimidazol-1-ylbenzene- $\left.\kappa^{2} N^{3}: N^{3}\right]$ dihydrate]

## Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{4}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$

$$
\begin{aligned}
& a=4.707(2) \AA \\
& b=9.444(3) \AA \\
& c=10.901(5) \AA \\
& \alpha=72.569(5)^{\circ}
\end{aligned}
$$

$M_{r}=427.90$
Triclinic, $P \overline{1}$
Hall symbol: -P 1

$$
\begin{aligned}
& \beta=82.956(4)^{\circ} \\
& \gamma=76.766(5)^{\circ} \\
& V=449.3(3) \AA^{3} \\
& Z=1 \\
& F(000)=221 \\
& D_{\mathrm{x}}=1.581 \mathrm{Mg} \mathrm{~m} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71069 \AA
\end{aligned}
$$

## Data collection

## Bruker SMART APEXII CCD

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.752, T_{\text {max }}=0.864$

## Refinement

Refinement on $F^{2}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.096$
$S=1.06$
1562 reflections
125 parameters
2 restraints
Primary atom site location: structure-invariant direct methods

Cell parameters from 2023 reflections
$\theta=2.3-28.2^{\circ}$
$\mu=1.26 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, blue
$0.24 \times 0.18 \times 0.12 \mathrm{~mm}$

2248 measured reflections
1562 independent reflections
1530 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.041$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=2.3^{\circ}$
$h=-5 \rightarrow 5$
$k=-11 \rightarrow 11$
$l=-10 \rightarrow 12$

```
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
\(w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0497 P)^{2}+0.4024 P\right]\)
where \(P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3\)
\((\Delta / \sigma)_{\text {max }}=0.001\)
\(\Delta \rho_{\text {max }}=0.45\) e \(\AA^{-3}\)
\(\Delta \rho_{\text {min }}=-0.40 \mathrm{e}^{-3}\)
```


## Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of $F^{2}$ against ALL reflections. The weighted $R$-factor $w R$ and goodness of fit $S$ are based on $F^{2}$, conventional $R$-factors $R$ are based on $F$, with $F$ set to zero for negative $F^{2}$. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating $R$-factors $(\mathrm{gt})$ etc. and is not relevant to the choice of reflections for refinement. $R$-factors based on $F^{2}$ are statistically about twice as large as those based on $F$, and $R$ - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $\hat{A}^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }} * / U_{\text {eq }}$ |
| :--- | :--- | :--- | :--- | :--- |
| O2 | $0.6552(9)$ | $0.2222(4)$ | $0.7045(4)$ | $0.0507(10)$ |
| O1W | $0.7740(10)$ | $-0.0100(5)$ | $0.9321(4)$ | $0.0573(11)$ |
| H1WB | 0.7709 | 0.0285 | 0.9990 | $0.069^{*}$ |
| H1WA | 0.7337 | 0.0638 | 0.8652 | $0.069^{*}$ |
| Cu1 | 0.5000 | 0.5000 | 0.5000 | $0.0298(3)$ |
| C1 | $0.3713(15)$ | $0.0609(6)$ | $0.6676(7)$ | $0.0583(16)$ |
| H1A | 0.5335 | -0.0154 | 0.6519 | $0.087^{*}$ |
| H1B | 0.2185 | 0.0731 | 0.6122 | $0.087^{*}$ |
| H1C | 0.2995 | 0.0307 | 0.7559 | $0.087^{*}$ |
| C2 | $0.4695(11)$ | $0.2091(5)$ | $0.6405(5)$ | $0.0376(11)$ |


| C3 | $0.2141(12)$ | $0.7070(5)$ | $0.6631(5)$ | $0.0386(11)$ |
| :--- | :--- | :--- | :--- | :--- |
| H3 | 0.3249 | 0.7797 | 0.6221 | $0.046^{*}$ |
| C4 | $0.0188(11)$ | $0.7151(5)$ | $0.7622(5)$ | $0.0391(11)$ |
| H4 | -0.0301 | 0.7928 | 0.8017 | $0.047^{*}$ |
| C5 | $0.0373(10)$ | $0.5061(5)$ | $0.7114(4)$ | $0.0331(10)$ |
| H5 | -0.0006 | 0.4136 | 0.7116 | $0.040^{*}$ |
| C6 | $-0.4029(12)$ | $0.6328(6)$ | $0.9800(5)$ | $0.0404(12)$ |
| H6 | -0.3379 | 0.7225 | 0.9666 | $0.049^{*}$ |
| C7 | $-0.3994(11)$ | $0.4103(6)$ | $0.9189(5)$ | $0.0398(12)$ |
| H7 | -0.3317 | 0.3495 | 0.8640 | $0.048^{*}$ |
| C8 | $-0.3014(10)$ | $0.5423(5)$ | $0.8984(4)$ | $0.0293(9)$ |
| N1 | $0.2268(9)$ | $0.5756(4)$ | $0.6310(4)$ | $0.0322(9)$ |
| N2 | $-0.0957(8)$ | $0.5866(4)$ | $0.7941(4)$ | $0.0299(8)$ |
| O1 | $0.3507(8)$ | $0.3154(4)$ | $0.5476(3)$ | $0.0382(8)$ |

Atomic displacement parameters $\left(\AA^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| O2 | $0.063(3)$ | $0.041(2)$ | $0.051(2)$ | $-0.0131(18)$ | $-0.007(2)$ | $-0.0136(18)$ |
| O1W | $0.071(3)$ | $0.050(2)$ | $0.049(2)$ | $-0.014(2)$ | $-0.007(2)$ | $-0.0092(18)$ |
| Cu1 | $0.0370(5)$ | $0.0274(5)$ | $0.0243(5)$ | $-0.0070(3)$ | $0.0054(3)$ | $-0.0088(3)$ |
| C1 | $0.072(4)$ | $0.035(3)$ | $0.068(4)$ | $-0.021(3)$ | $-0.001(3)$ | $-0.010(3)$ |
| C2 | $0.046(3)$ | $0.031(2)$ | $0.037(3)$ | $-0.011(2)$ | $0.014(2)$ | $-0.016(2)$ |
| C3 | $0.049(3)$ | $0.032(2)$ | $0.038(3)$ | $-0.014(2)$ | $0.012(2)$ | $-0.015(2)$ |
| C4 | $0.048(3)$ | $0.032(2)$ | $0.040(3)$ | $-0.011(2)$ | $0.012(2)$ | $-0.018(2)$ |
| C5 | $0.039(3)$ | $0.031(2)$ | $0.030(2)$ | $-0.0069(19)$ | $0.006(2)$ | $-0.0133(19)$ |
| C6 | $0.052(3)$ | $0.034(2)$ | $0.041(3)$ | $-0.016(2)$ | $0.014(2)$ | $-0.019(2)$ |
| C7 | $0.049(3)$ | $0.038(3)$ | $0.038(3)$ | $-0.010(2)$ | $0.014(2)$ | $-0.024(2)$ |
| C8 | $0.030(2)$ | $0.033(2)$ | $0.025(2)$ | $-0.0040(18)$ | $0.0030(17)$ | $-0.0110(18)$ |
| N1 | $0.039(2)$ | $0.0294(19)$ | $0.0279(19)$ | $-0.0059(16)$ | $0.0075(16)$ | $-0.0112(16)$ |
| N2 | $0.0329(19)$ | $0.0298(19)$ | $0.0269(19)$ | $-0.0045(15)$ | $0.0052(15)$ | $-0.0119(15)$ |
| O1 | $0.048(2)$ | $0.0325(17)$ | $0.0345(18)$ | $-0.0127(15)$ | $0.0089(15)$ | $-0.0112(15)$ |
|  |  |  |  |  |  |  |

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

| O2-C2 | 1.231 (6) | C3-H3 | 0.9300 |
| :---: | :---: | :---: | :---: |
| O1W-H1WB | 0.9046 | $\mathrm{C} 4-\mathrm{N} 2$ | 1.373 (6) |
| O1W-H1WA | 0.8499 | C4-H4 | 0.9300 |
| $\mathrm{Cu}-\mathrm{O} 1$ | 1.932 (3) | C5-N1 | 1.314 (6) |
| $\mathrm{Cu}-\mathrm{Ol}^{\text {i }}$ | 1.932 (3) | C5-N2 | 1.355 (6) |
| $\mathrm{Cu} 1-\mathrm{N} 1$ | 1.986 (4) | C5-H5 | 0.9300 |
| $\mathrm{Cu} 1-\mathrm{N} 1^{1}$ | 1.986 (4) | C6-C7 ${ }^{\text {ii }}$ | 1.379 (7) |
| $\mathrm{C} 1-\mathrm{C} 2$ | 1.509 (7) | C6-C8 | 1.384 (6) |
| C1-H1A | 0.9600 | C6-H6 | 0.9300 |
| C1-H1B | 0.9600 | C7-C8 | 1.374 (7) |
| $\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$ | 0.9600 | C7-C6 ${ }^{\text {ii }}$ | 1.379 (7) |
| C2-O1 | 1.273 (6) | C7-H7 | 0.9300 |
| C3-C4 | 1.338 (7) | C8-N2 | 1.427 (6) |


| C3-N1 | 1.374 (6) |  |  |
| :---: | :---: | :---: | :---: |
| H1WB-O1W-H1WA | 107.9 | N2-C4-H4 | 126.6 |
| $\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 1^{\text {i }}$ | 180.000 (1) | N1-C5-N2 | 111.3 (4) |
| $\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$ | 90.62 (15) | N1-C5-H5 | 124.4 |
| $\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 1$ | 89.38 (15) | N2-C5-H5 | 124.4 |
| $\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1^{\text {i }}$ | 89.38 (15) | C7ii-C6-C8 | 119.8 (5) |
| $\mathrm{O} 1-\mathrm{Cul}-\mathrm{N} 1^{\mathrm{i}}$ | 90.62 (15) | C7 ${ }^{\text {iii }}$ - $66-\mathrm{H} 6$ | 120.1 |
| $\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 1^{\text {i }}$ | 180.000 (1) | C8-C6-H6 | 120.1 |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$ | 109.5 | C8-C7-C6 ${ }^{\text {ii }}$ | 120.6 (4) |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$ | 109.5 | C8-C7-H7 | 119.7 |
| $\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$ | 109.5 | C6 ${ }^{\text {ii }-\mathrm{C} 7-\mathrm{H} 7}$ | 119.7 |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$ | 109.5 | C7-C8-C6 | 119.6 (4) |
| $\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$ | 109.5 | C7-C8-N2 | 120.6 (4) |
| $\mathrm{H} 1 \mathrm{~B}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$ | 109.5 | C6-C8-N2 | 119.8 (4) |
| $\mathrm{O} 2-\mathrm{C} 2-\mathrm{O} 1$ | 123.7 (5) | C5-N1-C3 | 105.6 (4) |
| $\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 1$ | 120.9 (5) | C5-N1-Cu1 | 127.6 (3) |
| $\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1$ | 115.3 (5) | $\mathrm{C} 3-\mathrm{N} 1-\mathrm{Cu} 1$ | 126.6 (3) |
| $\mathrm{C} 4-\mathrm{C} 3-\mathrm{N} 1$ | 109.9 (4) | C5-N2-C4 | 106.4 (4) |
| C4-C3-H3 | 125.0 | C5-N2-C8 | 126.7 (4) |
| N1-C3-H3 | 125.0 | C4-N2-C8 | 126.7 (4) |
| $\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 2$ | 106.8 (4) | $\mathrm{C} 2-\mathrm{O} 1-\mathrm{Cu} 1$ | 116.1 (3) |
| $\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$ | 126.6 |  |  |
| N1-C3-C4-N2 | 0.0 (6) | N1-C5-N2-C4 | 0.3 (6) |
| C6 ${ }^{\text {ii }}$ - $\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 6$ | -0.2 (9) | N1-C5-N2-C8 | -176.4 (4) |
| $\mathrm{C} 6 \mathrm{ii}-\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 2$ | 179.7 (5) | C3-C4-N2-C5 | -0.2 (6) |
| $\mathrm{C} 7 \mathrm{ii}-\mathrm{C} 6-\mathrm{C} 8-\mathrm{C} 7$ | 0.2 (9) | $\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 8$ | 176.5 (5) |
| $\mathrm{C} 7 \mathrm{ii}-\mathrm{C} 6-\mathrm{C} 8-\mathrm{N} 2$ | -179.7 (5) | $\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 2-\mathrm{C} 5$ | -4.4 (7) |
| N2-C5-N1-C3 | -0.3 (6) | C6-C8-N2-C5 | 175.5 (5) |
| N2-C5-N1-Cu1 | 175.0 (3) | $\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 2-\mathrm{C} 4$ | 179.6 (5) |
| $\mathrm{C} 4-\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 5$ | 0.1 (6) | C6-C8-N2-C4 | -0.5 (7) |
| $\mathrm{C} 4-\mathrm{C} 3-\mathrm{N} 1-\mathrm{Cu} 1$ | -175.2 (4) | $\mathrm{O} 2-\mathrm{C} 2-\mathrm{O} 1-\mathrm{Cu} 1$ | 4.9 (6) |
| $\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 5$ | 1.0 (4) | $\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 1-\mathrm{Cu} 1$ | -174.2 (4) |
| $\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 5$ | -179.0 (4) | $\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 1-\mathrm{C} 2$ | -86.6 (3) |
| $\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 3$ | 175.3 (4) | $\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 1-\mathrm{C} 2$ | 93.4 (3) |
| $\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 3$ | -4.7 (4) |  |  |

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $-x-1,-y+1,-z+2$.

Hydrogen-bond geometry ( $A,{ }^{\circ}$ )

| $D — \mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{O} 1 W — \mathrm{H} 1 W A \cdots \mathrm{O} 2$ | 0.85 | 1.94 | $2.792(6)$ | 176 |
| $\mathrm{O} 1 W — \mathrm{H} 1 W B \cdots \mathrm{O} 1 W^{\text {iii }}$ | 0.90 | 2.31 | $2.807(7)$ | 114 |

[^0]
[^0]:    Symmetry code: (iii) $-x+2,-y,-z+2$.

