metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

cis-Diaquabis(2,2',2"-tripyridylamine)zinc(II) bis(perchlorate)

Shi Wang,* Xuehua Ding, Wenrui He and Wei Huang

Jiangsu Key Lab of Organic Electronics & Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210046, People's Republic of China Correspondence e-mail: iamswang@njupt.edu.cn

Received 15 September 2009; accepted 17 October 2009

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.008 Å; R factor = 0.057; wR factor = 0.143; data-to-parameter ratio = 12.3.

In the title compound, $[Zn(2,2',2''-tpa)_2(H_2O)_2](ClO_4)_2$ (2,2',2''-tpa is 2,2',2''-tripyridylamine, $C_{15}H_{12}N_4$), the Zn center lies on a twofold axis and is coordinated octahedrally by two water molecules and two bidentate 2,2',2''-tpa ligands. The perchlorate anions are linked to the coordinated water molecules in the complex cations *via* $O-H\cdots O$ hydrogen bonds.

Related literature

For general background, see: Liu *et al.* (1997). For related structures, see: Yang *et al.* (1999).

Experimental

Crystal data [Zn(C₁₅H₁₂N₄)₂(H₂O)₂](ClO₄)₂ *M_r* = 796.89

Monoclinic, C2/ca = 18.687 (3) Å b = 19.305 (4) Å c = 10.8910 (19) Å $\beta = 121.689 (3)^{\circ}$ $V = 3343.2 (11) \text{ Å}^{3}$ Z = 4

Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\rm min} = 0.775, \ T_{\rm max} = 0.825$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.057$ $wR(F^2) = 0.143$ S = 0.922940 reflections 239 parameters 2 restraints H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max} = 0.86 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.41 \text{ e } \text{\AA}^{-3}$

Mo $K\alpha$ radiation

 $0.35 \times 0.22 \times 0.20$ mm

7752 measured reflections 2940 independent reflections

1861 reflections with $I > 2\sigma(I)$

 $\mu = 0.96 \text{ mm}^{-1}$

T = 200 K

 $R_{\rm int}=0.068$

Table 1 Hydrogen-bond geometry (Å, °).

 $D-H\cdots A$ D-H $H\cdots A$ $D\cdots A$ $D-H\cdots A$
 $O1W-H2W\cdots O5^{i}$ 0.83 (2)
 2.23 (4)
 2.939 (6)
 143 (6)

 $O1W-H1W\cdots O4^{ii}$ 0.85 (4)
 2.07 (5)
 2.868 (6)
 158 (6)

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) $x - \frac{1}{2}, y - \frac{1}{2}, z$.

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *SHELXTL*.

This work was supported by grants NY208044, 09KJB150008 and in part by National Basic Research Program of China (2009CB930601) and grant TJ207035.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2005).

References

Brandenburg, K. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Bruker (2007). *SMART* and *SAINT*. Bruker AXS Inc., Madison, Wisconsin, USA.

- Liu, W., Hassan, A. & Wang, S. (1997). Organometallics, 16, 4257-4259.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Yang, W., Schmider, H., Wu, Q., Zhang, Y. & Wang, S. (1999). Inorg. Chem. 39, 2397–2404.

supporting information

Acta Cryst. (2009). E65, m1424 [https://doi.org/10.1107/S1600536809042688] cis-Diaquabis(2,2',2''-tripyridylamine)zinc(II) bis(perchlorate)

Shi Wang, Xuehua Ding, Wenrui He and Wei Huang

S1. Comment

Luminescent organic and coordination compounds have been an active research area for decades because of their various potential applications in materials sciences. It has been demonstrated that 2,2'-dipyridylamine can produce a bright blue luminescence when deprotonated and bound to either an aluminium ion or a boron center (Liu *et al.*, 1997). However, many of the previously reported aluminium or boron compounds based on 2,2'-dipyridylamine are not stable enough for electroluminescent devices. By using the neutral ligand, 2,2',2''-tripyridylamine, we report here the synthesis and crystal structure of the title compound, diaquabis(2,2',2''-tripyridylamine)zinc(II) bis(perchlorate).

The structure consists of monomeric $[Zn(2,2',2''-tpa)_2(H_2O)_2]^{2+}$ cations and associated ClO_4^- anions. The Zn atom lies on a two fold axis. As shown in Fig. 1,the zinc center is six-coordinate with an octahedral geometry. In principle, 2,2',2''-tpa can function not only as a bidentate chelating ligand but also as a tridentate chelating ligand where all three pyridyl groups bind to the same central atom (Yang *et al.*, 1999). In the title compound, each 2,2',2''-tpa ligand functions as a bidentate ligand, chelating to the zinc center. Two water molecules are coordinated to the zinc center as terminal ligands in a *cis* geometry. Crystals of the *trans* geometric isomer of I were not obtained.

The displacement parameters of the perchlorate anion are large. A disorder model has been tried but no improvement in refinement was observed.

Coordinated water molecules in the complex cations are connected to ClO_4^- anions through O—H···O hydrogen bonds (Fig. 2).

S2. Experimental

The ligand, 2,2',2"-tpa was synthesized according to the procedure described in the literature (Yang et al. (1999)).

A solution of 2,2',2''-tpa (62.11 mg, 0.2 mmol) in ethanol (5 ml) was added dropwise to a solution of $Zn(ClO_4)_2.6H_2O$ (46.58 mg, 0.1 mmol) in ethanol (2 ml). The mixture was stirred at room temperature for 5 min and then filtered. Colorless crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of the filtrate.

S3. Refinement

H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement O–H distance restraints in the range 0.83 (2)–0.85 (4) Å

with $U_{iso}(H) = 1.5U_{eq}(O)$. Aromatic H atoms were placed in calculated positions with C—H = 0.93 Å, and refined in riding mode with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The molecular structure of (I), shown with 30% probability displacement ellipsoids. The unlabeled atoms are derived from the reference atoms by means of the (-x + 1/2, -y + 1/2, -z) symmetry transformation.

Figure 2

Packing diagram viewed down the c axis, The O—H…O hydrogen bonds are shown as dotted lines.

cis-Diaquabis(2,2',2"-tripyridylamine)zinc(II) bis(perchlorate)

Crystal data

 $[Zn(C_{15}H_{12}N_4)_2(H_2O)_2](ClO_4)_2$ $M_r = 796.89$ Monoclinic, C2/cHall symbol: -C 2yc a = 18.687 (3) Å b = 19.305 (4) Å c = 10.8910 (19) Å $\beta = 121.689$ (3)° V = 3343.2 (11) Å³ Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 8.366 pixels mm⁻¹ phi and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.775, T_{max} = 0.825$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.057$	Hydrogen site location: inferred from
$wR(F^2) = 0.143$	neighbouring sites
S = 0.92	H atoms treated by a mixture of independent
2940 reflections	and constrained refinement
239 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0705P)^2]$
2 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 0.86 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.41 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

F(000) = 1632

 $\theta = 2.2 - 27.9^{\circ}$ $\mu = 0.96 \text{ mm}^{-1}$

Block, colorless

 $0.35 \times 0.22 \times 0.20 \text{ mm}$

7752 measured reflections 2940 independent reflections

 $\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$

1861 reflections with $I > 2\sigma(I)$

T = 200 K

 $R_{\rm int} = 0.068$

 $h = -22 \rightarrow 21$

 $k = -18 \rightarrow 22$

 $l = -12 \rightarrow 12$

 $D_{\rm x} = 1.583 {\rm Mg} {\rm m}^{-3}$

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 7889 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	X	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.5518 (2)	0.28833 (19)	0.9789 (4)	0.0386 (9)	
C1	0.5611 (3)	0.2247 (2)	1.0527 (5)	0.0419 (12)	
C2	0.5981 (3)	0.2230 (3)	1.1989 (5)	0.0560 (15)	

112	0 (19)	0.2624	1 2520	0.067*
	0.0182	0.2034	1.2330	0.007°
C3 112	0.0034 (4)	0.1604 (5)	1.2032 (0)	0.0720 (19)
H3	0.0303	0.1579	1.3048	0.08/*
	0.5750 (4)	0.1018 (3)	1.1816 (7)	0.0750 (19)
H4	0.5783	0.0591	1.2237	0.090*
C5	0.5400 (4)	0.1072 (3)	1.0366 (6)	0.0612 (16)
Н5	0.5209	0.0671	0.9811	0.073*
N2	0.5317 (2)	0.16820 (19)	0.9694 (4)	0.0428 (10)
C6	0.6036 (3)	0.2977 (2)	0.9218 (5)	0.0382 (11)
C7	0.6595 (3)	0.3515 (3)	0.9666 (5)	0.0533 (14)
H7	0.6629	0.3836	1.0331	0.064*
C8	0.7103 (3)	0.3570 (3)	0.9116 (6)	0.0670 (17)
H8	0.7474	0.3940	0.9378	0.080*
C9	0.7060 (3)	0.3072 (3)	0.8166 (6)	0.0598 (16)
H9	0.7410	0.3096	0.7799	0.072*
C10	0.6500 (3)	0.2550 (3)	0.7783 (5)	0.0455 (12)
H10	0.6476	0.2211	0.7155	0.055*
N3	0.5972 (2)	0.25002 (18)	0.8277 (4)	0.0350 (9)
Zn1	0.5000	0.17445 (4)	0.7500	0.0376 (3)
O1W	0.4117 (3)	0.0899 (2)	0.7028 (5)	0.0598 (10)
H1W	0.387 (4)	0.066 (3)	0.626 (5)	0.10 (3)*
H2W	0.384 (4)	0.088 (3)	0.742 (6)	0.10 (3)*
C11	0.5002 (3)	0.3407 (2)	0.9806 (5)	0.0416 (12)
N4	0.4849 (3)	0.3960 (2)	0.8930 (4)	0.0573 (12)
C12	0.4310 (3)	0.4453 (3)	0.8870 (6)	0.0569 (15)
H12	0.4197	0.4841	0.8288	0.068*
C13	0.3930 (4)	0.4387 (3)	0.9659 (7)	0.0664 (17)
H13	0.3549	0.4717	0.9595	0.080*
C14	0.4128 (4)	0.3824 (3)	1.0536 (6)	0.0696 (17)
H14	0.3890	0.3776	1.1097	0.084*
C15	0.4662 (3)	0.3336 (2)	1.0602 (5)	0.0494 (13)
H15	0.4790	0.2953	1.1200	0.059*
Cl1	0.79396 (8)	0.44302 (7)	0.37729 (14)	0.0488 (4)
02	0.8198 (5)	0.3778 (3)	0.3894 (6)	0.200 (4)
03	0.7209 (4)	0.4465 (5)	0.3674 (8)	0.222 (4)
04	0.8513 (5)	0.4778 (3)	0.4996 (5)	0.159(3)
05	0 7854 (3)	0 4721 (3)	0 2524 (4)	0.1048(17)
	0.700 1 (0)	0.1721(0)	0.2021(1)	0.1010(17)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.048 (2)	0.032 (2)	0.036 (2)	0.0059 (18)	0.022 (2)	-0.0005 (17)
C1	0.051 (3)	0.040 (3)	0.041 (3)	0.015 (2)	0.028 (3)	0.008 (2)
C2	0.071 (4)	0.056 (4)	0.044 (3)	0.023 (3)	0.032 (3)	0.008 (3)
C3	0.103 (5)	0.078 (5)	0.049 (4)	0.027 (4)	0.049 (4)	0.018 (3)
C4	0.119 (6)	0.057 (4)	0.074 (4)	0.027 (4)	0.067 (4)	0.029 (3)
C5	0.094 (5)	0.040 (3)	0.071 (4)	0.012 (3)	0.058 (4)	0.014 (3)
N2	0.060 (3)	0.034 (2)	0.048 (3)	0.007 (2)	0.037 (2)	0.0080 (19)

C6	0.034 (3)	0.035 (3)	0.033 (3)	0.003 (2)	0.009 (2)	0.007 (2)
C7	0.050 (3)	0.047 (3)	0.043 (3)	-0.003 (3)	0.011 (3)	0.002 (3)
C8	0.041 (3)	0.065 (4)	0.067 (4)	-0.016 (3)	0.009 (3)	0.015 (3)
C9	0.034 (3)	0.076 (4)	0.064 (4)	0.002 (3)	0.022 (3)	0.024 (3)
C10	0.045 (3)	0.048 (3)	0.046 (3)	0.007 (3)	0.027 (3)	0.011 (2)
N3	0.035 (2)	0.033 (2)	0.037 (2)	0.0035 (17)	0.0185 (19)	0.0030 (17)
Zn1	0.0483 (5)	0.0296 (4)	0.0440 (5)	0.000	0.0307 (4)	0.000
O1W	0.077 (3)	0.049 (3)	0.071 (3)	-0.019 (2)	0.051 (3)	-0.009(2)
C11	0.042 (3)	0.034 (3)	0.033 (3)	0.009 (2)	0.009 (2)	-0.002(2)
N4	0.054 (3)	0.056 (3)	0.048 (3)	0.008 (2)	0.018 (2)	-0.004(2)
C12	0.055 (4)	0.049 (3)	0.055 (4)	0.015 (3)	0.020 (3)	0.005 (3)
C13	0.071 (4)	0.056 (4)	0.078 (4)	0.023 (3)	0.044 (4)	0.000 (3)
C14	0.087 (5)	0.069 (4)	0.069 (4)	0.017 (4)	0.053 (4)	0.006 (3)
C15	0.074 (4)	0.036 (3)	0.044 (3)	0.021 (3)	0.035 (3)	0.010 (2)
Cl1	0.0522 (8)	0.0533 (9)	0.0487 (8)	0.0061 (6)	0.0319 (7)	0.0047 (6)
O2	0.349 (10)	0.089 (4)	0.096 (4)	0.114 (6)	0.070 (5)	0.005 (3)
O3	0.115 (5)	0.399 (12)	0.223 (8)	0.073 (6)	0.138 (6)	0.137 (8)
O4	0.281 (8)	0.097 (4)	0.063 (3)	-0.065 (5)	0.066 (4)	-0.025(3)
05	0.093 (3)	0.166 (5)	0.057(3)	-0.016(3)	0.040(3)	0.027 (3)

Geometric parameters (Å, °)

N1—C11	1.404 (5)	C10—H10	0.9300
N1-C6	1.411 (6)	N3—Zn1	2.128 (4)
N1-C1	1.428 (5)	Zn1—N3 ⁱ	2.128 (4)
C1—N2	1.338 (6)	Zn1—N2 ⁱ	2.142 (4)
C1—C2	1.364 (6)	Zn1—O1W	2.182 (4)
C2—C3	1.376 (7)	Zn1—O1W ⁱ	2.182 (4)
С2—Н2	0.9300	O1W—H1W	0.85 (4)
C3—C4	1.374 (8)	O1W—H2W	0.83 (2)
С3—Н3	0.9300	C11—C15	1.325 (6)
C4—C5	1.359 (7)	C11—N4	1.358 (6)
C4—H4	0.9300	N4—C12	1.364 (6)
C5—N2	1.352 (6)	C12—C13	1.379 (7)
С5—Н5	0.9300	C12—H12	0.9300
N2—Zn1	2.142 (4)	C13—C14	1.364 (8)
C6—N3	1.335 (5)	C13—H13	0.9300
С6—С7	1.368 (7)	C14—C15	1.346 (7)
С7—С8	1.366 (7)	C14—H14	0.9300
С7—Н7	0.9300	C15—H15	0.9300
С8—С9	1.384 (8)	Cl1—O3	1.314 (5)
С8—Н8	0.9300	Cl1—O2	1.330 (5)
C9—C10	1.352 (7)	Cl1—O4	1.369 (5)
С9—Н9	0.9300	Cl1—O5	1.401 (4)
C10—N3	1.352 (5)		
C11—N1—C6	123.2 (4)	N3—Zn1—N2 ⁱ	99.25 (14)
C11—N1—C1	119.6 (4)	N3 ⁱ —Zn1—N2 ⁱ	85.21 (14)

C6—N1—C1	116.7 (4)	N3—Zn1—N2	85.21 (14)
N2—C1—C2	123.2 (5)	N3 ⁱ —Zn1—N2	99.25 (14)
N2-C1-N1	115.8 (4)	$N2^{i}$ —Zn1—N2	173.5 (2)
C2-C1-N1	121.0 (5)	N3— $Zn1$ — $O1W$	171.28 (15)
C1—C2—C3	118.9 (5)	$N3^{i}$ Zn1 $-O1W$	92.16 (15)
C1 - C2 - H2	120.6	$N2^{i}$ Zn1 $O1W$	87 87 (16)
C3—C2—H2	120.6	$N_2 = Zn_1 = O_1W$	87 30 (16)
C4-C3-C2	118 9 (5)	$N_3 = Zn_1 = O_1 W^i$	92.16(15)
C4—C3—H3	120.6	$N3^{i}$ Zn1-O1W ⁱ	171 28 (15)
C2-C3-H3	120.6	$N2^{i}$ Zn1 $O1W^{i}$	87 30 (16)
C_{5} C_{4} C_{3}	1190(5)	$N2$ — $Zn1$ — $O1W^{i}$	87.87 (16)
C5-C4-H4	120.5	$\Omega_1 W = Zn_1 = \Omega_1 W^i$	83 1 (2)
$C_3 - C_4 - H_4$	120.5	7n1 - 01W - H1W	126(4)
$N_2 - C_5 - C_4$	120.5	$Zn1 \longrightarrow 0.1W \longrightarrow H2W$	120(4) 120(5)
N2_C5_H5	118 5	H1W = 01W = H2W	109 (6)
C_{4} C5 H5	118.5	C15-C11-N4	109(0) 1231(4)
C1 N2 C5	116.9 (1)	$C_{15} = C_{11} = N_1$	123.1(4) 120.2(4)
C1 = N2 = C3	110.9(4)	NA C11 N1	120.2(4)
$C_1 = N_2 = Z_{111}$	119.0(3) 122.6(2)	N4 - C II - NI	110.7(4)
$C_3 = N_2 = Z_{III}$	122.0(5)	C11 - 104 - C12	117.4(4)
$N_2 \subset N_1$	122.7(3) 116.2(4)	N4 - C12 - C13	121.1(3)
$N_{3} = C_{0} = N_{1}$	110.3(4)	N4 - C12 - H12	119.5
C = C = C = C	120.9 (5)	C13—C12—H12	119.5
	118.6 (5)	C14 - C13 - C12	118.0 (5)
C8—C/—H/	120.7	C14—C13—H13	121.0
C6—C/—H7	120.7	С12—С13—Н13	121.0
C7—C8—C9	119.5 (5)	C15—C14—C13	121.2 (5)
С7—С8—Н8	120.2	C15—C14—H14	119.4
С9—С8—Н8	120.2	C13—C14—H14	119.4
C10—C9—C8	118.7 (5)	C11—C15—C14	119.3 (5)
С10—С9—Н9	120.6	C11—C15—H15	120.4
С8—С9—Н9	120.6	C14—C15—H15	120.4
N3—C10—C9	122.5 (5)	O3—C11—O2	111.4 (6)
N3—C10—H10	118.7	O3—Cl1—O4	107.6 (5)
С9—С10—Н10	118.7	O2—C11—O4	108.1 (4)
C6—N3—C10	117.8 (4)	O3—Cl1—O5	108.4 (4)
C6—N3—Zn1	119.5 (3)	O2—Cl1—O5	109.0 (4)
C10—N3—Zn1	122.6 (3)	O4—C11—O5	112.4 (3)
N3—Zn1—N3 ⁱ	93.45 (19)		
C11 N1 C1 N2	115.0 (5)	C0 C10 N2 7n1	173 1 (4)
$C_{11} = N_{11} = C_{11} = N_{2}$	-71.2(5)	$C_{2} = C_{10} = N_{3} = Z_{111}$	1/3.1(4)
$C_0 = N_1 = C_1 = N_2$	-71.3(3)	C10 N2 Tr1 N2i	30.2(3)
CI - NI - CI - C2	-04.4(0)	C_{10} N_{10} N_{10} N_{10} N_{10} N_{10} N_{10} N_{10}	-119.1(4)
$U_0 - N_1 - U_1 - U_2$	108.4(5)	$C_{10} = N_{2} = Z_{r1} = N_{2}$	141.9 (3)
$N_2 - C_1 - C_2 - C_3$	-0.5(8)	C_{10} N3 Z_{11} N2	-55.4 (4)
N1 - C1 - C2 - C3	1/9.8 (5)	$C_0 - N_3 - Z_{n1} - N_2$	-42.8 (3)
C1 - C2 - C3 - C4	-0.1 (9)	C10-N3-Zn1-N2	141.9 (4)
C2—C3—C4—C5	1.1 (9)	$C6-N3-Zn1-O1W^{1}$	-130.5 (3)
C3—C4—C5—N2	-1.6 (9)	$C10$ —N3—Z $n1$ —O1 W^i	54.2 (4)

C2-C1-N2-C5	0.1 (7)	C1—N2—Zn1—N3	30.8 (3)
N1-C1-N2-C5	179.8 (4)	C5—N2—Zn1—N3	-135.2 (4)
C2-C1-N2-Zn1	-166.8 (4)	C1-N2-Zn1-N3 ⁱ	-61.9 (3)
N1—C1—N2—Zn1	12.9 (5)	$C5$ — $N2$ — $Zn1$ — $N3^{i}$	132.0 (4)
C4—C5—N2—C1	1.0 (8)	C1—N2—Zn1—O1W	-153.6 (4)
C4—C5—N2—Zn1	167.3 (4)	C5—N2—Zn1—O1W	40.3 (4)
C11—N1—C6—N3	-129.6 (4)	C1-N2-Zn1-O1W ⁱ	123.2 (4)
C1—N1—C6—N3	57.8 (5)	C5—N2—Zn1—O1W ⁱ	-42.9 (4)
C11—N1—C6—C7	53.0 (6)	C6—N1—C11—C15	-166.6 (5)
C1—N1—C6—C7	-119.5 (5)	C1—N1—C11—C15	5.8 (7)
N3—C6—C7—C8	0.7 (7)	C6—N1—C11—N4	16.3 (6)
N1—C6—C7—C8	177.9 (4)	C1—N1—C11—N4	-171.4 (4)
C6—C7—C8—C9	-2.2 (8)	C15-C11-N4-C12	-0.8 (7)
C7—C8—C9—C10	1.5 (8)	N1-C11-N4-C12	176.2 (4)
C8—C9—C10—N3	0.9 (8)	C11—N4—C12—C13	-0.7 (8)
C7—C6—N3—C10	1.6 (7)	N4-C12-C13-C14	1.9 (9)
N1-C6-N3-C10	-175.7 (4)	C12-C13-C14-C15	-1.7 (9)
C7—C6—N3—Zn1	-174.0 (3)	N4-C11-C15-C14	1.0 (8)
N1—C6—N3—Zn1	8.7 (5)	N1-C11-C15-C14	-175.9 (5)
C9—C10—N3—C6	-2.4 (7)	C13—C14—C15—C11	0.3 (9)

Symmetry code: (i) -x+1, y, -z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A
C3—H3…O2 ⁱⁱ	0.93	2.43	3.336 (8)	166
O1 <i>W</i> —H2 <i>W</i> ···O5 ⁱⁱⁱ	0.83 (2)	2.23 (4)	2.939 (6)	143 (6)
$O1W$ — $H1W$ ··· $O4^{iv}$	0.85 (4)	2.07 (5)	2.868 (6)	158 (6)

Symmetry codes: (ii) -*x*+3/2, -*y*+1/2, -*z*+2; (iii) *x*-1/2, -*y*+1/2, *z*+1/2; (iv) *x*-1/2, *y*-1/2, *z*.