organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-(Bi­phenyl-4-yl)-1-(3-bromo­phen­yl)prop-2-en-1-one

aDepartment of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: mkubicki@amu.edu.pl

(Received 15 October 2009; accepted 21 October 2009; online 28 October 2009)

In the title compound, C21H15BrO, there are two planar rings connected through a conjugated double bond. As it crystallizes in a non-centrosymmetric space group it can be regarded as a good candidate for non-linear optical applications. The mol­ecule adopts an E configuration and the C—C=C—C torsion angle is 177.1 (4)°. The overall conformation of the compound may be described by the values of dihedral angles between the approximately planar parts. The terminal rings are twisted by an angle of 51.52 (9)°, while the biphenyl part is almost planar, the dihedral angle between the planes of the rings being 4.44 (17)°. The unit cell has one long dimension, above 35 Å, characteristic also of a majority of related compounds. The mol­ecules pack head-to-tail along this direction. C—H⋯π inter­actions are observed in the crystal structure.

Related literature

For applications of chalcones, see: Cho et al. (1996[Cho, B. R., Je, J. T., Kim, H. S., Jean, S. J., Song, O. K. & Wang, C. H. (1996). Bull. Korean Chem. Soc. 17, 693-695.]); Dinkova-Kostova et al., (1998[Dinkova-Kostova, A. T., Abey-Gunawardana, C. & Talalay, P. (1998). J. Med. Chem. 41, 5287-5296.]); Fichou et al. (1988[Fichou, D., Watanabe, T., Takeda, T., Miyata, S., Goto, Y. & Nakayama, M. (1988). Jpn. J. Appl. Phys. 27, 429-430.]); Liu et al. (2003[Liu, M., Wilairat, P., Croft, S. L., Tan, A. L. C. & Go, M. I. (2003). Bioorg. Med. Chem. 11, 2729-2738.]); Nielson et al. (1998[Nielson, S. F., Christensen, S. B., Cruciani, G., Kharazmi, A. & Liljefors, T. (1998). J. Med. Chem. 41, 4819-4832.]); Rajas et al. (2002[Rajas, J., Paya, M., Domingues, J. N. & Ferrandiz, M. L. (2002). Bioorg. Med. Chem. Lett. 12, 1951-1954.]); Sarojini et al. (2006[Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. J. (2006). J. Cryst. Growth, 295, 54-59.]). For related structures, see: Fischer et al. (2007a[Fischer, A., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007a). Acta Cryst. E63, o1349-o1350.],b[Fischer, A., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007b). Acta Cryst. E63, o1351-o1352.],c[Fischer, A., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007c). Acta Cryst. E63, o1353-o1354.]); Moorthi et al. (2007[Moorthi, S. S., Chinnakali, K., Nanjundan, S., Radhakrishnanan, S. & Fun, H.-K. (2007). Acta Cryst. E63, o692-o694.]); Sarojini et al. (2007[Sarojini, B. K., Yathirajan, H. S., Sreevidya, T. V., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o2945.]).

[Scheme 1]

Experimental

Crystal data
  • C21H15BrO

  • Mr = 363.24

  • Orthorhombic, P c a 21

  • a = 6.092 (1) Å

  • b = 7.295 (1) Å

  • c = 36.619 (2) Å

  • V = 1627.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.53 mm−1

  • T = 295 K

  • 0.4 × 0.2 × 0.2 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire2 (large Be window) diffractometer

  • Absorption correction: multi-scan (CrysAlis Pro; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis Pro. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.632, Tmax = 1.000

  • 5236 measured reflections

  • 2766 independent reflections

  • 2209 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.085

  • S = 1.05

  • 2766 reflections

  • 208 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.45 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1133 Friedel pairs

  • Flack parameter: 0.059 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cg1i 0.93 2.85 3.583 (5) 137
C6—H6⋯Cg1ii 0.93 2.78 3.516 (5) 137
C9—H9⋯Cg2i 0.93 2.87 3.544 (5) 131
C12—H12⋯Cg2ii 0.93 2.97 3.655 (5) 131
C21—H21⋯Cg3iii 0.93 2.83 3.505 (5) 131
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+2, z]; (ii) [x-{\script{1\over 2}}, -y+1, z]; (iii) [x-{\script{1\over 2}}, -y+2, z]. Cg1, Cg2 and Cg3 are the centroids of the C1–C6, C7–C12 and C17–C22 rings, respectively.

Data collection: CrysAlis Pro (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis Pro. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Stereochemical Workstation Operation Manual (Siemens, 1989[Siemens (1989). Stereochemical Workstation Operation Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

For such a structurally simple group of compounds, chalcones have displayed an impressive array of biological activities, among which antimalarial (Liu et al., 2003), antiprotozoal (Nielson et al., 1998), nitric oxide inhibition (Rajas et al., 2002) and anticancer (Dinkova-Kostova et al., 1998) activities have been cited in the literature. Also, among organic compounds reported for non-linear optical (NLO) properties, chalcone derivatives are notable materials for their excellent blue-light transmittance and good crystallizability. They provide the necessary configuration to show NLO properties, with two planar rings connected through a conjugated double bond (e.g., Sarojini et al., 2006). Substitution on either of the benzene rings greatly influences the non-centrosymmetric crystal packing. It is speculated that, in order to improve the activity, more bulky substituents should be introduced to increase the spontaneous polarization of non-centrosymmetric crystals (Fichou et al., 1988). The molecular hyperpolarizability is strongly influenced, not only by the electronic effect, but also by the steric effect of the substituent (Cho et al., 1996). Prompted by this, and in a continuation of our quest to synthesize new materials which can find use in the photonics industry, we have synthesized new chalcones and studied their SHG (second harmonic generation) efficiency.

(2E)-3-(biphenyl-4-yl)-1-(3-bromophenyl)prop-2-en-1-one (I) crystallizes in the non-centrosymmetric space group Pca21, which makes NLO activity possible. The overall conformation of the molecule can be described by the dihedral angles between the planar fragments: two rings of biphenyl system (A and B, cf. Fig. 1), the enone fragment (C) and the (bromo)phenyl ring (D). All these fragments are in a good approximation planar (maximum deviation from the least-squares plane is 0.018 (4)Å for the enone fragment). The biphenyl rings are almost coplanar, the dihedral angle between them is 4.44 (17)°; the enone fragment is significantly inclined with respect to both neighbouring rings, B/C angle is 30.74 (11)° and C/D - 16.34 (12)°.

The conformation for the ketone system is s–cis, as evidenced by the torsion angle O16—C15— C14—C13 of -21.7 (6)°. In general, the conformation of the molecule (I) is similar to the related compounds (e.g., Fischer et al., 2007a, b, c, Moorthi et al., 2007).

The unit cell of (I) has a long c axis of 36.619 (2) Å, and the molecules pack head-to-tail along this direction (Fig. 2). Such a long unit-cell parameter is observed in a number of similar compounds, even though they crystallize in different space groups and even in different crystal classes. For instance, 4-bromo (Fischer et al., 2007b), 4-chloro (Fischer et al., 2007a) and 4-methoxyphenyl (Fischer et al., 2007c) analogues crystallize all in the Cc space groups with the long parameter (ca. 36 Å) along c-direction, 4-fluoro derivative (Sarojini et al., 2007) - in P21 space group (Z' = 2) with the long b direction etc. It might be also noted, that other unit-cell parameters in all these structures are also similar to those observed in (I), and the comparison of the packing modes shows a significant degree of isostructurality. This suggests that the same interactions are responsible for the crystal packing in these structures: these can be some relatively short and linear C—H···π contacts, and van der Waals interactions.

Related literature top

For applications of chalcones, see: Cho et al. (1996); Dinkova-Kostova et al., (1998); Fichou et al. (1988); Liu et al. (2003); Nielson et al. (1998); Rajas et al. (2002); Sarojini et al. (2006). For related structures, see: Fischer et al. (2007a,b,c); Moorthi et al. (2007); Sarojini et al. (2007). Cg1, Cg2 and Cg3 are the centroids of the C1–C6, C7–C12 and C17–C22 rings, respectively.

Experimental top

5 ml 40% KOH solution was added to a thoroughly stirred solution of 3-bromoacetophenone (1.0 g, 5 m mol) and 4-biphenylcarboxaldehyde (1.0 g, 5.4 m mol) in 15 ml of methanol. The mixture was stirred overnight and filtered. The product formed was crystallized in methanol. X-ray quality crystals were grown from slow evaporation of ethyl acetate solution (m.p.: 378 – 380 K).

Refinement top

Hydrogen atoms were placed in idealized positions, and refined as riding. Their isotropic thermal parameters were set at 1.2 times Ueq's of appropriate carrier atoms.

Structure description top

For such a structurally simple group of compounds, chalcones have displayed an impressive array of biological activities, among which antimalarial (Liu et al., 2003), antiprotozoal (Nielson et al., 1998), nitric oxide inhibition (Rajas et al., 2002) and anticancer (Dinkova-Kostova et al., 1998) activities have been cited in the literature. Also, among organic compounds reported for non-linear optical (NLO) properties, chalcone derivatives are notable materials for their excellent blue-light transmittance and good crystallizability. They provide the necessary configuration to show NLO properties, with two planar rings connected through a conjugated double bond (e.g., Sarojini et al., 2006). Substitution on either of the benzene rings greatly influences the non-centrosymmetric crystal packing. It is speculated that, in order to improve the activity, more bulky substituents should be introduced to increase the spontaneous polarization of non-centrosymmetric crystals (Fichou et al., 1988). The molecular hyperpolarizability is strongly influenced, not only by the electronic effect, but also by the steric effect of the substituent (Cho et al., 1996). Prompted by this, and in a continuation of our quest to synthesize new materials which can find use in the photonics industry, we have synthesized new chalcones and studied their SHG (second harmonic generation) efficiency.

(2E)-3-(biphenyl-4-yl)-1-(3-bromophenyl)prop-2-en-1-one (I) crystallizes in the non-centrosymmetric space group Pca21, which makes NLO activity possible. The overall conformation of the molecule can be described by the dihedral angles between the planar fragments: two rings of biphenyl system (A and B, cf. Fig. 1), the enone fragment (C) and the (bromo)phenyl ring (D). All these fragments are in a good approximation planar (maximum deviation from the least-squares plane is 0.018 (4)Å for the enone fragment). The biphenyl rings are almost coplanar, the dihedral angle between them is 4.44 (17)°; the enone fragment is significantly inclined with respect to both neighbouring rings, B/C angle is 30.74 (11)° and C/D - 16.34 (12)°.

The conformation for the ketone system is s–cis, as evidenced by the torsion angle O16—C15— C14—C13 of -21.7 (6)°. In general, the conformation of the molecule (I) is similar to the related compounds (e.g., Fischer et al., 2007a, b, c, Moorthi et al., 2007).

The unit cell of (I) has a long c axis of 36.619 (2) Å, and the molecules pack head-to-tail along this direction (Fig. 2). Such a long unit-cell parameter is observed in a number of similar compounds, even though they crystallize in different space groups and even in different crystal classes. For instance, 4-bromo (Fischer et al., 2007b), 4-chloro (Fischer et al., 2007a) and 4-methoxyphenyl (Fischer et al., 2007c) analogues crystallize all in the Cc space groups with the long parameter (ca. 36 Å) along c-direction, 4-fluoro derivative (Sarojini et al., 2007) - in P21 space group (Z' = 2) with the long b direction etc. It might be also noted, that other unit-cell parameters in all these structures are also similar to those observed in (I), and the comparison of the packing modes shows a significant degree of isostructurality. This suggests that the same interactions are responsible for the crystal packing in these structures: these can be some relatively short and linear C—H···π contacts, and van der Waals interactions.

For applications of chalcones, see: Cho et al. (1996); Dinkova-Kostova et al., (1998); Fichou et al. (1988); Liu et al. (2003); Nielson et al. (1998); Rajas et al. (2002); Sarojini et al. (2006). For related structures, see: Fischer et al. (2007a,b,c); Moorthi et al. (2007); Sarojini et al. (2007). Cg1, Cg2 and Cg3 are the centroids of the C1–C6, C7–C12 and C17–C22 rings, respectively.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2006); cell refinement: CrysAlis PRO (Oxford Diffraction, 2006); data reduction: CrysAlis PRO (Oxford Diffraction, 2006); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Stereochemical Workstation Operation Manual (Siemens, 1989); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Anisotropic ellipsoid representation of the compound I together with atom labelling scheme. The ellipsoids are drawn at 50% probability level, hydrogen atoms are depicted as spheres with arbitrary radii.
[Figure 2] Fig. 2. The crystal packing as seen along [100] direction.
(E)-3-(Biphenyl-4-yl)-1-(3-bromophenyl)prop-2-en-1-one top
Crystal data top
C21H15BrOF(000) = 736
Mr = 363.24Dx = 1.483 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 2900 reflections
a = 6.092 (1) Åθ = 2.2–26.8°
b = 7.295 (1) ŵ = 2.53 mm1
c = 36.619 (2) ÅT = 295 K
V = 1627.4 (4) Å3Prism, colourless
Z = 40.4 × 0.2 × 0.2 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire2 (large Be window)
diffractometer
2766 independent reflections
Radiation source: Enhance (Mo) X-ray Source2209 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 8.1929 pixels mm-1θmax = 26.9°, θmin = 2.2°
ω scansh = 57
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
k = 59
Tmin = 0.632, Tmax = 1.000l = 4541
5236 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.050P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2766 reflectionsΔρmax = 0.25 e Å3
208 parametersΔρmin = 0.45 e Å3
1 restraintAbsolute structure: Flack (1983), 1133 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.059 (11)
Crystal data top
C21H15BrOV = 1627.4 (4) Å3
Mr = 363.24Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 6.092 (1) ŵ = 2.53 mm1
b = 7.295 (1) ÅT = 295 K
c = 36.619 (2) Å0.4 × 0.2 × 0.2 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire2 (large Be window)
diffractometer
2766 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
2209 reflections with I > 2σ(I)
Tmin = 0.632, Tmax = 1.000Rint = 0.022
5236 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.085Δρmax = 0.25 e Å3
S = 1.05Δρmin = 0.45 e Å3
2766 reflectionsAbsolute structure: Flack (1983), 1133 Friedel pairs
208 parametersAbsolute structure parameter: 0.059 (11)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6509 (7)0.7425 (7)0.79823 (11)0.0516 (11)
H10.59270.73790.77480.062*
C20.8449 (7)0.8289 (5)0.80447 (11)0.0532 (10)
H20.91940.88470.78530.064*
C30.9320 (7)0.8337 (5)0.83967 (9)0.0430 (9)
H31.06450.89380.84370.052*
C40.8253 (6)0.7506 (5)0.86911 (10)0.0333 (7)
C50.6238 (6)0.6661 (4)0.86149 (11)0.0407 (9)
H50.54540.61200.88040.049*
C60.5403 (7)0.6612 (5)0.82712 (12)0.0504 (10)
H60.40720.60260.82290.061*
C70.9218 (6)0.7517 (5)0.90615 (9)0.0302 (7)
C81.1289 (5)0.8263 (5)0.91272 (10)0.0376 (8)
H81.20810.87590.89340.045*
C91.2194 (6)0.8281 (5)0.94747 (11)0.0390 (8)
H91.35860.87760.95080.047*
C101.1075 (6)0.7580 (5)0.97729 (10)0.0364 (8)
C110.9024 (6)0.6836 (5)0.97075 (10)0.0424 (9)
H110.82340.63460.99020.051*
C120.8120 (6)0.6801 (5)0.93638 (11)0.0398 (8)
H120.67380.62840.93320.048*
C131.2154 (6)0.7575 (6)1.01312 (11)0.0449 (9)
H131.36130.79521.01360.054*
C141.1287 (7)0.7096 (6)1.04483 (11)0.0494 (10)
H140.98150.67611.04610.059*
C151.2648 (7)0.7089 (5)1.07855 (11)0.0476 (9)
O161.4619 (5)0.6988 (4)1.07694 (8)0.0696 (9)
C171.1481 (6)0.7302 (5)1.11410 (10)0.0412 (8)
C181.2662 (6)0.6895 (4)1.14615 (10)0.0380 (8)
H181.40690.64051.14470.046*
C191.1730 (6)0.7225 (5)1.17930 (11)0.0435 (8)
C200.9649 (8)0.7894 (5)1.18260 (12)0.0515 (10)
H200.90280.80921.20550.062*
C210.8486 (6)0.8273 (5)1.15093 (14)0.0487 (11)
H210.70740.87511.15260.058*
C220.9371 (7)0.7956 (5)1.11731 (11)0.0477 (9)
H220.85450.81831.09640.057*
Br231.33920 (7)0.67882 (6)1.222156 (16)0.06635 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.071 (3)0.044 (2)0.040 (2)0.008 (2)0.014 (2)0.0040 (19)
C20.071 (3)0.054 (2)0.035 (2)0.006 (2)0.0032 (17)0.0005 (16)
C30.042 (2)0.054 (2)0.0327 (18)0.0073 (18)0.0040 (14)0.0016 (15)
C40.038 (2)0.0254 (16)0.0363 (17)0.0042 (15)0.0029 (14)0.0008 (13)
C50.044 (2)0.0343 (19)0.044 (2)0.0048 (15)0.0018 (15)0.0043 (15)
C60.057 (3)0.045 (2)0.049 (2)0.0094 (18)0.0123 (19)0.0004 (18)
C70.0334 (19)0.0240 (15)0.0332 (16)0.0007 (14)0.0039 (13)0.0004 (12)
C80.036 (2)0.040 (2)0.0362 (18)0.0046 (15)0.0024 (13)0.0039 (14)
C90.0300 (19)0.041 (2)0.046 (2)0.0043 (15)0.0044 (15)0.0022 (15)
C100.037 (2)0.0369 (18)0.0354 (18)0.0008 (15)0.0013 (13)0.0026 (15)
C110.043 (2)0.048 (2)0.036 (2)0.0089 (17)0.0034 (15)0.0064 (16)
C120.031 (2)0.048 (2)0.0408 (18)0.0061 (17)0.0008 (13)0.0014 (15)
C130.050 (2)0.042 (2)0.043 (2)0.0038 (18)0.0044 (18)0.0012 (17)
C140.043 (2)0.066 (3)0.038 (2)0.0047 (19)0.0095 (16)0.0006 (18)
C150.046 (2)0.056 (2)0.040 (2)0.0019 (19)0.0052 (17)0.0007 (17)
O160.0414 (18)0.118 (3)0.0490 (17)0.0122 (17)0.0012 (13)0.0013 (16)
C170.037 (2)0.046 (2)0.0412 (19)0.0037 (17)0.0081 (14)0.0013 (16)
C180.0331 (19)0.0402 (19)0.0406 (19)0.0016 (15)0.0073 (14)0.0010 (15)
C190.041 (2)0.048 (2)0.042 (2)0.0057 (18)0.0078 (15)0.0001 (16)
C200.051 (3)0.058 (2)0.045 (2)0.001 (2)0.0027 (17)0.0004 (18)
C210.035 (2)0.051 (2)0.060 (3)0.0022 (18)0.0076 (17)0.000 (2)
C220.044 (2)0.047 (2)0.052 (2)0.0032 (18)0.0090 (18)0.0020 (16)
Br230.0653 (3)0.0941 (3)0.03960 (19)0.0043 (2)0.0142 (2)0.0021 (3)
Geometric parameters (Å, º) top
C1—C21.358 (6)C11—C121.374 (5)
C1—C61.387 (6)C11—H110.9300
C1—H10.9300C12—H120.9300
C2—C31.394 (5)C13—C141.323 (6)
C2—H20.9300C13—H130.9300
C3—C41.397 (5)C14—C151.487 (5)
C3—H30.9300C14—H140.9300
C4—C51.401 (5)C15—O161.204 (5)
C4—C71.478 (5)C15—C171.492 (6)
C5—C61.358 (5)C17—C221.376 (6)
C5—H50.9300C17—C181.408 (5)
C6—H60.9300C18—C191.361 (5)
C7—C121.395 (5)C18—H180.9300
C7—C81.395 (5)C19—C201.364 (6)
C8—C91.387 (5)C19—Br231.894 (4)
C8—H80.9300C20—C211.387 (6)
C9—C101.385 (5)C20—H200.9300
C9—H90.9300C21—C221.364 (6)
C10—C111.383 (5)C21—H210.9300
C10—C131.468 (5)C22—H220.9300
C2—C1—C6119.5 (4)C10—C11—H11119.1
C2—C1—H1120.3C11—C12—C7121.9 (3)
C6—C1—H1120.2C11—C12—H12119.1
C1—C2—C3119.9 (4)C7—C12—H12119.1
C1—C2—H2120.0C14—C13—C10127.3 (4)
C3—C2—H2120.1C14—C13—H13116.3
C2—C3—C4121.7 (4)C10—C13—H13116.3
C2—C3—H3119.2C13—C14—C15120.4 (4)
C4—C3—H3119.2C13—C14—H14119.8
C3—C4—C5116.4 (3)C15—C14—H14119.8
C3—C4—C7121.4 (3)O16—C15—C14121.0 (4)
C5—C4—C7122.2 (3)O16—C15—C17121.6 (3)
C6—C5—C4121.6 (4)C14—C15—C17117.3 (4)
C6—C5—H5119.2C22—C17—C18118.6 (4)
C4—C5—H5119.2C22—C17—C15123.8 (3)
C5—C6—C1120.9 (4)C18—C17—C15117.5 (3)
C5—C6—H6119.5C19—C18—C17119.5 (4)
C1—C6—H6119.5C19—C18—H18120.2
C12—C7—C8116.3 (3)C17—C18—H18120.2
C12—C7—C4122.4 (3)C18—C19—C20122.0 (4)
C8—C7—C4121.3 (3)C18—C19—Br23119.1 (3)
C9—C8—C7121.4 (3)C20—C19—Br23118.9 (3)
C9—C8—H8119.3C19—C20—C21118.2 (4)
C7—C8—H8119.3C19—C20—H20120.9
C10—C9—C8121.6 (3)C21—C20—H20120.9
C10—C9—H9119.2C22—C21—C20121.2 (4)
C8—C9—H9119.2C22—C21—H21119.4
C11—C10—C9116.9 (3)C20—C21—H21119.4
C11—C10—C13124.0 (3)C21—C22—C17120.4 (4)
C9—C10—C13119.0 (3)C21—C22—H22119.8
C12—C11—C10121.9 (3)C17—C22—H22119.8
C12—C11—H11119.1
C6—C1—C2—C30.6 (6)C4—C7—C12—C11179.3 (3)
C1—C2—C3—C40.3 (6)C11—C10—C13—C149.0 (7)
C2—C3—C4—C51.4 (5)C9—C10—C13—C14174.4 (4)
C2—C3—C4—C7178.2 (4)C10—C13—C14—C15177.1 (4)
C3—C4—C5—C61.7 (5)C13—C14—C15—O1621.7 (6)
C7—C4—C5—C6178.0 (3)C13—C14—C15—C17155.4 (4)
C4—C5—C6—C10.9 (6)O16—C15—C17—C22160.0 (4)
C2—C1—C6—C50.3 (6)C14—C15—C17—C2217.1 (5)
C3—C4—C7—C12175.8 (3)O16—C15—C17—C1816.7 (6)
C5—C4—C7—C124.6 (5)C14—C15—C17—C18166.3 (3)
C3—C4—C7—C83.8 (5)C22—C17—C18—C192.6 (5)
C5—C4—C7—C8175.8 (3)C15—C17—C18—C19174.2 (3)
C12—C7—C8—C90.1 (5)C17—C18—C19—C201.9 (6)
C4—C7—C8—C9179.7 (3)C17—C18—C19—Br23176.8 (3)
C7—C8—C9—C100.7 (5)C18—C19—C20—C211.1 (6)
C8—C9—C10—C110.9 (5)Br23—C19—C20—C21177.6 (3)
C8—C9—C10—C13177.7 (4)C19—C20—C21—C221.2 (6)
C9—C10—C11—C120.5 (5)C20—C21—C22—C172.0 (6)
C13—C10—C11—C12177.1 (4)C18—C17—C22—C212.7 (6)
C10—C11—C12—C70.2 (6)C15—C17—C22—C21173.9 (3)
C8—C7—C12—C110.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Cg1i0.932.853.583 (5)137
C6—H6···Cg1ii0.932.783.516 (5)137
C9—H9···Cg2i0.932.873.544 (5)131
C12—H12···Cg2ii0.932.973.655 (5)131
C21—H21···Cg3iii0.932.833.505 (5)131
Symmetry codes: (i) x+1/2, y+2, z; (ii) x1/2, y+1, z; (iii) x1/2, y+2, z.

Experimental details

Crystal data
Chemical formulaC21H15BrO
Mr363.24
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)295
a, b, c (Å)6.092 (1), 7.295 (1), 36.619 (2)
V3)1627.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.53
Crystal size (mm)0.4 × 0.2 × 0.2
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire2 (large Be window)
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
Tmin, Tmax0.632, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5236, 2766, 2209
Rint0.022
(sin θ/λ)max1)0.637
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.085, 1.05
No. of reflections2766
No. of parameters208
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.45
Absolute structureFlack (1983), 1133 Friedel pairs
Absolute structure parameter0.059 (11)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2006), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), Stereochemical Workstation Operation Manual (Siemens, 1989).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Cg1i0.932.853.583 (5)137.0
C6—H6···Cg1ii0.932.783.516 (5)136.5
C9—H9···Cg2i0.932.873.544 (5)130.7
C12—H12···Cg2ii0.932.973.655 (5)131.4
C21—H21···Cg3iii0.932.833.505 (5)130.7
Symmetry codes: (i) x+1/2, y+2, z; (ii) x1/2, y+1, z; (iii) x1/2, y+2, z.
 

Acknowledgements

CSC thanks the University of Mysore for research facilities.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationCho, B. R., Je, J. T., Kim, H. S., Jean, S. J., Song, O. K. & Wang, C. H. (1996). Bull. Korean Chem. Soc. 17, 693–695.  CAS Google Scholar
First citationDinkova-Kostova, A. T., Abey-Gunawardana, C. & Talalay, P. (1998). J. Med. Chem. 41, 5287–5296.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFichou, D., Watanabe, T., Takeda, T., Miyata, S., Goto, Y. & Nakayama, M. (1988). Jpn. J. Appl. Phys. 27, 429–430.  CrossRef Web of Science Google Scholar
First citationFischer, A., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007a). Acta Cryst. E63, o1349–o1350.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFischer, A., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007b). Acta Cryst. E63, o1351–o1352.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFischer, A., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007c). Acta Cryst. E63, o1353–o1354.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLiu, M., Wilairat, P., Croft, S. L., Tan, A. L. C. & Go, M. I. (2003). Bioorg. Med. Chem. 11, 2729–2738.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMoorthi, S. S., Chinnakali, K., Nanjundan, S., Radhakrishnanan, S. & Fun, H.-K. (2007). Acta Cryst. E63, o692–o694.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNielson, S. F., Christensen, S. B., Cruciani, G., Kharazmi, A. & Liljefors, T. (1998). J. Med. Chem. 41, 4819–4832.  Web of Science CrossRef PubMed Google Scholar
First citationOxford Diffraction (2006). CrysAlis Pro. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationRajas, J., Paya, M., Domingues, J. N. & Ferrandiz, M. L. (2002). Bioorg. Med. Chem. Lett. 12, 1951–1954.  Web of Science CrossRef PubMed Google Scholar
First citationSarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. J. (2006). J. Cryst. Growth, 295, 54–59.  Web of Science CrossRef CAS Google Scholar
First citationSarojini, B. K., Yathirajan, H. S., Sreevidya, T. V., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o2945.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1989). Stereochemical Workstation Operation Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds