Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2-Bromo-3-nitrobenzaldehyde

Vijay P. Singh, ${ }^{\text {a }}$ Harkesh B. Singh ${ }^{\text {a }}$ and Ray J. Butcher ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India, and ${ }^{\text {b }}$ Department of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
Correspondence e-mail: chhbsia@chem.iitb.ac.in

Received 26 September 2009; accepted 8 October 2009
Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.031 ; w R$ factor $=0.079 ;$ data-to-parameter ratio $=19.4$.

The title compound, $\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{BrNO}_{3}$, was isolated as a by-product while attempting to prepare a diselenide. There is a close intramolecular $\mathrm{Br} \cdots \mathrm{O}$ contact [2.984 (2) Å]. The molecules form loosely associated dimers held together by weak intermolecular $\mathrm{Br} \cdots \mathrm{O}$ interactions with the nitro O atoms $[\mathrm{Br} \cdots \mathrm{O}=3.179$ (3) \AA]. As a result of these interactions, there is also a close $\mathrm{Br} \cdots \mathrm{Br}$ intermolecular contact [3.8714 (6) \AA]. In addition, there are weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions. The combination of these interactions produces sheets which propagate in the (210) and ($\overline{2} 10$) directions perpendicular to c.

Related literature

For the preparation and reactivity of the title compound, see: Rahman \& Scrowston (1984); Sienkowska et al. (2000); Wirth \& Fragale (1997). For bond-length data, see: Allen (2002). For intramolecular chalcogen interactions, see: Singh et al. (2009). For intermolecular $\mathrm{Br} \cdots \mathrm{O}$ interactions, see: Jones \& Lozano (2004); Kruszynski (2007); Pedireddi et al. (1992); Xie et al. (2009).

Experimental

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{BrNO}_{3}$
$M_{r}=230.02$
Monoclinic, $P 2_{1} / c$
$\beta=91.603(8)^{\circ}$
$V=774.34(11) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation

Data collection
Oxford Diffraction Gemini R diffractometer
Absorption correction: multi-scan
(CrysAlisPro; Oxford
Diffraction, 2009)
$T_{\text {min }}=0.330, T_{\text {max }}=0.649$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.079$
$S=0.97$
2120 reflections

$$
\mu=5.27 \mathrm{~mm}^{-1}
$$

$T=296 \mathrm{~K}$
$0.27 \times 0.18 \times 0.09 \mathrm{~mm}$

5208 measured reflections
2120 independent reflections
1308 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.031$

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C6-H6 $\cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.55	$3.354(4)$	145
C7-H7 $^{\mathrm{ii}}$	0.93	2.62	$3.534(4)$	168

Symmetry codes: (i) $-x+1,-y+2,-z+1$; (ii) $x,-y+\frac{1}{2}, z-\frac{1}{2}$.
Data collection: CrysAlisPro (Oxford Diffraction, 2009); cell refinement: CrysAlisPro; data reduction: CrysAlisPro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

HBS is grateful to the Department of Science and Technology (DST) for the award of a Ramanna Fellowship. VPS is grateful to IIT Bombay for the award of a teaching assistantship. RJB wishes to acknowledge the NSF-MRI program (grant No. CHE-0619278) for funds to purchase the diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2283).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Jones, P. G. \& Lozano, V. (2004). Acta Cryst. C60, o876-o878.
Kruszynski, R. (2007). Acta Cryst. C63, o389-o391.
Oxford Diffraction (2009). CrysAlisPro. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
Pedireddi, V. R., Sarma, J. A. R. P. \& Desiraju, G. R. (1992). J. Chem. Soc. Perkin Trans. 2, pp. 311-320.
Rahman, L. K. A. \& Scrowston, R. M. (1984). J. Chem. Soc. Perkin Trans. 1, pp. 385-390.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sienkowska, M., Benin, V. \& Kaszynski, P. (2000). Tetrahedron, 56, 165-173.
Singh, V. P., Singh, H. B. \& Butcher, R. J. (2009). In preparation.
Wirth, T. \& Fragale, G. (1997). Chem. Eur. J. 3, 1894-1902.
Xie, M., Deng, C., Zheng, J. \& Zhu, Y. (2009). Acta Cryst. E65, o1980.

supporting information

Acta Cryst. (2009). E65, o2761 [https://doi.org/10.1107/S160053680904104X]

2-Bromo-3-nitrobenzaldehyde

Vijay P. Singh, Harkesh B. Singh and Ray J. Butcher

S1. Comment

The stucture of the title compound, (I), is shown below. Dimensions are available in the archived CIF.
The title compound $1, \mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{3} \mathrm{Br}$, was isolated as a by-product while attempting to prepare diselenide 2 by reacting $2-$ bromo-3-nitrobenzylalcohol with disodium diselenide (Wirth \& Fragale, 1997) as shown in scheme 1. Presumably, the formation of 1 takes place during column chromatography on silica gel where the alcohol function is oxidized to the aldehyde function. The preparation (but not the structure) of the title compound by different routes has been previously reported (Rahman \& Scrowston, 1984; Sienkowska et al., 2000). In 1, with two withdrawing ortho groups present, the 2position is highly susceptible to nucleophilic substitution by $\mathrm{Na}_{2} \mathrm{Se}_{2}, \mathrm{Na}_{2} \mathrm{Te}_{2}, \mathrm{Na}_{2} \mathrm{Se}$ to afford a series of novel chalcogen compounds (Singh et al. 2009). In this paper we report the structure of the precursor.
The bond lengths and angles in the title compound are within the normal ranges for related compounds (Allen et al., 2002). When chalcogens (Se, Te) are present in the 2-position in place of bromine there is an intramolecular chalcogen ($\mathrm{Se} / \mathrm{Te} \cdots$ oxygen(aldehyde/nitro)) interaction (Singh et al. 2009). It was of interest to see whether the bromo analog will interact intramolecularly with the nitro/aldehyde donor groups. There is a close intramolecular $\mathrm{Br} \cdots \mathrm{O}$ contact of 2.984 (2) \AA. The molecules form loosely associated dimers held together by weak intermolecular $\mathrm{Br} \cdots \mathrm{O}$ interactions with the nitro O atoms ($\mathrm{Br} \cdots \mathrm{O} 3.179$ (3) \AA, see Figure 1). Similar interactions have been previously reported (Jones \& Lozano, 2004; Kruszynski, 2007; Pedireddi et al., 1992; Xie et al., 2009). As a result of these interactions there is also a close $\mathrm{Br} \cdots \mathrm{Br}$ intermolecular contact (3.8714 (6) \AA) as has been commonly observed [42 examples found in a search of the Cambridge Structural Database (Allen, 2002)]. In addition there are weak intermolecular C-H $\cdots \mathrm{O}$ interactions. Of the intermolecular interactions, only that between O 3 and the aldehyde H is out of plane. As a result of this out-of-plane interaction the nitro group is twisted by $43.6(4)^{\circ}$ from the plane of the aromatic ring. The combination of these interactions produces sheets which propagate in the $\left(\begin{array}{lll}2 & 1 & 0\end{array}\right)$ and (-210) directions perpendicular to c as shown in Figure 2.

S2. Experimental

The title compound $1, \mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{3} \mathrm{Br}$, was isolated as a by-product while attempting to prepare diselenide 2 by reacting $2-$ bromo-3-nitrobenzylalcohol with disodium diselenide (Wirth \& Fragale, 1997). Presumably, the formation of 1 takes place during column chromatography on silica gel where the alcohol function is oxidized to the aldehyde function. It has been prepared previously by a different routes (Rahman \& Scrowston, 1984; Sienkowska et al. 2000).
Crystal suitable for X-ray diffraction were obtained from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /ethyl acetate.

Figure 1
The molecular structure of $\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{3} \mathrm{Br}$ the showing the $\mathrm{Br} \cdots \mathrm{O}$ intra- and intermolecular interactions (as dashed lines) forming loosely associated dimers. The atom numbering scheme and 50% probability displacement ellipsoids.

Figure 2
The molecular packing for $\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{3} \mathrm{Br}$ viewed down the c axis showing the sheets of associated molecules in the (210) and (-2 110) directions. The secondary interactions are shown by dashed lines.

1

Figure 3

The formation of the title compound.

2-Bromo-3-nitrobenzaldehyde

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{BrNO}_{3}$
$M_{r}=230.02$
Monoclinic, $P 2_{1} / c$
$a=8.1578$ (8) A
$b=6.3079$ (5) \AA
$c=15.0537(11) \AA$
$\beta=91.603$ (8$)^{\circ}$
$V=774.34(11) \AA^{3}$
$Z=4$

Data collection

Oxford Diffraction Gemini R
diffractometer
Radiation source: Enhance (Mo) X-ray Source
Graphite monochromator
Detector resolution: 10.5081 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
$T_{\min }=0.330, T_{\text {max }}=0.649$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.079$
$S=0.97$
2120 reflections
109 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$F(000)=448$
$D_{\mathrm{x}}=1.973 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2069 reflections
$\theta=4.7-30.5^{\circ}$
$\mu=5.27 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Rectangular plate, orange
$0.27 \times 0.18 \times 0.09 \mathrm{~mm}$

5208 measured reflections
2120 independent reflections
1308 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=30.6^{\circ}, \theta_{\text {min }}=4.9^{\circ}$
$h=-11 \rightarrow 10$
$k=-8 \rightarrow 7$
$l=-21 \rightarrow 11$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from
neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0388 P)^{2}\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.77 \mathrm{e}^{-3} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.45 \mathrm{e} \AA^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iss }} * / U_{\text {eq }}$
Br1	$0.14664(4)$	$0.22483(5)$	$0.465488(18)$	$0.04777(13)$
O1	$0.4218(3)$	$0.7906(3)$	$0.39513(14)$	$0.0541(5)$
O2	$-0.0180(3)$	$0.1829(4)$	$0.63917(17)$	$0.0744(7)$
O3	$0.1725(4)$	$0.1401(5)$	$0.73881(17)$	$0.0868(8)$
N1	$0.1141(4)$	$0.2271(4)$	$0.67396(17)$	$0.0505(7)$
C1	$0.3125(3)$	$0.6054(4)$	$0.51753(16)$	$0.0348(6)$
C2	$0.2254(3)$	$0.4311(4)$	$0.54696(16)$	$0.0328(5)$
C3	$0.2073(3)$	$0.4060(4)$	$0.63756(17)$	$0.0370(6)$
C4	$0.2767(3)$	$0.5454(5)$	$0.69788(18)$	$0.0470(7)$
H4	0.2653	0.5227	0.7584	0.056^{*}
C5	$0.3621(4)$	$0.7169(5)$	$0.6692(2)$	$0.0508(8)$
H5	0.4088	0.8119	0.7098	0.061^{*}
C6	$0.3785(4)$	$0.7478(4)$	$0.5787(2)$	$0.0434(7)$
H6	0.4348	0.8660	0.5587	0.052^{*}
C7	$0.3397(4)$	$0.6456(5)$	$0.42181(18)$	$0.0443(7)$
H7	0.2910	0.5545	0.3803	0.053^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	$0.0561(2)$	$0.04590(19)$	$0.04115(18)$	$-0.00979(14)$	$-0.00130(13)$	$-0.00726(13)$
O1	$0.0632(13)$	$0.0526(13)$	$0.0468(12)$	$-0.0092(11)$	$0.0069(10)$	$0.0147(10)$
O2	$0.0641(16)$	$0.0862(18)$	$0.0735(17)$	$-0.0285(14)$	$0.0124(14)$	$0.0052(14)$
O3	$0.119(2)$	$0.0817(19)$	$0.0591(15)$	$-0.0035(17)$	$-0.0007(15)$	$0.0315(15)$
N1	$0.0631(18)$	$0.0518(16)$	$0.0375(13)$	$-0.0010(13)$	$0.0145(13)$	$0.0043(12)$
C1	$0.0361(14)$	$0.0354(14)$	$0.0329(13)$	$0.0038(11)$	$0.0010(11)$	$-0.0006(11)$
C2	$0.0306(13)$	$0.0351(13)$	$0.0325(13)$	$0.0046(11)$	$-0.0014(10)$	$-0.0021(11)$
C3	$0.0363(14)$	$0.0407(14)$	$0.0341(14)$	$0.0034(12)$	$0.0039(11)$	$0.0007(11)$
C4	$0.0520(18)$	$0.060(2)$	$0.0291(13)$	$0.0078(15)$	$0.0055(13)$	$-0.0049(13)$
C5	$0.0549(19)$	$0.0558(18)$	$0.0413(16)$	$-0.0046(15)$	$-0.0044(14)$	$-0.0159(14)$
C6	$0.0449(17)$	$0.0392(17)$	$0.0460(16)$	$-0.0018(12)$	$0.0017(13)$	$-0.0033(13)$
C7	$0.0486(17)$	$0.0447(16)$	$0.0394(15)$	$0.0044(14)$	$-0.0053(13)$	$0.0003(13)$

Geometric parameters ($A,{ }^{\circ}$)

Br1-C2	1.889 (2)	C1-C7	1.486 (4)
$\mathrm{Br} 1-\mathrm{O} 2$	2.984 (2)	C2-C3	1.385 (3)
$\mathrm{Br} 1-\mathrm{Br}^{\text {i }}$	3.8714 (6)	C3-C4	1.375 (4)
O1-C7	1.209 (3)	C4-C5	1.363 (4)
O2-N1	1.217 (4)	C4-H4	0.9300
$\mathrm{O} 2-\mathrm{Br}^{\text {i }}$	3.179 (3)	C5-C6	1.387 (4)
O3-N1	1.206 (4)	C5-H5	0.9300
N1-C3	1.475 (4)	C6-H6	0.9300
C1-C6	1.384 (4)	C7-H7	0.9300
C1-C2	1.388 (3)		
$\mathrm{C} 2-\mathrm{Br} 1-\mathrm{O} 2$	69.23 (9)	C4-C3-C2	121.6 (2)
C2-Br1- $\mathrm{Br}^{\text {i }}$	122.15 (8)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{N} 1$	116.8 (2)
$\mathrm{O} 2-\mathrm{Br} 1-\mathrm{Br}^{\text {i }}$	53.36 (5)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 1$	121.6 (2)
$\mathrm{N} 1-\mathrm{O} 2-\mathrm{Br} 1$	86.66 (16)	C5-C4-C3	120.2 (3)
$\mathrm{N} 1-\mathrm{O} 2-\mathrm{Brl}^{\text {i }}$	132.4 (2)	C5-C4-H4	119.9
$\mathrm{Br} 1-\mathrm{O} 2-\mathrm{Br}^{\mathrm{i}}$	77.75 (6)	C3-C4-H4	119.9
$\mathrm{O} 3-\mathrm{N} 1-\mathrm{O} 2$	124.7 (3)	C4-C5-C6	119.1 (3)
$\mathrm{O} 3-\mathrm{N} 1-\mathrm{C} 3$	116.9 (3)	C4-C5-H5	120.4
$\mathrm{O} 2-\mathrm{N} 1-\mathrm{C} 3$	118.4 (3)	C6-C5-H5	120.4
C6-C1-C2	119.6 (2)	C1-C6-C5	121.1 (3)
C6-C1-C7	117.9 (2)	C1-C6-H6	119.5
C2-C1-C7	122.4 (2)	C5-C6-H6	119.5
C3-C2-C1	118.3 (2)	O1-C7-C1	123.4 (3)
C3-C2-Br1	121.12 (19)	O1-C7- H 7	118.3
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{Br} 1$	120.42 (18)	C1-C7-H7	118.3
$\mathrm{C} 2-\mathrm{Br} 1-\mathrm{O} 2-\mathrm{N} 1$	-37.66 (19)	$\mathrm{Br} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	174.2 (2)
$\mathrm{Br1}{ }^{\text {i }} \mathrm{Br} 1-\mathrm{O} 2-\mathrm{N} 1$	134.7 (2)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 1$	178.9 (2)
$\mathrm{C} 2-\mathrm{Br} 1-\mathrm{O} 2-\mathrm{Br}^{\text {i }}$	-172.41 (10)	$\mathrm{Br} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 1$	-5.2 (3)
$\mathrm{Br} 1-\mathrm{O} 2-\mathrm{N} 1-\mathrm{O} 3$	-137.5 (3)	$\mathrm{O} 3-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4$	-41.7 (4)
$\mathrm{Brl}^{\mathrm{i}}-\mathrm{O} 2-\mathrm{N} 1-\mathrm{O} 3$	-67.4 (4)	$\mathrm{O} 2-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4$	135.4 (3)
$\mathrm{Br} 1-\mathrm{O} 2-\mathrm{N} 1-\mathrm{C} 3$	45.6 (2)	$\mathrm{O} 3-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 2$	137.7 (3)
$\mathrm{Br1}{ }^{\text {i- }} \mathrm{O} 2-\mathrm{N} 1-\mathrm{C} 3$	115.6 (3)	$\mathrm{O} 2-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 2$	-45.1 (4)
C6-C1-C2-C3	0.2 (4)	C2-C3-C4-C5	1.8 (4)
C7- $12-\mathrm{C} 2-\mathrm{C} 3$	179.5 (2)	N1-C3-C4-C5	-178.8 (3)
C6- $12-\mathrm{C} 2-\mathrm{Br} 1$	-175.8 (2)	C3-C4-C5-C6	-0.3 (4)
C7- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{Br} 1$	3.6 (3)	C2-C1-C6-C5	1.3 (4)
$\mathrm{O} 2-\mathrm{Br} 1-\mathrm{C} 2-\mathrm{C} 3$	19.93 (19)	C7- $12-\mathrm{C} 6-\mathrm{C} 5$	-178.1 (3)
$\mathrm{Br} 1^{\mathrm{i}}-\mathrm{Br} 1-\mathrm{C} 2-\mathrm{C} 3$	12.7 (2)	C4-C5-C6-C1	-1.3 (5)
$\mathrm{O} 2-\mathrm{Br} 1-\mathrm{C} 2-\mathrm{C} 1$	-164.3 (2)	C6-C1-C7-O1	3.1 (4)
$\mathrm{Br} 1^{\mathrm{i}}-\mathrm{Br} 1-\mathrm{C} 2-\mathrm{C} 1$	-171.45 (16)	C2-C1-C7-O1	-176.3 (3)
C1-C2-C3-C4	-1.7 (4)		

Symmetry code: (i) $-x,-y,-z+1$.

supporting information

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 6 — \mathrm{H} 6 \cdots 1^{\mathrm{ii}}$	0.93	2.55	$3.354(4)$	145
$\mathrm{C}^{\mathrm{i}} \mathrm{H} 7 \cdots 3^{\mathrm{iii}}$	0.93	2.62	$3.534(4)$	168

Symmetry codes: (ii) $-x+1,-y+2,-z+1$; (iii) $x,-y+1 / 2, z-1 / 2$.

