organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Hydroxybenzyl alcoholphenanthroline (1/1)

Cuong Quoc Ton^a and Michael Bolte^b*

^aInstitut für Organische Chemie der Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany, and ^bInstitut für Anorganische Chemie der Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany

Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Received 20 October 2009; accepted 27 October 2009

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.002 Å; R factor = 0.038; wR factor = 0.099; data-to-parameter ratio = 13.9.

Crystals of the title compound, $C_{12}H_8N_2 \cdot C_7H_8O_2$, were obtained during cocrystallization experiments of a compound with two hydrogen-bond donors (2-hydroxybenzyl alcohol) with another compound containing two hydrogen-bond acceptors (phenanthroline). Unexpectedly, the two molecules do not form dimers with two O-H···N hydrogen bonds connecting the two molecules. However, one of the hydroxy groups forms a bifurcated hydrogen bond to both phenanthroline N atoms, whereas the other hydroxy group forms an O-H···O hydrogen bond to a symmetry-equivalent 2-hydroxybenzyl alcohol molecule. In addition, the crystal packing is stabilized by π - π interactions between the two phenanthroline ring systems, with a centroid-centroid distance of 3.570 Å.

Related literature

For co-crystallization experiments, see: Ton & Bolte (2005); Tutughamiarso et al. (2009).

Experimental

Crystal data

$C_{12}H_8N_2 \cdot C_7H_8O_2$	$V = 1540.6 (4) \text{ Å}^3$
$M_r = 304.34$	Z = 4
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 7.264 (1) Å	$\mu = 0.09 \text{ mm}^{-1}$
b = 20.256 (3) Å	T = 173 K
c = 11.082 (2) Å	$0.60 \times 0.50 \times 0.30 \text{ mm}$
$\beta = 109.13 \ (3)^{\circ}$	

Data collection

Stoe IPDS II two-circle diffractometer Absorption correction: none 20425 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.038$	208 parameters
$wR(F^2) = 0.099$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 0.15 \text{ e } \text{\AA}^{-3}$
2885 reflections	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

2885 independent reflections

2518 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.036$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1-H1O\cdots O2^{i}$ $O2-H2O\cdots N1^{ii}$	0.93 0.87	1.69 2.29	2.6125 (14) 3.0390 (15)	168 144
$O2-H2O\cdots N2^{ii}$	0.87	2.15	2.8663 (14)	140

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$.

Data collection: X-AREA (Stoe & Cie, 2001): cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2291).

References

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. Spek, A. L. (2009). Acta Cryst. D65, 148-155. Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany. Ton, Q. C. & Bolte, M. (2005). Acta Cryst. E61, o1406-o1407.

Tutughamiarso, M., Bolte, M. & Egert, E. (2009). Acta Cryst. C65, 0574-0578.

supporting information

Acta Cryst. (2009). E65, o2936 [https://doi.org/10.1107/S1600536809044699]

2-Hydroxybenzyl alcohol-phenanthroline (1/1)

Cuong Quoc Ton and Michael Bolte

S1. Comment

The aim of our research is the cocrystallization of two small organic compounds in order to examine the hydrogen bonds formed between hydrogen-bond acceptors and hydrogen-bond donors (Ton & Bolte, 2005; Tutughamiarso *et al.*, 2009). In this work, we wanted to cocrystallize phenanthroline and 2-hydroxybenzyl alcohol. However, the cocrystal, we obtained, did not show the expected AA/DD pattern, *i.e.* with two O—H···N hydrogen bonds connecting the two molecules to a dimer. However, one of the hydroxy groups forms a bifurcated hydrogen bonds to both phenanthroline N atoms, whereas the other hydroxy group forms a O—H···O hydrogen bond to a symmetry equivalent 2-hydroxybenzyl alcohol molecule. In addition, the crystal packing is stabilized by π - π interactions between two phenanthroline ring systems forming a centrosymmetric dimer with a centroid···centroid distance of 3.570 Å. The second molecule is generated by the symmetry operation 1 - *x*, -*y*, 1 - *z*.

S2. Experimental

The complex consisting of 1,10-phenanthroline and 2-hydroxybenzylenealcohol was obtained by to the method of isothermal vaporization. 1,10-phenanthroline and 2-hydroxybenzylenealcohol were added in an equimolar ratio (10 mmol) into a flask. Afterwards chloroform was added dropwise until the substances were completely dissolved. Then, the flask was sealed and set aside at room temperature. After two weeks crystals of the complex were obtained.

S3. Refinement

Hydrogen atoms were located in a difference Fourier map but those bonded to C were included in calculated positions [C -H = 0.93 - 0.99 Å] and refined as riding [$U_{iso}(H) = 1.2U_{eq}(C)$]. H atoms bonded to O were freely refined.

Figure 1

A view of the molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure 2

Part of the crystal structure of the title compound viewed along the c axis. Hydrogen atoms bonded to C omitted. Hydrogen bonds shown as dashed lines. 2-Hydroxybenzyl alcohol-phenanthroline (1/1)

Crystal data

 $C_{12}H_8N_2 \cdot C_7H_8O_2$ $M_r = 304.34$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 7.264 (1) Å b = 20.256 (3) Å c = 11.082 (2) Å $\beta = 109.13$ (3)° V = 1540.6 (4) Å³ Z = 4

Data collection

Stoe IPDS II two-circle	2518 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.036$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 25.7^{\circ}, \ \theta_{\text{min}} = 2.8^{\circ}$
Graphite monochromator	$h = -8 \rightarrow 8$
ω scans	$k = -24 \rightarrow 24$
20425 measured reflections	$l = -13 \rightarrow 13$
2885 independent reflections	

F(000) = 640

 $\theta = 3.0-25.0^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$

Block. colourless

 $0.60 \times 0.50 \times 0.30 \text{ mm}$

T = 173 K

 $D_{\rm x} = 1.312 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 11957 reflections

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.038$	Hydrogen site location: inferred from
$wR(F^2) = 0.099$	neighbouring sites
S = 1.06	H-atom parameters constrained
2885 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0569P)^2 + 0.2526P]$
208 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.15$ e Å ⁻³
direct methods	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.68091 (17)	0.08958 (5)	0.49625 (11)	0.0357 (3)	
N2	0.89787 (17)	0.03273 (5)	0.72184 (11)	0.0371 (3)	
C1	0.72912 (18)	0.02470 (6)	0.49544 (13)	0.0330 (3)	
C2	0.5740 (2)	0.11589 (7)	0.38637 (14)	0.0418 (3)	
H2	0.5403	0.1612	0.3860	0.050*	

C3	0.5071 (2)	0.08146 (8)	0.27060 (15)	0.0478 (4)
Н3	0.4303	0.1029	0.1945	0.057*
C4	0.5553 (2)	0.01591 (8)	0.26982 (15)	0.0477 (4)
H4	0.5114	-0.0087	0.1927	0.057*
C5	0.6694 (2)	-0.01440 (7)	0.38328 (14)	0.0398 (3)
C6	0.7275 (2)	-0.08270 (7)	0.38997 (17)	0.0480 (4)
H6	0.6881	-0.1088	0.3146	0.058*
C7	0.8361 (2)	-0.11014 (7)	0.50050 (18)	0.0497 (4)
H7	0.8733	-0.1552	0.5017	0.060*
C8	0.8973 (2)	-0.07275 (6)	0.61706 (15)	0.0406 (3)
C9	1.0057 (2)	-0.10017 (7)	0.73516 (18)	0.0513 (4)
Н9	1.0437	-0.1452	0.7402	0.062*
C10	1.0568 (2)	-0.06217 (8)	0.84299 (18)	0.0526 (4)
H10	1.1285	-0.0803	0.9238	0.063*
C11	1.0001 (2)	0.00436 (7)	0.83078 (15)	0.0459 (4)
H11	1.0376	0.0308	0.9057	0.055*
C12	0.84467 (19)	-0.00511 (6)	0.61498 (13)	0.0342 (3)
01	0.96385 (12)	0.19916 (5)	0.97867 (8)	0.0343 (2)
H1O	0.9040	0.1823	0.8970	0.051*
O2	1.25869 (12)	0.33737 (4)	1.24759 (8)	0.0299 (2)
H2O	1.2750	0.3699	1.2006	0.045*
C13	1.16077 (16)	0.20302 (6)	1.00360 (11)	0.0254 (3)
C14	1.26346 (16)	0.24552 (6)	1.10244 (11)	0.0252 (3)
C15	1.46410 (17)	0.25043 (6)	1.13083 (12)	0.0300 (3)
H15	1.5363	0.2785	1.1984	0.036*
C16	1.56203 (18)	0.21500 (6)	1.06219 (13)	0.0333 (3)
H16	1.6992	0.2192	1.0829	0.040*
C17	1.45820 (18)	0.17387 (6)	0.96403 (12)	0.0325 (3)
H17	1.5239	0.1501	0.9164	0.039*
C18	1.25733 (18)	0.16711 (6)	0.93473 (12)	0.0293 (3)
H18	1.1863	0.1382	0.8682	0.035*
C19	1.15095 (17)	0.28505 (6)	1.17128 (11)	0.0297 (3)
H19A	1.0333	0.3037	1.1071	0.036*
H19B	1.1069	0.2548	1.2265	0.036*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0415 (6)	0.0277 (5)	0.0471 (7)	-0.0037 (5)	0.0269 (5)	-0.0039 (5)
N2	0.0471 (7)	0.0279 (6)	0.0456 (7)	-0.0038 (5)	0.0277 (5)	-0.0007 (5)
C1	0.0352 (7)	0.0267 (6)	0.0486 (8)	-0.0082(5)	0.0295 (6)	-0.0070 (5)
C2	0.0450 (8)	0.0384 (8)	0.0490 (8)	-0.0024 (6)	0.0248 (7)	0.0022 (6)
C3	0.0454 (8)	0.0580 (10)	0.0469 (8)	-0.0112 (7)	0.0244 (7)	0.0013 (7)
C4	0.0474 (8)	0.0588 (10)	0.0470 (8)	-0.0211 (7)	0.0293 (7)	-0.0152 (7)
C5	0.0415 (7)	0.0374 (7)	0.0552 (9)	-0.0164 (6)	0.0356 (7)	-0.0155 (6)
C6	0.0556 (9)	0.0368 (8)	0.0695 (11)	-0.0192 (7)	0.0449 (9)	-0.0242 (7)
C7	0.0539 (9)	0.0247 (7)	0.0892 (13)	-0.0095 (6)	0.0490 (9)	-0.0169 (7)
C8	0.0388 (7)	0.0240 (6)	0.0719 (10)	-0.0049 (5)	0.0357 (7)	-0.0035 (6)

supporting information

C9	0.0459 (8)	0.0278 (7)	0.0909 (13)	0.0019 (6)	0.0371 (9)	0.0081 (8)
C10	0.0484 (9)	0.0439 (8)	0.0702 (11)	0.0004 (7)	0.0257 (8)	0.0165 (8)
C11	0.0534 (9)	0.0402 (8)	0.0509 (9)	-0.0057 (6)	0.0263 (7)	0.0027 (6)
C12	0.0365 (7)	0.0250 (6)	0.0538 (8)	-0.0066 (5)	0.0321 (6)	-0.0056 (5)
01	0.0208 (4)	0.0510 (6)	0.0310 (5)	-0.0017 (4)	0.0083 (3)	-0.0068 (4)
O2	0.0376 (5)	0.0240 (4)	0.0281 (4)	-0.0015 (3)	0.0108 (4)	0.0035 (3)
C13	0.0224 (5)	0.0288 (6)	0.0254 (6)	0.0018 (4)	0.0084 (4)	0.0058 (5)
C14	0.0248 (6)	0.0253 (6)	0.0264 (6)	0.0022 (4)	0.0094 (5)	0.0061 (5)
C15	0.0254 (6)	0.0291 (6)	0.0349 (6)	-0.0022 (5)	0.0090 (5)	0.0024 (5)
C16	0.0232 (6)	0.0341 (7)	0.0446 (7)	0.0017 (5)	0.0138 (5)	0.0059 (6)
C17	0.0323 (6)	0.0325 (6)	0.0380 (7)	0.0079 (5)	0.0188 (5)	0.0061 (5)
C18	0.0304 (6)	0.0299 (6)	0.0283 (6)	0.0024 (5)	0.0105 (5)	0.0016 (5)
C19	0.0263 (6)	0.0326 (6)	0.0311 (6)	-0.0018 (5)	0.0104 (5)	-0.0024 (5)

Geometric parameters (Å, °)

N1—C2	1.3230 (19)	C10—C11	1.403 (2)
N1—C1	1.3609 (17)	C10—H10	0.9500
N2-C11	1.3235 (19)	C11—H11	0.9500
N2-C12	1.3562 (17)	O1—C13	1.3674 (14)
C1—C5	1.4166 (19)	O1—H1O	0.9310
C1—C12	1.448 (2)	O2—C19	1.4203 (15)
C2—C3	1.400 (2)	O2—H2O	0.8714
C2—H2	0.9500	C13—C18	1.3980 (17)
C3—C4	1.374 (2)	C13—C14	1.4006 (17)
С3—Н3	0.9500	C14—C15	1.3901 (17)
C4—C5	1.401 (2)	C14—C19	1.5165 (16)
C4—H4	0.9500	C15—C16	1.3979 (18)
C5—C6	1.441 (2)	C15—H15	0.9500
С6—С7	1.341 (2)	C16—C17	1.3816 (19)
С6—Н6	0.9500	C16—H16	0.9500
С7—С8	1.437 (2)	C17—C18	1.3938 (18)
С7—Н7	0.9500	C17—H17	0.9500
С8—С9	1.402 (2)	C18—H18	0.9500
C8—C12	1.4206 (18)	C19—H19A	0.9900
C9—C10	1.366 (3)	C19—H19B	0.9900
С9—Н9	0.9500		
C2—N1—C1	117.24 (12)	N2—C11—C10	124.36 (15)
C11—N2—C12	117.73 (12)	N2-C11-H11	117.8
N1-C1-C5	122.70 (13)	C10-C11-H11	117.8
N1-C1-C12	118.04 (12)	N2-C12-C8	122.19 (13)
C5-C1-C12	119.26 (12)	N2-C12-C1	118.51 (11)
N1-C2-C3	124.43 (14)	C8—C12—C1	119.30 (12)
N1—C2—H2	117.8	C13—O1—H1O	110.0
С3—С2—Н2	117.8	C19—O2—H2O	111.4
C4—C3—C2	118.34 (15)	O1-C13-C18	122.60 (11)
С4—С3—Н3	120.8	O1—C13—C14	116.55 (10)

C2 C3 H3	120.8	C18 C13 C14	120.85 (11)
$C_{2} = C_{3} = C_{4} = C_{5}$	119 67 (14)	C_{15} C_{14} C_{13}	118 11 (11)
$C_3 - C_4 - H_4$	120.2	C_{15} C_{14} C_{19}	123 11 (11)
$C_5 C_4 H_4$	120.2	C_{13} C_{14} C_{19}	123.11(11) 118.77(10)
C_{3}	120.2 117.62(13)	$C_{13} = C_{14} = C_{15}$	110.77(10) 121.52(12)
$C_{4} = C_{5} = C_{1}$	117.02(13) 122.07(14)	$C_{14} = C_{15} = C_{10}$	121.33 (12)
$C_{4} = C_{5} = C_{6}$	122.97(14) 110.42(15)	С14—С15—Н15	119.2
C1 - C3 - C6	119.42(13)		119.2
$C/-C_{0}$	121.31 (14)	C17 - C16 - C13	119.01 (11)
$C/-C_{0}$ -H6	119.3	C17 - C16 - H16	120.2
С5—С6—Н6	119.3	CI5-CI6-HI6	120.2
C6-C/-C8	121.26 (13)	C16—C17—C18	120.15 (11)
С6—С/—Н/	119.4	С16—С17—Н17	119.9
С8—С7—Н7	119.4	C18—C17—H17	119.9
C9—C8—C12	117.59 (14)	C17—C18—C13	119.73 (12)
C9—C8—C7	122.96 (14)	C17—C18—H18	120.1
C12—C8—C7	119.44 (14)	C13—C18—H18	120.1
C10—C9—C8	120.10 (14)	O2—C19—C14	114.26 (10)
С10—С9—Н9	119.9	O2—C19—H19A	108.7
С8—С9—Н9	119.9	C14—C19—H19A	108.7
C9—C10—C11	118.03 (16)	O2—C19—H19B	108.7
C9—C10—H10	121.0	C14—C19—H19B	108.7
C11—C10—H10	121.0	H19A—C19—H19B	107.6
C2—N1—C1—C5	-0.08 (18)	C11—N2—C12—C1	178.66 (11)
C2-N1-C1-C12	-179.49 (11)	C9—C8—C12—N2	0.86 (18)
C1—N1—C2—C3	0.4 (2)	C7—C8—C12—N2	179.91 (11)
N1-C2-C3-C4	-0.2 (2)	C9—C8—C12—C1	-178.65 (11)
C2—C3—C4—C5	-0.3 (2)	C7—C8—C12—C1	0.40 (18)
C3—C4—C5—C1	0.55 (19)	N1-C1-C12-N2	0.52 (17)
C3—C4—C5—C6	-179.40 (13)	C5-C1-C12-N2	-178.92 (10)
N1-C1-C5-C4	-0.37 (18)	N1-C1-C12-C8	-179.96 (11)
C12—C1—C5—C4	179.04 (11)	C5—C1—C12—C8	0.61 (17)
N1-C1-C5-C6	179.58 (11)	O1—C13—C14—C15	179.69 (10)
C12—C1—C5—C6	-1.02 (17)	C18—C13—C14—C15	-0.63 (17)
C4—C5—C6—C7	-179.66 (13)	O1—C13—C14—C19	-1.68 (15)
C1C5C7	0.40 (19)	C18—C13—C14—C19	178.01 (11)
C5—C6—C7—C8	0.6 (2)	C13—C14—C15—C16	0.95 (17)
C6—C7—C8—C9	177.95 (13)	C19—C14—C15—C16	-177.62 (11)
C6—C7—C8—C12	-1.0(2)	C14—C15—C16—C17	-0.24 (19)
C12—C8—C9—C10	0.1.(2)	C15 C16 C17 C18	-0.81(18)
C7—C8—C9—C10	0.1 (2)	C13 - C10 - C17 - C18	0.01 (10)
	0.1 (2) -178.94 (13)	C16—C17—C18—C13	1.12 (18)
C8—C9—C10—C11	0.1 (2) -178.94 (13) -0.9 (2)	C16—C17—C18—C13 O1—C13—C18—C13	1.12 (18) 179.27 (11)
C8—C9—C10—C11 C12—N2—C11—C10	$\begin{array}{c} 0.1 (2) \\ -178.94 (13) \\ -0.9 (2) \\ -0.1 (2) \end{array}$	C16—C17—C18—C13 O1—C13—C18—C17 C14—C13—C18—C17	1.12 (18) 179.27 (11) -0.39 (17)
C8—C9—C10—C11 C12—N2—C11—C10 C9—C10—C11—N2	$\begin{array}{c} 0.1 (2) \\ -178.94 (13) \\ -0.9 (2) \\ -0.1 (2) \\ 1.0 (2) \end{array}$	C16—C17—C18—C13 O1—C13—C18—C13 O1—C13—C18—C17 C14—C13—C18—C17 C15—C14—C19—O2	1.12 (18) 179.27 (11) -0.39 (17) 12.73 (16)
C8—C9—C10—C11 C12—N2—C11—C10 C9—C10—C11—N2 C11—N2—C12—C8	$\begin{array}{c} 0.1 (2) \\ -178.94 (13) \\ -0.9 (2) \\ -0.1 (2) \\ 1.0 (2) \\ -0.86 (18) \end{array}$	C15—C16—C17—C18 C16—C17—C18—C13 O1—C13—C18—C17 C14—C13—C18—C17 C15—C14—C19—O2 C13—C14—C19—O2	1.12 (18) 179.27 (11) -0.39 (17) 12.73 (16) -165.84 (10)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
01—H10····O2 ⁱ	0.93	1.69	2.6125 (14)	168
O2—H2O···N1 ⁱⁱ	0.87	2.29	3.0390 (15)	144
O2—H2 <i>O</i> ···N2 ⁱⁱ	0.87	2.15	2.8663 (14)	140

Symmetry codes: (i) *x*-1/2, -*y*+1/2, *z*-1/2; (ii) *x*+1/2, -*y*+1/2, *z*+1/2.