organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3-Chloro­benzo­yl)benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 7 October 2009; accepted 8 October 2009; online 17 October 2009)

In the crystal structure of the title compound, C13H10ClNO3S, the conformation of the N—H bond in the C—SO2—NH—C(O) segment is anti to the C=O bond. The dihedral angle between the two benzene rings is 87.5 (1)°. The crystal structure features inversion-related dimers linked by pairs of N—H⋯O(S) hydrogen bonds.

Related literature

For background literature and similar structures, see: Gowda et al. (2008[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1825.]); Gowda, Foro, Nirmala et al. (2009[Gowda, B. T., Foro, S., Nirmala, P. G., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o1219.]); Gowda, Foro, Suchetan et al. (2009[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o2516.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10ClNO3S

  • Mr = 295.73

  • Monoclinic, C 2/c

  • a = 21.309 (2) Å

  • b = 6.0953 (7) Å

  • c = 20.367 (2) Å

  • β = 92.48 (1)°

  • V = 2642.9 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 299 K

  • 0.42 × 0.40 × 0.24 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.834, Tmax = 0.900

  • 5328 measured reflections

  • 2714 independent reflections

  • 1968 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.133

  • S = 0.92

  • 2714 reflections

  • 176 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.84 (2) 2.12 (2) 2.946 (2) 171 (2)
Symmetry code: (i) [-x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z+1].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Diaryl acylsulfonamides are known as potent antitumor agents against a broad spectrum of human tumor xenografts (colon, lung, breast, ovary and prostate) in nude mice. As part of a study of the effect of ring and the side chain substituents on the crystal structures of N-aromatic sulfonamides (Gowda et al., 2008; Gowda, Foro, Nirmala et al., 2009; Gowda, Foro, Suchetan et al., 2009), in the present work, the structure of N-(3-chlorobenzoyl)benzenesulfonamide (I) has been determined (Fig.1). The conformation of the of the N—H bond in the C—SO2—NH—C(O) segment of the structure is anti to the C=O bond, similar to that observed in N-(benzoyl)benzenesulfonamide (II) (Gowda, Foro, Suchetan et al., 2009). Further, the C=O bond in the segment is anti to the meta-Cl in the benzoyl ring, while the conformation of the N—C bond in the C—SO2—NH—C(O) segment of the structure has "gauche" torsions with respect to the SO bonds. The molecule is twisted at the N atom with a dihedral angle of 89.9 (1)° between the sulfonyl benzene ring and the C—SO2—NH—C—O segment, compared to the value of 86.5 (1)° in (II). The dihedral angle between the two benzene rings is 87.5 (1)° in (I) and 80.3 (1)° in (II). The packing of molecules linked by pairs of N—H···O(S) hydrogen bonds (Table 1) is shown in Fig. 2.

Related literature top

For background literature and similar structures, see: Gowda et al. (2008); Gowda, Foro, Nirmala et al. (2009); Gowda, Foro, Suchetan et al. (2009).

Experimental top

The title compound was prepared by refluxing a mixture of 3-chlorobenzoic acid, benzene sulfonamide and phosphorous oxychloride for 5 h on a water bath. The resultant mixture was cooled and poured into ice cold water. The solid obtained was filtered, washed thoroughly with water and then dissolved in sodium bicarbonate solution. The compound was later reprecipitated by acidifying the filtered solution with dilute HCl. The filtered and dried solid was recrystallized to the constant melting point.

Prism-like colourless single crystals of the title compound used in X-ray diffraction studies were obtained from a slow evaporation of its toluene solution at room temperature.

Refinement top

The H atom of the NH group was located in a difference map and and later restrained to N—H = 0.84 (2) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Structure description top

Diaryl acylsulfonamides are known as potent antitumor agents against a broad spectrum of human tumor xenografts (colon, lung, breast, ovary and prostate) in nude mice. As part of a study of the effect of ring and the side chain substituents on the crystal structures of N-aromatic sulfonamides (Gowda et al., 2008; Gowda, Foro, Nirmala et al., 2009; Gowda, Foro, Suchetan et al., 2009), in the present work, the structure of N-(3-chlorobenzoyl)benzenesulfonamide (I) has been determined (Fig.1). The conformation of the of the N—H bond in the C—SO2—NH—C(O) segment of the structure is anti to the C=O bond, similar to that observed in N-(benzoyl)benzenesulfonamide (II) (Gowda, Foro, Suchetan et al., 2009). Further, the C=O bond in the segment is anti to the meta-Cl in the benzoyl ring, while the conformation of the N—C bond in the C—SO2—NH—C(O) segment of the structure has "gauche" torsions with respect to the SO bonds. The molecule is twisted at the N atom with a dihedral angle of 89.9 (1)° between the sulfonyl benzene ring and the C—SO2—NH—C—O segment, compared to the value of 86.5 (1)° in (II). The dihedral angle between the two benzene rings is 87.5 (1)° in (I) and 80.3 (1)° in (II). The packing of molecules linked by pairs of N—H···O(S) hydrogen bonds (Table 1) is shown in Fig. 2.

For background literature and similar structures, see: Gowda et al. (2008); Gowda, Foro, Nirmala et al. (2009); Gowda, Foro, Suchetan et al. (2009).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labelling scheme and displacement ellipsoids (drawn at the 50% probability level).
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines.
N-(3-Chlorobenzoyl)benzenesulfonamide top
Crystal data top
C13H10ClNO3SF(000) = 1216
Mr = 295.73Dx = 1.486 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1936 reflections
a = 21.309 (2) Åθ = 2.7–28.0°
b = 6.0953 (7) ŵ = 0.45 mm1
c = 20.367 (2) ÅT = 299 K
β = 92.48 (1)°Prism, colourless
V = 2642.9 (5) Å30.42 × 0.40 × 0.24 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2714 independent reflections
Radiation source: fine-focus sealed tube1968 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
Rotation method data acquisition using ω and φ scansθmax = 26.4°, θmin = 2.7°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 2616
Tmin = 0.834, Tmax = 0.900k = 76
5328 measured reflectionsl = 2525
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.92(Δ/σ)max = 0.001
2714 reflectionsΔρmax = 0.18 e Å3
176 parametersΔρmin = 0.32 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0038 (7)
Crystal data top
C13H10ClNO3SV = 2642.9 (5) Å3
Mr = 295.73Z = 8
Monoclinic, C2/cMo Kα radiation
a = 21.309 (2) ŵ = 0.45 mm1
b = 6.0953 (7) ÅT = 299 K
c = 20.367 (2) Å0.42 × 0.40 × 0.24 mm
β = 92.48 (1)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2714 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1968 reflections with I > 2σ(I)
Tmin = 0.834, Tmax = 0.900Rint = 0.015
5328 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 0.92Δρmax = 0.18 e Å3
2714 reflectionsΔρmin = 0.32 e Å3
176 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.20143 (9)0.0804 (3)0.65509 (10)0.0418 (5)
C20.19836 (10)0.0558 (4)0.70922 (10)0.0486 (5)
H20.21610.19520.70870.058*
C30.16863 (13)0.0179 (4)0.76404 (12)0.0648 (7)
H30.16680.07200.80080.078*
C40.14182 (12)0.2218 (5)0.76472 (13)0.0687 (7)
H40.12180.26970.80180.082*
C50.14450 (12)0.3554 (4)0.71097 (15)0.0696 (7)
H50.12570.49290.71160.084*
C60.17497 (11)0.2883 (3)0.65551 (12)0.0569 (6)
H60.17760.38080.61940.068*
C70.13356 (10)0.1419 (3)0.52483 (10)0.0483 (5)
C80.08621 (9)0.1089 (3)0.46936 (10)0.0486 (5)
C90.08589 (10)0.0686 (4)0.42751 (10)0.0519 (5)
H90.11750.17370.43160.062*
C100.03867 (11)0.0901 (4)0.37955 (10)0.0562 (6)
C110.00920 (12)0.0610 (5)0.37261 (13)0.0705 (7)
H110.04110.04400.34040.085*
C120.00860 (15)0.2364 (5)0.41439 (18)0.0949 (10)
H120.04040.34070.41020.114*
C130.03849 (13)0.2618 (4)0.46282 (15)0.0772 (8)
H130.03800.38190.49100.093*
N10.18539 (9)0.0071 (3)0.52611 (8)0.0498 (5)
H1N0.1947 (11)0.082 (4)0.4968 (12)0.060*
O10.28316 (7)0.1577 (3)0.56683 (8)0.0734 (6)
O20.26351 (8)0.2263 (3)0.59692 (7)0.0655 (5)
O30.12636 (8)0.2751 (3)0.56792 (8)0.0695 (5)
Cl10.03840 (4)0.31286 (16)0.32733 (4)0.1016 (3)
S10.24035 (2)0.00980 (9)0.58590 (2)0.0490 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0370 (10)0.0454 (10)0.0420 (10)0.0088 (9)0.0084 (8)0.0040 (8)
C20.0523 (12)0.0503 (12)0.0429 (11)0.0007 (9)0.0009 (9)0.0076 (9)
C30.0667 (16)0.0830 (18)0.0449 (12)0.0055 (13)0.0039 (11)0.0048 (12)
C40.0602 (16)0.0855 (18)0.0602 (15)0.0003 (13)0.0010 (12)0.0214 (14)
C50.0590 (15)0.0527 (14)0.096 (2)0.0034 (11)0.0082 (15)0.0199 (14)
C60.0538 (13)0.0464 (12)0.0690 (15)0.0067 (10)0.0144 (11)0.0094 (11)
C70.0480 (12)0.0527 (12)0.0437 (11)0.0083 (10)0.0030 (9)0.0027 (9)
C80.0418 (11)0.0587 (13)0.0447 (11)0.0093 (10)0.0036 (9)0.0001 (10)
C90.0435 (12)0.0708 (14)0.0408 (11)0.0110 (10)0.0050 (9)0.0031 (10)
C100.0480 (13)0.0786 (15)0.0416 (11)0.0027 (12)0.0042 (9)0.0001 (11)
C110.0496 (14)0.098 (2)0.0621 (15)0.0053 (14)0.0201 (12)0.0098 (14)
C120.0680 (18)0.097 (2)0.117 (3)0.0362 (16)0.0345 (18)0.009 (2)
C130.0631 (16)0.0783 (17)0.0880 (18)0.0275 (14)0.0211 (14)0.0190 (15)
N10.0451 (10)0.0688 (12)0.0348 (9)0.0139 (8)0.0067 (7)0.0155 (8)
O10.0482 (9)0.1156 (15)0.0554 (10)0.0295 (9)0.0097 (8)0.0298 (10)
O20.0635 (10)0.0830 (11)0.0497 (9)0.0240 (9)0.0011 (8)0.0036 (8)
O30.0721 (11)0.0670 (10)0.0680 (11)0.0201 (9)0.0139 (9)0.0271 (9)
Cl10.0912 (6)0.1320 (7)0.0789 (5)0.0054 (5)0.0282 (4)0.0466 (5)
S10.0378 (3)0.0713 (4)0.0374 (3)0.0049 (2)0.0044 (2)0.0125 (2)
Geometric parameters (Å, º) top
C1—C21.384 (3)C8—C91.377 (3)
C1—C61.387 (3)C8—C131.382 (3)
C1—S11.754 (2)C9—C101.378 (3)
C2—C31.382 (3)C9—H90.9300
C2—H20.9300C10—C111.377 (4)
C3—C41.369 (3)C10—Cl11.725 (2)
C3—H30.9300C11—C121.366 (4)
C4—C51.367 (4)C11—H110.9300
C4—H40.9300C12—C131.385 (4)
C5—C61.389 (4)C12—H120.9300
C5—H50.9300C13—H130.9300
C6—H60.9300N1—S11.6527 (18)
C7—O31.210 (2)N1—H1N0.84 (2)
C7—N11.376 (3)O1—S11.4340 (16)
C7—C81.495 (3)O2—S11.4232 (16)
C2—C1—C6120.7 (2)C8—C9—C10119.8 (2)
C2—C1—S1119.47 (17)C8—C9—H9120.1
C6—C1—S1119.85 (16)C10—C9—H9120.1
C3—C2—C1119.2 (2)C11—C10—C9121.6 (2)
C3—C2—H2120.4C11—C10—Cl1118.72 (19)
C1—C2—H2120.4C9—C10—Cl1119.64 (18)
C4—C3—C2120.6 (2)C12—C11—C10118.2 (2)
C4—C3—H3119.7C12—C11—H11120.9
C2—C3—H3119.7C10—C11—H11120.9
C5—C4—C3120.1 (2)C11—C12—C13121.2 (3)
C5—C4—H4120.0C11—C12—H12119.4
C3—C4—H4120.0C13—C12—H12119.4
C4—C5—C6120.9 (2)C8—C13—C12120.0 (3)
C4—C5—H5119.6C8—C13—H13120.0
C6—C5—H5119.6C12—C13—H13120.0
C1—C6—C5118.6 (2)C7—N1—S1123.41 (15)
C1—C6—H6120.7C7—N1—H1N126.0 (17)
C5—C6—H6120.7S1—N1—H1N110.5 (17)
O3—C7—N1120.9 (2)O2—S1—O1118.86 (11)
O3—C7—C8122.38 (19)O2—S1—N1110.81 (10)
N1—C7—C8116.66 (17)O1—S1—N1103.42 (9)
C9—C8—C13119.1 (2)O2—S1—C1109.68 (9)
C9—C8—C7123.94 (18)O1—S1—C1108.83 (11)
C13—C8—C7116.8 (2)N1—S1—C1104.13 (10)
C6—C1—C2—C30.1 (3)Cl1—C10—C11—C12179.8 (2)
S1—C1—C2—C3178.81 (18)C10—C11—C12—C130.5 (5)
C1—C2—C3—C40.8 (4)C9—C8—C13—C120.5 (5)
C2—C3—C4—C50.3 (4)C7—C8—C13—C12177.1 (3)
C3—C4—C5—C60.9 (4)C11—C12—C13—C80.4 (5)
C2—C1—C6—C51.0 (3)O3—C7—N1—S11.5 (3)
S1—C1—C6—C5179.95 (17)C8—C7—N1—S1176.23 (15)
C4—C5—C6—C11.5 (3)C7—N1—S1—O252.6 (2)
O3—C7—C8—C9165.9 (2)C7—N1—S1—O1178.97 (19)
N1—C7—C8—C911.8 (3)C7—N1—S1—C165.3 (2)
O3—C7—C8—C1310.6 (4)C2—C1—S1—O20.9 (2)
N1—C7—C8—C13171.7 (2)C6—C1—S1—O2179.87 (16)
C13—C8—C9—C100.7 (4)C2—C1—S1—O1130.64 (17)
C7—C8—C9—C10177.1 (2)C6—C1—S1—O148.30 (19)
C8—C9—C10—C110.8 (4)C2—C1—S1—N1119.56 (17)
C8—C9—C10—Cl1179.90 (18)C6—C1—S1—N161.49 (18)
C9—C10—C11—C120.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.84 (2)2.12 (2)2.946 (2)171 (2)
Symmetry code: (i) x+1/2, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC13H10ClNO3S
Mr295.73
Crystal system, space groupMonoclinic, C2/c
Temperature (K)299
a, b, c (Å)21.309 (2), 6.0953 (7), 20.367 (2)
β (°) 92.48 (1)
V3)2642.9 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.45
Crystal size (mm)0.42 × 0.40 × 0.24
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.834, 0.900
No. of measured, independent and
observed [I > 2σ(I)] reflections
5328, 2714, 1968
Rint0.015
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.133, 0.92
No. of reflections2714
No. of parameters176
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.32

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.84 (2)2.12 (2)2.946 (2)171 (2)
Symmetry code: (i) x+1/2, y1/2, z+1.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extension of his research fellowship.

References

First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1825.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o1219.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o2516.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds