organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2,4,6-Tri­chloro­phen­­oxy)ethyl bromide

aState Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China, and bState Key Laboratory of Materials-Oriented Chemical Engineering, College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: chemywg@126.com

(Received 8 October 2009; accepted 20 October 2009; online 28 October 2009)

In the title compound, C8H6BrCl3O, there is a weak intra­molecular C—H⋯Cl hydrogen bond involving the O bound methylene group. Intermolecular Cl⋯Cl contacts [3.482 (2) Å] are present in the crystal structure.

Related literature

The title compound is used as an inter­mediate in the production of Prochloraz, a broad-spectrum imidazole fungicide widely used in gardening and agriculture. For the fungicidal properties of Prochloraz, see: Copping et al. (1984[Copping, L. G., Birchmore, R. J., Wright, K. & Godson, D. H. (1984). Pestic. Sci. 15, 280-284.]). For the preparation, see: Howard & Alfred (1982[Howard, B. K. & Alfred, W. E. (1982). European Patent Appl. EP0049060.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C8H6BrCl3O

  • Mr = 304.39

  • Triclinic, [P \overline 1]

  • a = 4.0550 (8) Å

  • b = 8.6270 (17) Å

  • c = 15.183 (3) Å

  • α = 90.73 (3)°

  • β = 94.81 (3)°

  • γ = 90.42 (3)°

  • V = 529.21 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.60 mm−1

  • T = 293 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.460, Tmax = 0.656

  • 2215 measured reflections

  • 1919 independent reflections

  • 1280 reflections with I > 2σ(I)

  • Rint = 0.041

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.123

  • S = 1.01

  • 1919 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯Cl3 0.97 2.81 3.276 (6) 110

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Prochloraz, N-propyl-N-[2-(2,4,6-trichlorophenoxy)-ethyl] -1H-imidazole-1-carboxamide, is a broad-spectrum imidazole fungicide (Copping et al., 1984). As part of our studies in the synthesis of Prochloraz, the title compound (I), which is used as the key intermediate, has been synthesized. We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig. 1), the bond lengths and angles are within normal ranges (Allen et al., 1987). In the crystal structure, intramolecular C—H···Cl interactions (Table 1) may be effective in the stabilization of the structure.

Related literature top

The title compound is used as an intermediate in the production of Prochloraz, a broad-spectrum imidazole fungicide widely used in gardening and agriculture. For the fungicidal properties of Prochloraz, see: Copping et al. (1984). For the preparation, see: Howard & Alfred (1982). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared by following a reported procedure (Howard & Alfred, 1982). 2,4,6-Trichlorophenol (15.8 g ) and sodium hydroxide (4.8 g) were dissolved in 28 ml water and added dropwise to an excess of ethylene dibromide (75.6 g). The reaction mixture was heated under reflux for ten hours. The residue was extracted with 3 x 20 ml dichlormethane, and then methylene chloride phase was washed with water, dried and evaporated to dryness under reduced pressure. Fractionation under reduced pressure yielded the title compound as a colorless oil whaich was then cooled to give 18.1 g white solid (75.2%). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution of (I).

Refinement top

H atoms were positioned geometrically with C—H = 0.93 and 0.97 Å for aromatic and methylene H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2 times Ueq(C).

Structure description top

Prochloraz, N-propyl-N-[2-(2,4,6-trichlorophenoxy)-ethyl] -1H-imidazole-1-carboxamide, is a broad-spectrum imidazole fungicide (Copping et al., 1984). As part of our studies in the synthesis of Prochloraz, the title compound (I), which is used as the key intermediate, has been synthesized. We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig. 1), the bond lengths and angles are within normal ranges (Allen et al., 1987). In the crystal structure, intramolecular C—H···Cl interactions (Table 1) may be effective in the stabilization of the structure.

The title compound is used as an intermediate in the production of Prochloraz, a broad-spectrum imidazole fungicide widely used in gardening and agriculture. For the fungicidal properties of Prochloraz, see: Copping et al. (1984). For the preparation, see: Howard & Alfred (1982). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability levels.
[Figure 2] Fig. 2. A packing diagram of the title compound. Intramolecular hydron bonds are shown as dashed lines.
2-(2,4,6-Trichlorophenoxy)ethyl bromide top
Crystal data top
C8H6BrCl3OZ = 2
Mr = 304.39F(000) = 296
Triclinic, P1Dx = 1.910 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.0550 (8) ÅCell parameters from 25 reflections
b = 8.6270 (17) Åθ = 10–14°
c = 15.183 (3) ŵ = 4.60 mm1
α = 90.73 (3)°T = 293 K
β = 94.81 (3)°Block, colorless
γ = 90.42 (3)°0.20 × 0.10 × 0.10 mm
V = 529.21 (18) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
1280 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.041
Graphite monochromatorθmax = 25.3°, θmin = 1.4°
ω/2θ scansh = 04
Absorption correction: ψ scan
(North et al., 1968)
k = 1010
Tmin = 0.460, Tmax = 0.656l = 1818
2215 measured reflections3 standard reflections every 200 reflections
1919 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.066P)2]
where P = (Fo2 + 2Fc2)/3
1919 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C8H6BrCl3Oγ = 90.42 (3)°
Mr = 304.39V = 529.21 (18) Å3
Triclinic, P1Z = 2
a = 4.0550 (8) ÅMo Kα radiation
b = 8.6270 (17) ŵ = 4.60 mm1
c = 15.183 (3) ÅT = 293 K
α = 90.73 (3)°0.20 × 0.10 × 0.10 mm
β = 94.81 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1280 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.041
Tmin = 0.460, Tmax = 0.6563 standard reflections every 200 reflections
2215 measured reflections intensity decay: 1%
1919 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.01Δρmax = 0.37 e Å3
1919 reflectionsΔρmin = 0.42 e Å3
118 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.06298 (16)0.24181 (8)0.05453 (4)0.0696 (3)
O0.6382 (9)0.3089 (4)0.1806 (2)0.0537 (9)
Cl10.6363 (4)0.01264 (17)0.24134 (11)0.0689 (5)
Cl20.1372 (4)0.22953 (19)0.52835 (10)0.0707 (5)
Cl30.4167 (5)0.59982 (17)0.26392 (11)0.0777 (5)
C10.3028 (15)0.1966 (7)0.0606 (4)0.0651 (16)
H1A0.15850.14170.09770.078*
H1B0.49220.13180.05210.078*
C20.4125 (15)0.3430 (7)0.1030 (4)0.0609 (15)
H2A0.22350.40020.12080.073*
H2B0.52490.40580.06200.073*
C30.5043 (12)0.2915 (6)0.2586 (3)0.0436 (12)
C40.4945 (12)0.1458 (6)0.2977 (4)0.0467 (13)
C50.3811 (13)0.1253 (6)0.3795 (3)0.0486 (13)
H5A0.37600.02730.40420.058*
C60.2752 (13)0.2530 (6)0.4241 (3)0.0476 (13)
C70.2808 (13)0.3971 (6)0.3887 (4)0.0506 (14)
H7A0.20710.48220.41950.061*
C80.3966 (13)0.4152 (6)0.3068 (4)0.0482 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.0586 (4)0.0971 (5)0.0522 (4)0.0021 (3)0.0018 (3)0.0099 (3)
O0.045 (2)0.070 (2)0.046 (2)0.0014 (18)0.0040 (19)0.0043 (18)
Cl10.0775 (11)0.0580 (9)0.0722 (10)0.0176 (8)0.0128 (9)0.0101 (7)
Cl20.0801 (11)0.0855 (11)0.0482 (9)0.0115 (9)0.0131 (8)0.0051 (8)
Cl30.1140 (14)0.0486 (8)0.0695 (11)0.0029 (9)0.0020 (10)0.0059 (7)
C10.053 (4)0.069 (4)0.075 (4)0.002 (3)0.018 (3)0.002 (3)
C20.062 (4)0.058 (3)0.064 (4)0.001 (3)0.016 (3)0.004 (3)
C30.033 (3)0.052 (3)0.045 (3)0.001 (2)0.001 (2)0.003 (2)
C40.044 (3)0.045 (3)0.051 (3)0.008 (2)0.001 (3)0.007 (2)
C50.049 (3)0.046 (3)0.051 (3)0.004 (2)0.003 (3)0.003 (3)
C60.041 (3)0.059 (3)0.042 (3)0.005 (3)0.005 (2)0.001 (3)
C70.052 (3)0.050 (3)0.050 (3)0.009 (3)0.002 (3)0.004 (3)
C80.048 (3)0.041 (3)0.054 (3)0.001 (2)0.003 (3)0.001 (2)
Geometric parameters (Å, º) top
Br—C11.973 (6)C2—H2B0.9700
O—C31.353 (6)C3—C81.380 (7)
O—C21.464 (7)C3—C41.398 (7)
Cl1—C41.731 (5)C4—C51.373 (7)
Cl2—C61.737 (5)C5—C61.376 (7)
Cl3—C81.733 (5)C5—H5A0.9300
C1—C21.459 (8)C6—C71.361 (7)
C1—H1A0.9700C7—C81.375 (8)
C1—H1B0.9700C7—H7A0.9300
C2—H2A0.9700
C3—O—C2117.4 (4)C5—C4—C3122.1 (5)
C2—C1—Br108.5 (4)C5—C4—Cl1119.2 (4)
C2—C1—H1A110.0C3—C4—Cl1118.6 (4)
Br—C1—H1A110.0C4—C5—C6118.5 (5)
C2—C1—H1B110.0C4—C5—H5A120.8
Br—C1—H1B110.0C6—C5—H5A120.8
H1A—C1—H1B108.4C7—C6—C5121.4 (5)
C1—C2—O108.5 (5)C7—C6—Cl2119.5 (4)
C1—C2—H2A110.0C5—C6—Cl2119.1 (4)
O—C2—H2A110.0C6—C7—C8119.2 (5)
C1—C2—H2B110.0C6—C7—H7A120.4
O—C2—H2B110.0C8—C7—H7A120.4
H2A—C2—H2B108.4C7—C8—C3122.1 (5)
O—C3—C8122.7 (5)C7—C8—Cl3118.9 (4)
O—C3—C4120.4 (4)C3—C8—Cl3118.9 (4)
C8—C3—C4116.7 (5)
Br—C1—C2—O170.3 (3)C4—C5—C6—C70.1 (8)
C3—O—C2—C190.6 (6)C4—C5—C6—Cl2179.0 (4)
C2—O—C3—C875.1 (6)C5—C6—C7—C80.4 (8)
C2—O—C3—C4110.3 (5)Cl2—C6—C7—C8178.7 (4)
O—C3—C4—C5175.5 (5)C6—C7—C8—C30.8 (8)
C8—C3—C4—C50.6 (7)C6—C7—C8—Cl3177.7 (4)
O—C3—C4—Cl13.4 (6)O—C3—C8—C7175.7 (5)
C8—C3—C4—Cl1178.4 (4)C4—C3—C8—C70.9 (8)
C3—C4—C5—C60.2 (8)O—C3—C8—Cl32.8 (7)
Cl1—C4—C5—C6178.8 (4)C4—C3—C8—Cl3177.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···Cl30.972.813.276 (6)110

Experimental details

Crystal data
Chemical formulaC8H6BrCl3O
Mr304.39
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)4.0550 (8), 8.6270 (17), 15.183 (3)
α, β, γ (°)90.73 (3), 94.81 (3), 90.42 (3)
V3)529.21 (18)
Z2
Radiation typeMo Kα
µ (mm1)4.60
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.460, 0.656
No. of measured, independent and
observed [I > 2σ(I)] reflections
2215, 1919, 1280
Rint0.041
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.123, 1.01
No. of reflections1919
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.42

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···Cl30.972.813.276 (6)110
 

Acknowledgements

This research work was financially supported by the Department of Science and Technology of Jiangsu Province (BE200830457) and the `863' project (2007 A A02Z211) of the Ministry of Science and Technology.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationCopping, L. G., Birchmore, R. J., Wright, K. & Godson, D. H. (1984). Pestic. Sci. 15, 280–284.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHoward, B. K. & Alfred, W. E. (1982). European Patent Appl. EP0049060.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds