organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-(Methoxymethyl)adamantan-2-yl 2-methylacrylate

Qingwei Meng,* Yueqing Li, Pingping Chen, Weijie Zhao and Jinzong Yang

State Key Laboratory of Fine Chemicals, Dalian Unversity of Technology, PO Box 90, Zhongshan Road 158, Dalian 116012, People's Republic of China Correspondence e-mail: menggw@chem.dlut.edu.cn

Received 8 September 2009; accepted 16 October 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.002 Å; R factor = 0.047; wR factor = 0.159; data-to-parameter ratio = 21.4.

The title compound, $C_{16}H_{24}O_3$, has a cage-type molecular structure and is of interest with respect to its photochemical properties. The structure displays non-classical intermolecular C-H···O hydrogen bonding, which links the molecules into a three-dimensional network.

Related literature

For the synthesis of the title compound and its analogues, see: Hui et al. (2007); Isobe et al. (2007); Kikugawa (2009); Sasaki et al. (2007); Takahashi et al. (2006). For related photoresist preparations, see: Chen et al. (2009); Fedynyshyn (2009); Okago et al. (2009); Padmanaban et al. (2009); Yoo et al. (2009).

Experimental

Crystal data C16H24O3

 $M_r = 264.35$

Monoclinic, $P2_1/c$ Z = 4a = 14.1385 (12) ÅMo $K\alpha$ radiation b = 7.5265 (7) Å $\mu = 0.08 \text{ mm}^{-1}$ c = 13.9712 (12) Å T = 298 K $\beta = 102.461 \ (6)^{\circ}$ $0.40 \times 0.35 \times 0.30 \text{ mm}$ V = 1451.7 (2) Å³ Data collection

Bruker SMART APEXII CCD diffractometer Absorption correction: none 9914 measured reflections

Refinement

 $\begin{array}{l} R[F^2 > 2\sigma(F^2)] = 0.047 \\ wR(F^2) = 0.159 \end{array}$ 173 parameters H-atom parameters constrained S = 1.03 $\Delta \rho_{\rm max} = 0.15 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -0.13 \text{ e } \text{\AA}^{-3}$ 3701 reflections

3701 independent reflections

 $R_{\rm int} = 0.025$

2096 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C16-H16A\cdots O2^{i}$	0.93	2.58	3.499 (2)	171
Symmetry code: (i) x, -	$-v + \frac{5}{2}z - \frac{1}{2}z$			

: (i) :

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We thank Dr Yanhui Chen for his help with the refinement.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2167).

References

- Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, K.-J., Huang, W.-S., Li, W.-K. & Varanasi, P. R. (2009). US Patent US2009130590
- Fedynyshyn, T. H. (2009). US Patent US2009068589.

Hui, C., Meng, Q.-W., Gong, B. & Qu, J.-P. (2007). Ganguang Kexue Yu Guang Huaxue, 25, 357-363.

Isobe, T., Kadota, M., Arai, Y. & Suzuki, M. (2007). Jpn Patent JP2007022918. Kikugawa, T. (2009). Jpn Patent JP2008088152.

Okago, Y., Cho, Y.-H. & Kusaka, H. (2009). Jpn Patent JP2009114381.

Padmanaban, M., Chakrapani, S. & Lin, G.-Y. (2009). US Patent US2009042148.

Sasaki, M., Nishimura, Y. & &Akamatsu, J. (2007). Jpn Patent JP2007277118. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Takahashi, T., Kawaragi, Y. & Ichikawa, S. (2006). Jpn Patent JP2006022023.

Yoo, G. U., Park, H. U. & Kim, S. T. (2009). KR Patent KR2009008039.

supporting information

Acta Cryst. (2009). E65, o2824 [https://doi.org/10.1107/S1600536809042639]

2-(Methoxymethyl)adamantan-2-yl 2-methylacrylate

Qingwei Meng, Yueqing Li, Pingping Chen, Weijie Zhao and Jinzong Yang

S1. Comment

The photoresist is the key material for the preparation of integrated circuit plates. With the development of integrated circuit, the quest for high performance of the photoresist is changing. From 1993 till now, 193 nm photoresist is always being a research hot spot. As the important monomers of polymer matrix for 193 nm photoresist, adamant-2-yl methacrylates are potential and the design of such compounds has received significant attention (Chen *et al.*, 2009; Fedynyshyn, 2009; Hui *et al.*, 2007; Isobe *et al.*, 2007; Kikugawa, 2009; Okago *et al.*, 2009; Padmanaban *et al.*, 2009; Sasaki *et al.*, 2007; Takahashi *et al.*, 2006; Yoo *et al.* 2009).

As a part of studying the effect of side chain substitution on the structures of adamant-2-yl methacrylates, the crystal structure of 2-methyl-acrylic acid 2-methoxymethyl-adamantan-2-yl ester has been determined. The title compound is prepared *via* three steps including Grignard reaction, etherafication and esterification (Fig. 1). The conformation of the C=O and C=C bonds of the methacrylic group are *syn* to each other but not coplanar (Fig.2). The torsion angle O1–C9–C12=C16 is equal to 9.4 (3)°. The geometry of the molecule as well as 1.1996 (19)Å, 1.478 (2)Å and 1.340 (2)Å distances of O1–C9, C9–C12 and C12=C16 bonds, indicate no obvious delocalization of the electron pairs of C=O and C=C within the methacrylic group. The non-classical C16–H16A···O2ⁱ intermolecular hydrogen bonds link the molecules into a three-dimensional network (Table 1, Fig. 3). Symmetry code (i): *x*, -*y*+5/2, *z*-1/2.

S2. Experimental

The synthesis of title compound was shown in Fig.1. The crude product was recrystalized by petroleum ether in the yield of 60%. ¹H-NMR (CDCl₃, 400 MHz): 1.58-2.53 (14*H*, m), 1.95 (3*H*, s), 3.35 (3*H*, s), 4.08 (2*H*, s), 5.52 (1*H*, s), 6.10 (1*H*, s); Elemental analysis (%) Calcd (Found): C: 72.25 (72.69), H: 9.16 (9.15), O: 18.40 (18.16).

S3. Refinement

All H atoms attached to C atoms were treated as riding, with C–H = 0.9700Å for ethylene group, with C–H = 0.9700Å for methylene group, C–H = 0.9800Å for methyne group and C–H = 0.9600Å for methyl group with $U_{iso}(H) = 1.2U_{eq}(C)$ of the carrier atoms to which they are attached and $U_{iso}(H) = 1.5U_{eq}(C)$ for the methyl groups.

Figure 1

The synthesis path of title compound.

Figure 2

The molecular structure of title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.

F(000) = 576

 $\theta = 3.0 - 25.0^{\circ}$

 $\mu = 0.08 \text{ mm}^{-1}$

Block, colourless

 $0.40 \times 0.35 \times 0.30$ mm

T = 298 K

 $D_{\rm x} = 1.210 {\rm Mg} {\rm m}^{-3}$

Melting point: 318 K

Mo *Ka* radiation, $\lambda = 0.71073$ Å

Cell parameters from 2653 reflections

Molecular packing in the crystal. Hydrogen bonds are shown as dashed lines.

2-(Methoxymethyl)adamantan-2-yl 2-methylacrylate

Crystal data

C₁₆H₂₄O₃ $M_r = 264.35$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 14.1385 (12) Å b = 7.5265 (7) Å c = 13.9712 (12) Å $\beta = 102.461$ (6)° V = 1451.7 (2) Å³ Z = 4

Data collection

Bruker SMART APEXII CCD	2096 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.025$
Radiation source: fine-focus sealed tube	$\theta_{\rm max} = 28.7^{\circ}, \theta_{\rm min} = 1.5^{\circ}$
Graphite monochromator	$h = -19 \rightarrow 18$
φ and ω scans	$k = -6 \rightarrow 10$
9914 measured reflections	$l = -18 \rightarrow 18$
3701 independent reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.047$	H-atom parameters constrained
$wR(F^2) = 0.159$	$w = 1/[\sigma^2(F_o^2) + (0.0765P)^2 + 0.0779P]$
S = 1.03	where $P = (F_o^2 + 2F_c^2)/3$
3701 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
173 parameters	$\Delta \rho_{\rm max} = 0.15 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.13 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier map	Extinction coefficient: 0.036 (4)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
03	0.72029 (7)	1.00159 (13)	0.70066 (7)	0.0492 (3)	
C2	0.73378 (10)	0.86448 (19)	0.77704 (10)	0.0475 (4)	
C3	0.78456 (12)	0.7003 (2)	0.74679 (11)	0.0523 (4)	
H3A	0.7419	0.6415	0.6912	0.063*	
C4	0.87843 (11)	0.7558 (2)	0.71813 (11)	0.0564 (4)	
H4A	0.9096	0.6523	0.6974	0.068*	
H4B	0.8641	0.8383	0.6636	0.068*	
O2	0.59138 (8)	0.97066 (16)	0.82779 (9)	0.0729 (4)	
C6	0.80243 (11)	0.9541 (2)	0.86316 (11)	0.0530 (4)	
H6A	0.7713	1.0604	0.8827	0.064*	
C7	0.94636 (12)	0.8433 (2)	0.80430 (11)	0.0614 (5)	
H7A	1.0064	0.8781	0.7851	0.074*	
01	0.63265 (9)	0.83342 (17)	0.58041 (9)	0.0746 (4)	
С9	0.67070 (11)	0.9716 (2)	0.60916 (12)	0.0518 (4)	
C10	0.63535 (12)	0.8197 (2)	0.79806 (13)	0.0612 (5)	
H10A	0.5939	0.7708	0.7395	0.073*	
H10B	0.6432	0.7303	0.8491	0.073*	
C11	0.89683 (12)	1.0069 (2)	0.83410 (12)	0.0593 (5)	
H11A	0.8831	1.0902	0.7799	0.071*	
H11B	0.9395	1.0649	0.8889	0.071*	
C12	0.66997 (12)	1.1315 (2)	0.54756 (11)	0.0563 (4)	
C13	0.87610 (14)	0.6618 (3)	0.91968 (12)	0.0724 (6)	
H13A	0.8909	0.5792	0.9751	0.087*	

C14	0.96933 (13)	0.7145 (3)	0.88993 (13)	0.0743 (6)
H14A	1.0009	0.6096	0.8712	0.089*
H14B	1.0130	0.7701	0.9448	0.089*
C15	0.80964 (14)	0.5713 (2)	0.83353 (13)	0.0682 (5)
H15A	0.7507	0.5332	0.8525	0.082*
H15B	0.8414	0.4670	0.8144	0.082*
C16	0.61220 (14)	1.1289 (3)	0.45791 (13)	0.0762 (6)
H16A	0.6088	1.2277	0.4173	0.091*
H16B	0.5755	1.0285	0.4363	0.091*
C17	0.82633 (15)	0.8258 (3)	0.94946 (12)	0.0694 (5)
H17A	0.8686	0.8835	1.0046	0.083*
H17B	0.7673	0.7913	0.9693	0.083*
C18	0.72945 (16)	1.2843 (3)	0.58613 (15)	0.0865 (6)
H18A	0.7206	1.3767	0.5376	0.130*
H18B	0.7964	1.2498	0.6023	0.130*
H18C	0.7105	1.3273	0.6439	0.130*
C19	0.50466 (14)	0.9249 (3)	0.85691 (17)	0.0884 (7)
H19A	0.4757	1.0301	0.8769	0.133*
H19B	0.5189	0.8428	0.9107	0.133*
H19C	0.4605	0.8709	0.8029	0.133*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
03	0.0590 (6)	0.0445 (6)	0.0440 (6)	-0.0045 (5)	0.0108 (5)	0.0001 (5)
C2	0.0569 (9)	0.0424 (9)	0.0452 (8)	-0.0030 (7)	0.0152 (7)	0.0032 (6)
C3	0.0641 (9)	0.0441 (9)	0.0484 (9)	0.0007 (7)	0.0116 (7)	-0.0037 (7)
C4	0.0652 (10)	0.0590 (10)	0.0477 (9)	0.0097 (8)	0.0180 (8)	-0.0025 (7)
O2	0.0659 (8)	0.0589 (8)	0.1038 (10)	0.0058 (6)	0.0402 (7)	0.0083 (7)
C6	0.0657 (10)	0.0538 (10)	0.0410 (8)	0.0004 (8)	0.0148 (7)	-0.0064 (7)
C7	0.0559 (10)	0.0743 (12)	0.0550 (10)	0.0008 (8)	0.0138 (8)	-0.0043 (8)
01	0.0801 (9)	0.0617 (8)	0.0703 (8)	-0.0072 (6)	-0.0098 (6)	-0.0078 (6)
C9	0.0494 (9)	0.0534 (10)	0.0508 (9)	0.0042 (8)	0.0069 (7)	-0.0043 (8)
C10	0.0634 (10)	0.0510 (10)	0.0750 (11)	-0.0036 (8)	0.0278 (9)	0.0027 (8)
C11	0.0613 (10)	0.0633 (11)	0.0509 (9)	-0.0100 (8)	0.0070 (8)	-0.0099 (8)
C12	0.0599 (10)	0.0617 (11)	0.0497 (9)	0.0121 (8)	0.0171 (8)	0.0040 (8)
C13	0.0928 (14)	0.0767 (13)	0.0481 (10)	0.0222 (11)	0.0158 (10)	0.0158 (9)
C14	0.0721 (12)	0.0890 (14)	0.0571 (10)	0.0170 (10)	0.0038 (9)	-0.0038 (10)
C15	0.0838 (12)	0.0502 (10)	0.0742 (12)	0.0096 (9)	0.0252 (10)	0.0105 (9)
C16	0.0827 (13)	0.0820 (14)	0.0611 (11)	0.0171 (11)	0.0097 (10)	0.0073 (10)
C17	0.0880 (13)	0.0784 (13)	0.0442 (9)	0.0110 (10)	0.0197 (9)	0.0033 (9)
C18	0.1140 (17)	0.0687 (13)	0.0771 (13)	-0.0163 (12)	0.0210 (12)	0.0151 (11)
C19	0.0695 (12)	0.0876 (15)	0.1194 (17)	0.0119 (11)	0.0458 (12)	0.0176 (13)

Geometric parameters (Å, °)

O3—C9	1.3379 (19)	C11—H11A	0.9700
O3—C2	1.4671 (17)	C11—H11B	0.9700

C2—C10	1.521 (2)	C12—C16	1.340 (2)
C2—C6	1.530 (2)	C12—C18	1.458 (2)
C2—C3	1.534 (2)	C13—C14	1.518 (3)
C3—C4	1.525 (2)	C13—C15	1.519 (3)
C3—C15	1.534 (2)	C13—C17	1.523 (2)
С3—НЗА	0.9800	C13—H13A	0.9800
C4—C7	1.518 (2)	C14—H14A	0.9700
C4—H4A	0.9700	C14—H14B	0.9700
C4—H4B	0.9700	C15—H15A	0.9700
02-C10	1 4004 (19)	C15—H15B	0 9700
02-C19	1.1001(19) 1.4150(19)	C16—H16A	0.9300
C6-C17	1 524 (2)	C16—H16B	0.9300
C6 C11	1.524(2) 1.520(2)	C17 H17A	0.9300
C6 H6A	0.0800	C17 H17R	0.9700
C_{0} C_{11}	1.510(2)	C_{1} H_{1} B_{1}	0.9700
C7C14	1.519(2)		0.9600
	1.520 (2)		0.9600
C/—H/A	0.9800		0.9600
01	1.1996 (19)	C19—H19A	0.9600
C9—C12	1.478 (2)	С19—Н19В	0.9600
C10—H10A	0.9700	C19—H19C	0.9600
C10—H10B	0.9700		
C9—O3—C2	122.37 (12)	C6—C11—H11B	109.7
03-C2-C10	108.39 (12)	H11A—C11—H11B	108.2
03-C2-C6	102.87(11)	C_{16} C_{12} C_{18}	122.91 (18)
$C_{10} - C_{2} - C_{6}$	113 42 (12)	C_{16} C_{12} C_{9}	117 33 (17)
03-02-03	113.12(12) 111.18(11)	C_{18} C_{12} C_{9}	117.35(17) 119.75(15)
C_{10} C_{2} C_{3}	112 16 (13)	C_{14} C_{13} C_{15}	108 99 (13)
$C_{10} = C_2 = C_3$	112.10(13) 108 46 (12)	$C_{14} = C_{13} = C_{13}$	100.99(13)
$C_0 = C_2 = C_3$	100.40(12) 100.71(13)	$C_{14} = C_{13} = C_{17}$	110.00(17) 100.60(15)
$C_{4} = C_{3} = C_{2}$	109.71(13) 109.27(12)	$C_{13} = C_{13} = C_{17}$	109.09 (13)
$C_4 = C_3 = C_{15}$	100.57(13)	C14—C13—H13A	109.4
$C_2 = C_3 = C_{13}$	109.55 (12)	C13—C13—H13A	109.4
C4 - C3 - H3A	109.7	C12 - C13 - HI3A	109.4
$C_2 = C_3 = H_3 A$	109.7	C13 - C14 - C7	109.36 (14)
C15—C3—H3A	109.7	C13—C14—H14A	109.8
C/-C4-C3	110.37 (12)	C/-C14-H14A	109.8
C/C4H4A	109.6	C13—C14—H14B	109.8
C3—C4—H4A	109.6	C7—C14—H14B	109.8
C7—C4—H4B	109.6	H14A—C14—H14B	108.3
C3—C4—H4B	109.6	C13—C15—C3	109.86 (15)
H4A—C4—H4B	108.1	C13—C15—H15A	109.7
C10—O2—C19	110.83 (14)	C3—C15—H15A	109.7
C17—C6—C11	108.51 (14)	C13—C15—H15B	109.7
C17—C6—C2	109.73 (14)	C3—C15—H15B	109.7
C11—C6—C2	110.36 (11)	H15A—C15—H15B	108.2
С17—С6—Н6А	109.4	C12—C16—H16A	120.0
С11—С6—Н6А	109.4	C12—C16—H16B	120.0
С2—С6—Н6А	109.4	H16A—C16—H16B	120.0

C4—C7—C11	108.58 (13)	C13—C17—C6	109.51 (12)
C4—C7—C14	109.81 (15)	С13—С17—Н17А	109.8
C11—C7—C14	109.53 (13)	C6—C17—H17A	109.8
С4—С7—Н7А	109.6	С13—С17—Н17В	109.8
С11—С7—Н7А	109.6	C6—C17—H17B	109.8
С14—С7—Н7А	109.6	H17A—C17—H17B	108.2
O1—C9—O3	124.81 (15)	C12—C18—H18A	109.5
O1—C9—C12	124.37 (16)	C12—C18—H18B	109.5
O3—C9—C12	110.82 (14)	H18A—C18—H18B	109.5
O2—C10—C2	111.15 (13)	C12—C18—H18C	109.5
O2-C10-H10A	109.4	H18A—C18—H18C	109.5
C2-C10-H10A	109.4	H18B—C18—H18C	109.5
O2—C10—H10B	109.4	O2—C19—H19A	109.5
C2-C10-H10B	109.4	O2—C19—H19B	109.5
H10A—C10—H10B	108.0	H19A—C19—H19B	109.5
C7—C11—C6	110.02 (14)	O2—C19—H19C	109.5
C7—C11—H11A	109.7	H19A—C19—H19C	109.5
C6-C11-H11A	109.7	H19B—C19—H19C	109.5
C7—C11—H11B	109.7		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H…A	D····A	D—H…A
C16—H16A····O2 ⁱ	0.93	2.58	3.499 (2)	171

Symmetry code: (i) x, -y+5/2, z-1/2.