metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ-9-anthracene­methano­lato)bis­­[di­methyl­aluminium(III)]

aDepartment of Chemistry, Chung Yuan Christian University, Chung-Li 320, Taiwan
*Correspondence e-mail: btko@cycu.edu.tw

(Received 29 September 2009; accepted 2 October 2009; online 7 October 2009)

The title complex, [Al2(CH3)4(C15H11O)2], is dimeric bridged through the O atoms of the 9-anthracenemethano­late anions. Each Al atom is tetra­coordinated by two bridging O atoms from two different 9-anthracenemethano­late ligands and by two C atoms from two methyl groups, forming a distorted tetra­hedral environment. The average Al—O bond distance in the Al2O2 core is 1.845 Å.

Related literature

For background to metal complex-catalysed ring-opening polymerization of lactones/lactides, see: Liu et al. (2001[Liu, Y.-C., Ko, B.-T. & Lin, C.-C. (2001). Macromolecules, 34, 6196-6201.]); Wu et al. (2006[Wu, J., Yu, T.-L., Chen, C.-T. & Lin, C.-C. (2006). Coord. Chem. Rev. 250, 602-626.]). For related structures, see: Lin et al. (1999[Lin, C.-H., Ko, B.-T., Wang, F.-C., Lin, C.-C. & Kuo, C.-Y. (1999). J. Organomet. Chem. 575, 67-75.]); Lou et al. (2002[Lou, X., Detrembleur, C. & Jerome, R. (2002). Macromolecules, 35, 1190-1195.]).

[Scheme 1]

Experimental

Crystal data
  • [Al2(CH3)4(C15H11O)2]

  • Mr = 528.57

  • Triclinic, [P \overline 1]

  • a = 7.7852 (3) Å

  • b = 11.3804 (4) Å

  • c = 17.6749 (6) Å

  • α = 85.683 (2)°

  • β = 79.883 (2)°

  • γ = 74.617 (2)°

  • V = 1485.72 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 296 K

  • 0.45 × 0.38 × 0.32 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.945, Tmax = 0.960

  • 31484 measured reflections

  • 7298 independent reflections

  • 4944 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.234

  • S = 1.01

  • 7298 reflections

  • 343 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

During the last decade, it has been of great interest to develop new catalytic/initiating systems for the preparation of aliphatic polyesters, such as poly(ε-caprolactone) and poly(lactide). Metal complex-catalyzed ring-opening polymerization (ROP) of lactones/lactides has been proven to be the most promising method to synthesize these polymers (Wu et al., 2006). Among them, a variety of main group metal complexes, such as magnesium, zinc and lithium as well as aluminium complexes have been reported to be efficient initiators/catalysts. In particular, Liu et al. (2001) have reported the aluminium benzylalkoxide complexes supported by the bulky bisphenolate ligand and these complexes have been demonstrated as efficient initiators to catalyze ROP of cyclic esters. Recently, our group is interested in the synthesis and preparation of aluminium complexes derived from the 9-anthracenemethanolate ligands. The compound, 9-anthracenemethanol has been proven as a useful initiator to initiate living cationic polymerization of δ-valerolactone in the presence of HCl.Et2O (Lou et al., 2002). We report herein the synthesis and crystal structure of the 9-anthracenemethanolate ligand incorporated AlIII complex, I, a potential initiator for the ROP of ε-caprolactone (Fig. 2).

The solid structure of I reveals a dimeric AlIII complex (Fig. 1), doubly bridged through the O atoms of the 9-anthracenemethanolate anions. The geometry around each Al atom is four-coordinated with a distorted tetrahedral environment in which two bridging O atoms come from two different 9-anthracenemethanolate ligands and two C atoms are from two methyl groups. The average bond distance of Al-O in the Al2O2 core of 1.8453 (14)Å is within a normal range for an Al2O2 ring of four-coordinated aluminium complexes (Lin et al., 1999).

Related literature top

For background to metal complex-catalysed ring-opening polymerization of lactones/lactides, see: Liu et al. (2001); Wu et al. (2006). For related structures, see: Lin et al. (1999); Lou et al. (2002).

Experimental top

The title compound I was synthesized by the following procedures (Fig. 2): to a rapidly stirred solution of 9-anthracenemethanol (0.21 g, 1.0 mmol) in 1,2-dichloroethane (20 ml) was slowly added AlMe3 (0.6 ml, 2.0 M in toluene, 1.2 mmol). The mixture was further stirred at room temperature for 4 h and then dried under vacuum. The residue was extracted with 1,2-dichloroethane (10 ml), and the saturated solution was cooled to 273 K, yielding colourless crystals. Yield: 0.22 g (83%). 1H NMR (CDCl3, p.p.m.): δ 7.43-8.47 (18H, m, ArH), 5.67 (4H, s, CH2), -1.39 (12H, s, AlCH3).

Refinement top

The H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C–H = 0.93 Å with Uiso(H) = 1.2 Ueq(C) for phenyl hydrogen; 0.96 Å with Uiso(H) = 1.5 Ueq(C) for CH3 group; 0.97 Å with Uiso(H) = 1.2 Ueq(C) for CH2 group.

Structure description top

During the last decade, it has been of great interest to develop new catalytic/initiating systems for the preparation of aliphatic polyesters, such as poly(ε-caprolactone) and poly(lactide). Metal complex-catalyzed ring-opening polymerization (ROP) of lactones/lactides has been proven to be the most promising method to synthesize these polymers (Wu et al., 2006). Among them, a variety of main group metal complexes, such as magnesium, zinc and lithium as well as aluminium complexes have been reported to be efficient initiators/catalysts. In particular, Liu et al. (2001) have reported the aluminium benzylalkoxide complexes supported by the bulky bisphenolate ligand and these complexes have been demonstrated as efficient initiators to catalyze ROP of cyclic esters. Recently, our group is interested in the synthesis and preparation of aluminium complexes derived from the 9-anthracenemethanolate ligands. The compound, 9-anthracenemethanol has been proven as a useful initiator to initiate living cationic polymerization of δ-valerolactone in the presence of HCl.Et2O (Lou et al., 2002). We report herein the synthesis and crystal structure of the 9-anthracenemethanolate ligand incorporated AlIII complex, I, a potential initiator for the ROP of ε-caprolactone (Fig. 2).

The solid structure of I reveals a dimeric AlIII complex (Fig. 1), doubly bridged through the O atoms of the 9-anthracenemethanolate anions. The geometry around each Al atom is four-coordinated with a distorted tetrahedral environment in which two bridging O atoms come from two different 9-anthracenemethanolate ligands and two C atoms are from two methyl groups. The average bond distance of Al-O in the Al2O2 core of 1.8453 (14)Å is within a normal range for an Al2O2 ring of four-coordinated aluminium complexes (Lin et al., 1999).

For background to metal complex-catalysed ring-opening polymerization of lactones/lactides, see: Liu et al. (2001); Wu et al. (2006). For related structures, see: Lin et al. (1999); Lou et al. (2002).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of I with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. The title compound, I, (reaction path scheme).
Bis(µ-9-anthracenemethanolato)bis[dimethylaluminium(III)] top
Crystal data top
[Al2(CH3)4(C15H11O)2]Z = 2
Mr = 528.57F(000) = 560
Triclinic, P1Dx = 1.181 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7852 (3) ÅCell parameters from 9970 reflections
b = 11.3804 (4) Åθ = 2.2–28.2°
c = 17.6749 (6) ŵ = 0.13 mm1
α = 85.683 (2)°T = 296 K
β = 79.883 (2)°Block, colourless
γ = 74.617 (2)°0.45 × 0.38 × 0.32 mm
V = 1485.72 (9) Å3
Data collection top
Bruker APEXII CCD
diffractometer
7298 independent reflections
Radiation source: fine-focus sealed tube4944 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 8.3333 pixels mm-1θmax = 28.4°, θmin = 1.9°
φ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1415
Tmin = 0.945, Tmax = 0.960l = 2323
31484 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.234H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.17P)2]
where P = (Fo2 + 2Fc2)/3
7298 reflections(Δ/σ)max = 0.002
343 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
[Al2(CH3)4(C15H11O)2]γ = 74.617 (2)°
Mr = 528.57V = 1485.72 (9) Å3
Triclinic, P1Z = 2
a = 7.7852 (3) ÅMo Kα radiation
b = 11.3804 (4) ŵ = 0.13 mm1
c = 17.6749 (6) ÅT = 296 K
α = 85.683 (2)°0.45 × 0.38 × 0.32 mm
β = 79.883 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
7298 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4944 reflections with I > 2σ(I)
Tmin = 0.945, Tmax = 0.960Rint = 0.033
31484 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.234H-atom parameters constrained
S = 1.01Δρmax = 0.35 e Å3
7298 reflectionsΔρmin = 0.27 e Å3
343 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Al10.71289 (7)0.62997 (5)0.30278 (4)0.0483 (2)
Al20.36490 (7)0.76614 (5)0.27971 (3)0.0449 (2)
O10.50638 (17)0.60755 (11)0.27575 (8)0.0466 (3)
O20.57693 (17)0.79058 (12)0.29925 (9)0.0501 (4)
C10.4531 (3)0.50037 (18)0.26509 (14)0.0550 (5)
H1A0.37520.51700.22620.066*
H1B0.38470.47790.31280.066*
C20.6143 (2)0.39518 (17)0.24061 (12)0.0460 (4)
C30.6999 (3)0.3874 (2)0.16343 (13)0.0571 (5)
C40.6426 (5)0.4791 (3)0.10646 (17)0.0878 (9)
H4A0.54460.54540.11970.105*
C50.7327 (7)0.4689 (5)0.0324 (2)0.1269 (16)
H5A0.69610.52900.00430.152*
C60.8791 (8)0.3689 (5)0.0114 (2)0.143 (2)
H6A0.93590.36260.03960.171*
C70.9404 (5)0.2806 (4)0.06366 (19)0.1063 (12)
H7A1.04060.21650.04870.128*
C80.8509 (3)0.2866 (2)0.14130 (14)0.0662 (7)
C90.9068 (3)0.1975 (2)0.19499 (16)0.0651 (6)
H9A1.00280.13100.17940.078*
C100.8260 (3)0.20243 (18)0.27155 (13)0.0509 (5)
C110.8872 (3)0.1102 (2)0.32601 (19)0.0709 (7)
H11A0.98100.04290.30980.085*
C120.8137 (4)0.1174 (3)0.40009 (19)0.0814 (8)
H12A0.85720.05640.43510.098*
C130.6709 (4)0.2172 (3)0.42484 (15)0.0720 (7)
H13A0.62090.22180.47670.086*
C140.6036 (3)0.3072 (2)0.37536 (13)0.0580 (6)
H14A0.50740.37180.39380.070*
C150.6778 (2)0.30507 (17)0.29495 (11)0.0435 (4)
C160.7421 (4)0.5780 (2)0.40803 (15)0.0778 (8)
H16A0.86460.53270.40930.117*
H16B0.66240.52730.42760.117*
H16C0.71360.64820.43920.117*
C170.9212 (3)0.6023 (2)0.22087 (17)0.0745 (7)
H17A1.02570.55410.24080.112*
H17B0.94200.67920.20130.112*
H17C0.89860.56000.18020.112*
C180.6307 (3)0.89486 (18)0.31628 (13)0.0550 (5)
H18A0.75720.88510.29510.066*
H18B0.61750.90030.37160.066*
C190.5213 (3)1.01085 (17)0.28411 (11)0.0450 (4)
C200.3866 (2)1.09329 (17)0.33176 (10)0.0401 (4)
C210.3403 (3)1.0730 (2)0.41330 (12)0.0514 (5)
H21A0.39661.00010.43640.062*
C220.2155 (3)1.1591 (2)0.45698 (14)0.0625 (6)
H22A0.18971.14420.50970.075*
C230.1249 (3)1.2691 (2)0.42521 (15)0.0659 (6)
H23A0.04141.32710.45650.079*
C240.1592 (3)1.2906 (2)0.34909 (15)0.0601 (6)
H24A0.09651.36320.32790.072*
C250.2891 (3)1.20518 (18)0.30016 (12)0.0460 (4)
C260.3239 (3)1.2290 (2)0.22149 (13)0.0574 (6)
H26A0.25791.30080.20070.069*
C270.4547 (4)1.1484 (2)0.17324 (13)0.0614 (6)
C280.4924 (5)1.1736 (3)0.09214 (15)0.0921 (10)
H28A0.42401.24350.07050.110*
C290.6261 (7)1.0967 (4)0.04722 (17)0.1195 (15)
H29A0.65021.11500.00510.143*
C300.7283 (6)0.9909 (4)0.0774 (2)0.1214 (15)
H30A0.82060.93960.04520.146*
C310.6957 (4)0.9609 (3)0.15368 (16)0.0860 (9)
H31A0.76430.88860.17280.103*
C320.5583 (3)1.0386 (2)0.20398 (12)0.0560 (5)
C330.3002 (4)0.8271 (3)0.17994 (14)0.0738 (7)
H33A0.17500.87060.18630.111*
H33B0.32090.75990.14690.111*
H33C0.37280.88100.15740.111*
C340.1772 (3)0.7840 (2)0.37059 (14)0.0673 (6)
H34A0.06450.83140.35700.101*
H34B0.20970.82450.40950.101*
H34C0.16520.70490.38980.101*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Al10.0401 (3)0.0352 (3)0.0677 (4)0.0034 (2)0.0115 (3)0.0059 (3)
Al20.0410 (3)0.0354 (3)0.0551 (4)0.0032 (2)0.0095 (2)0.0001 (2)
O10.0405 (7)0.0330 (7)0.0656 (8)0.0061 (5)0.0100 (6)0.0060 (6)
O20.0437 (7)0.0330 (7)0.0742 (9)0.0088 (5)0.0121 (6)0.0041 (6)
C10.0448 (10)0.0343 (11)0.0875 (15)0.0110 (8)0.0136 (10)0.0016 (10)
C20.0431 (9)0.0333 (10)0.0643 (12)0.0127 (7)0.0097 (8)0.0056 (8)
C30.0709 (14)0.0490 (12)0.0601 (12)0.0285 (10)0.0148 (10)0.0017 (10)
C40.124 (3)0.080 (2)0.0741 (17)0.0458 (18)0.0311 (16)0.0150 (14)
C50.195 (5)0.136 (4)0.071 (2)0.085 (4)0.028 (3)0.032 (2)
C60.201 (5)0.191 (6)0.059 (2)0.112 (5)0.021 (2)0.015 (3)
C70.121 (3)0.120 (3)0.077 (2)0.050 (2)0.0299 (19)0.036 (2)
C80.0713 (15)0.0648 (16)0.0659 (14)0.0290 (12)0.0059 (11)0.0211 (12)
C90.0531 (12)0.0468 (13)0.0918 (17)0.0092 (10)0.0008 (11)0.0232 (12)
C100.0446 (10)0.0341 (10)0.0768 (14)0.0114 (8)0.0125 (9)0.0082 (9)
C110.0621 (14)0.0389 (13)0.119 (2)0.0142 (10)0.0352 (14)0.0051 (13)
C120.092 (2)0.0694 (19)0.102 (2)0.0431 (16)0.0486 (17)0.0321 (16)
C130.0897 (18)0.082 (2)0.0616 (14)0.0488 (16)0.0242 (13)0.0115 (13)
C140.0592 (12)0.0580 (14)0.0635 (13)0.0270 (10)0.0065 (10)0.0096 (10)
C150.0408 (9)0.0344 (10)0.0598 (11)0.0147 (7)0.0107 (8)0.0057 (8)
C160.0953 (19)0.0590 (16)0.0813 (17)0.0070 (14)0.0378 (15)0.0061 (13)
C170.0463 (12)0.0707 (18)0.1021 (19)0.0134 (11)0.0024 (12)0.0149 (14)
C180.0538 (11)0.0385 (11)0.0758 (14)0.0087 (9)0.0203 (10)0.0096 (10)
C190.0500 (10)0.0348 (10)0.0559 (11)0.0174 (8)0.0141 (8)0.0006 (8)
C200.0446 (9)0.0337 (9)0.0489 (10)0.0186 (7)0.0141 (7)0.0017 (7)
C210.0567 (11)0.0488 (12)0.0544 (11)0.0226 (9)0.0135 (9)0.0064 (9)
C220.0649 (13)0.0680 (16)0.0582 (12)0.0289 (12)0.0008 (10)0.0070 (11)
C230.0548 (13)0.0591 (15)0.0837 (17)0.0167 (11)0.0018 (11)0.0162 (12)
C240.0520 (12)0.0388 (12)0.0912 (17)0.0103 (9)0.0188 (11)0.0012 (11)
C250.0467 (10)0.0377 (10)0.0603 (11)0.0193 (8)0.0165 (8)0.0055 (8)
C260.0707 (14)0.0456 (12)0.0670 (13)0.0274 (10)0.0292 (11)0.0166 (10)
C270.0900 (17)0.0613 (15)0.0494 (11)0.0433 (13)0.0216 (11)0.0061 (10)
C280.144 (3)0.096 (2)0.0536 (14)0.060 (2)0.0243 (16)0.0117 (15)
C290.201 (4)0.131 (4)0.0437 (14)0.086 (3)0.003 (2)0.0071 (18)
C300.177 (4)0.118 (3)0.073 (2)0.070 (3)0.036 (2)0.038 (2)
C310.106 (2)0.0741 (19)0.0757 (17)0.0322 (16)0.0162 (15)0.0268 (14)
C320.0733 (14)0.0493 (13)0.0544 (11)0.0314 (11)0.0076 (10)0.0090 (9)
C330.0879 (18)0.0706 (18)0.0672 (15)0.0211 (14)0.0297 (13)0.0142 (12)
C340.0529 (12)0.0675 (16)0.0729 (15)0.0059 (11)0.0001 (10)0.0059 (12)
Geometric parameters (Å, º) top
Al1—O11.8396 (13)C16—H16B0.9600
Al1—O21.8560 (14)C16—H16C0.9600
Al1—C161.943 (3)C17—H17A0.9600
Al1—C171.949 (2)C17—H17B0.9600
Al1—Al22.8236 (8)C17—H17C0.9600
Al2—O21.8384 (14)C18—C191.501 (3)
Al2—O11.8473 (14)C18—H18A0.9700
Al2—C331.946 (2)C18—H18B0.9700
Al2—C341.956 (2)C19—C201.406 (3)
O1—C11.424 (2)C19—C321.424 (3)
O2—C181.427 (2)C20—C251.428 (3)
C1—C21.512 (3)C20—C211.439 (3)
C1—H1A0.9700C21—C221.359 (3)
C1—H1B0.9700C21—H21A0.9300
C2—C151.403 (3)C22—C231.395 (4)
C2—C31.407 (3)C22—H22A0.9300
C3—C81.429 (3)C23—C241.342 (3)
C3—C41.433 (4)C23—H23A0.9300
C4—C51.369 (5)C24—C251.419 (3)
C4—H4A0.9300C24—H24A0.9300
C5—C61.400 (6)C25—C261.389 (3)
C5—H5A0.9300C26—C271.387 (4)
C6—C71.360 (6)C26—H26A0.9300
C6—H6A0.9300C27—C321.422 (4)
C7—C81.423 (4)C27—C281.435 (3)
C7—H7A0.9300C28—C291.345 (5)
C8—C91.373 (4)C28—H28A0.9300
C9—C101.387 (3)C29—C301.382 (6)
C9—H9A0.9300C29—H29A0.9300
C10—C111.414 (3)C30—C311.362 (4)
C10—C151.434 (3)C30—H30A0.9300
C11—C121.333 (4)C31—C321.414 (3)
C11—H11A0.9300C31—H31A0.9300
C12—C131.396 (4)C33—H33A0.9600
C12—H12A0.9300C33—H33B0.9600
C13—C141.353 (4)C33—H33C0.9600
C13—H13A0.9300C34—H34A0.9600
C14—C151.437 (3)C34—H34B0.9600
C14—H14A0.9300C34—H34C0.9600
C16—H16A0.9600
O1—Al1—O279.89 (6)C10—C15—C14115.7 (2)
O1—Al1—C16113.50 (10)Al1—C16—H16A109.5
O2—Al1—C16110.32 (9)Al1—C16—H16B109.5
O1—Al1—C17114.72 (10)H16A—C16—H16B109.5
O2—Al1—C17110.62 (10)Al1—C16—H16C109.5
C16—Al1—C17120.46 (13)H16A—C16—H16C109.5
O1—Al1—Al240.12 (4)H16B—C16—H16C109.5
O2—Al1—Al239.93 (4)Al1—C17—H17A109.5
C16—Al1—Al2116.40 (9)Al1—C17—H17B109.5
C17—Al1—Al2122.85 (9)H17A—C17—H17B109.5
O2—Al2—O180.15 (6)Al1—C17—H17C109.5
O2—Al2—C33115.53 (10)H17A—C17—H17C109.5
O1—Al2—C33111.86 (10)H17B—C17—H17C109.5
O2—Al2—C34112.98 (9)O2—C18—C19112.21 (16)
O1—Al2—C34109.75 (9)O2—C18—H18A109.2
C33—Al2—C34119.67 (12)C19—C18—H18A109.2
O2—Al2—Al140.39 (4)O2—C18—H18B109.2
O1—Al2—Al139.92 (4)C19—C18—H18B109.2
C33—Al2—Al1124.36 (9)H18A—C18—H18B107.9
C34—Al2—Al1115.69 (8)C20—C19—C32119.69 (19)
C1—O1—Al1132.01 (11)C20—C19—C18121.31 (18)
C1—O1—Al2127.49 (11)C32—C19—C18118.98 (19)
Al1—O1—Al299.97 (6)C19—C20—C25120.19 (18)
C18—O2—Al2134.10 (12)C19—C20—C21123.53 (19)
C18—O2—Al1125.88 (11)C25—C20—C21116.28 (18)
Al2—O2—Al199.69 (6)C22—C21—C20120.8 (2)
O1—C1—C2111.61 (15)C22—C21—H21A119.6
O1—C1—H1A109.3C20—C21—H21A119.6
C2—C1—H1A109.3C21—C22—C23122.0 (2)
O1—C1—H1B109.3C21—C22—H22A119.0
C2—C1—H1B109.3C23—C22—H22A119.0
H1A—C1—H1B108.0C24—C23—C22119.4 (2)
C15—C2—C3120.10 (19)C24—C23—H23A120.3
C15—C2—C1119.84 (19)C22—C23—H23A120.3
C3—C2—C1120.1 (2)C23—C24—C25121.5 (2)
C2—C3—C8119.2 (2)C23—C24—H24A119.2
C2—C3—C4122.0 (2)C25—C24—H24A119.2
C8—C3—C4118.8 (2)C26—C25—C24120.9 (2)
C5—C4—C3119.8 (4)C26—C25—C20119.19 (19)
C5—C4—H4A120.1C24—C25—C20119.94 (19)
C3—C4—H4A120.1C27—C26—C25121.6 (2)
C4—C5—C6120.7 (4)C27—C26—H26A119.2
C4—C5—H5A119.7C25—C26—H26A119.2
C6—C5—H5A119.7C26—C27—C32120.1 (2)
C7—C6—C5121.6 (3)C26—C27—C28121.7 (3)
C7—C6—H6A119.2C32—C27—C28118.2 (3)
C5—C6—H6A119.2C29—C28—C27120.4 (3)
C6—C7—C8119.9 (4)C29—C28—H28A119.8
C6—C7—H7A120.1C27—C28—H28A119.8
C8—C7—H7A120.1C28—C29—C30121.2 (3)
C9—C8—C7121.3 (3)C28—C29—H29A119.4
C9—C8—C3119.6 (2)C30—C29—H29A119.4
C7—C8—C3119.1 (3)C31—C30—C29120.9 (3)
C8—C9—C10122.7 (2)C31—C30—H30A119.6
C8—C9—H9A118.7C29—C30—H30A119.6
C10—C9—H9A118.7C30—C31—C32120.6 (3)
C9—C10—C11121.7 (2)C30—C31—H31A119.7
C9—C10—C15118.2 (2)C32—C31—H31A119.7
C11—C10—C15120.1 (2)C31—C32—C27118.7 (2)
C12—C11—C10121.5 (3)C31—C32—C19122.2 (2)
C12—C11—H11A119.2C27—C32—C19119.2 (2)
C10—C11—H11A119.2Al2—C33—H33A109.5
C11—C12—C13119.7 (2)Al2—C33—H33B109.5
C11—C12—H12A120.2H33A—C33—H33B109.5
C13—C12—H12A120.2Al2—C33—H33C109.5
C14—C13—C12121.7 (3)H33A—C33—H33C109.5
C14—C13—H13A119.1H33B—C33—H33C109.5
C12—C13—H13A119.1Al2—C34—H34A109.5
C13—C14—C15121.3 (2)Al2—C34—H34B109.5
C13—C14—H14A119.4H34A—C34—H34B109.5
C15—C14—H14A119.4Al2—C34—H34C109.5
C2—C15—C10120.14 (19)H34A—C34—H34C109.5
C2—C15—C14124.20 (19)H34B—C34—H34C109.5
O1—Al1—Al2—O2173.54 (10)C2—C3—C8—C7178.3 (2)
C16—Al1—Al2—O290.62 (12)C4—C3—C8—C70.3 (3)
C17—Al1—Al2—O283.19 (12)C7—C8—C9—C10178.0 (2)
O2—Al1—Al2—O1173.54 (10)C3—C8—C9—C102.1 (3)
C16—Al1—Al2—O195.83 (12)C8—C9—C10—C11179.3 (2)
C17—Al1—Al2—O190.35 (12)C8—C9—C10—C150.2 (3)
O1—Al1—Al2—C3383.44 (12)C9—C10—C11—C12177.5 (2)
O2—Al1—Al2—C3390.10 (12)C15—C10—C11—C122.0 (3)
C16—Al1—Al2—C33179.27 (12)C10—C11—C12—C131.0 (4)
C17—Al1—Al2—C336.91 (14)C11—C12—C13—C140.4 (4)
O1—Al1—Al2—C3490.53 (11)C12—C13—C14—C150.8 (3)
O2—Al1—Al2—C3495.92 (12)C3—C2—C15—C102.2 (3)
C16—Al1—Al2—C345.30 (13)C1—C2—C15—C10177.45 (16)
C17—Al1—Al2—C34179.11 (12)C3—C2—C15—C14177.77 (17)
O2—Al1—O1—C1176.03 (18)C1—C2—C15—C142.6 (3)
C16—Al1—O1—C168.15 (19)C9—C10—C15—C22.0 (3)
C17—Al1—O1—C175.81 (19)C11—C10—C15—C2178.52 (18)
Al2—Al1—O1—C1171.8 (2)C9—C10—C15—C14177.99 (17)
O2—Al1—O1—Al24.20 (6)C11—C10—C15—C141.5 (3)
C16—Al1—O1—Al2103.68 (10)C13—C14—C15—C2179.87 (19)
C17—Al1—O1—Al2112.36 (10)C13—C14—C15—C100.2 (3)
O2—Al2—O1—C1176.59 (17)Al2—O2—C18—C1926.6 (3)
C33—Al2—O1—C169.73 (19)Al1—O2—C18—C19161.38 (14)
C34—Al2—O1—C165.57 (18)O2—C18—C19—C20105.0 (2)
Al1—Al2—O1—C1172.35 (19)O2—C18—C19—C3276.5 (2)
O2—Al2—O1—Al14.24 (6)C32—C19—C20—C250.9 (3)
C33—Al2—O1—Al1117.92 (11)C18—C19—C20—C25177.62 (16)
C34—Al2—O1—Al1106.78 (10)C32—C19—C20—C21179.83 (17)
O1—Al2—O2—C18177.66 (19)C18—C19—C20—C211.3 (3)
C33—Al2—O2—C1872.7 (2)C19—C20—C21—C22176.45 (18)
C34—Al2—O2—C1870.3 (2)C25—C20—C21—C222.5 (3)
Al1—Al2—O2—C18173.5 (2)C20—C21—C22—C231.1 (3)
O1—Al2—O2—Al14.20 (6)C21—C22—C23—C241.0 (3)
C33—Al2—O2—Al1113.83 (11)C22—C23—C24—C251.6 (3)
C34—Al2—O2—Al1103.19 (10)C23—C24—C25—C26179.6 (2)
O1—Al1—O2—C18178.43 (17)C23—C24—C25—C200.0 (3)
C16—Al1—O2—C1866.97 (19)C19—C20—C25—C262.6 (3)
C17—Al1—O2—C1868.82 (18)C21—C20—C25—C26178.35 (16)
Al2—Al1—O2—C18174.21 (19)C19—C20—C25—C24177.04 (16)
O1—Al1—O2—Al24.22 (6)C21—C20—C25—C242.0 (3)
C16—Al1—O2—Al2107.24 (11)C24—C25—C26—C27177.8 (2)
C17—Al1—O2—Al2116.97 (10)C20—C25—C26—C271.9 (3)
Al1—O1—C1—C227.9 (3)C25—C26—C27—C320.6 (3)
Al2—O1—C1—C2162.27 (14)C25—C26—C27—C28179.2 (2)
O1—C1—C2—C15100.4 (2)C26—C27—C28—C29176.7 (3)
O1—C1—C2—C379.9 (2)C32—C27—C28—C292.0 (4)
C15—C2—C3—C80.3 (3)C27—C28—C29—C301.1 (6)
C1—C2—C3—C8179.36 (18)C28—C29—C30—C310.5 (6)
C15—C2—C3—C4178.3 (2)C29—C30—C31—C321.2 (5)
C1—C2—C3—C42.1 (3)C30—C31—C32—C270.3 (4)
C2—C3—C4—C5178.5 (3)C30—C31—C32—C19179.4 (3)
C8—C3—C4—C50.0 (4)C26—C27—C32—C31177.4 (2)
C3—C4—C5—C60.8 (6)C28—C27—C32—C311.3 (3)
C4—C5—C6—C71.9 (7)C26—C27—C32—C192.3 (3)
C5—C6—C7—C82.3 (6)C28—C27—C32—C19179.02 (19)
C6—C7—C8—C9178.5 (3)C20—C19—C32—C31178.1 (2)
C6—C7—C8—C31.4 (5)C18—C19—C32—C310.4 (3)
C2—C3—C8—C91.8 (3)C20—C19—C32—C271.6 (3)
C4—C3—C8—C9179.6 (2)C18—C19—C32—C27179.90 (18)

Experimental details

Crystal data
Chemical formula[Al2(CH3)4(C15H11O)2]
Mr528.57
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.7852 (3), 11.3804 (4), 17.6749 (6)
α, β, γ (°)85.683 (2), 79.883 (2), 74.617 (2)
V3)1485.72 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.45 × 0.38 × 0.32
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.945, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
31484, 7298, 4944
Rint0.033
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.234, 1.01
No. of reflections7298
No. of parameters343
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.27

Computer programs: APEX2 (Bruker, 2008), SAINT-Plus (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We gratefully acknowledge financial support in part from the National Science Council, Taiwan (NSC97-2113-M-033-005-MY2) and in part from the project of specific research fields in Chung Yuan Christian University, Taiwan (No. CYCU-98-CR–CH).

References

First citationBruker (2008). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLin, C.-H., Ko, B.-T., Wang, F.-C., Lin, C.-C. & Kuo, C.-Y. (1999). J. Organomet. Chem. 575, 67–75.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, Y.-C., Ko, B.-T. & Lin, C.-C. (2001). Macromolecules, 34, 6196–6201.  Web of Science CrossRef CAS Google Scholar
First citationLou, X., Detrembleur, C. & Jerome, R. (2002). Macromolecules, 35, 1190–1195.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, J., Yu, T.-L., Chen, C.-T. & Lin, C.-C. (2006). Coord. Chem. Rev. 250, 602–626.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds