

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

[1-Dimethylsilyl-2-phenyl-3-(η^5 -tetramethylcyclopentadienyl)prop-1-en-1-yl- κC^{1}](η^{5} -pentamethylcyclopentadienyl)titanium(III)

Martin Lamač,*‡ Anke Spannenberg, Perdita Arndt and Uwe Rosenthal

Leibniz-Institut für Katalyse e.V. an der Universität Rostock. Albert-Einstein-Strasse 29a, 18059 Rostock, Germany Correspondence e-mail: martin.lamac@jh-inst.cas.cz

Received 23 October 2009; accepted 27 October 2009

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.003 Å; R factor = 0.034; wR factor = 0.075; data-to-parameter ratio = 18.6.

The title compound, [Ti(C₁₀H₁₅)(C₂₀H₂₆Si)], was obtained from the reaction of $[Ti{\eta^5:\eta^1-C_5Me_4(CH_2)}(\eta^5-C_5Me_5)]$ with the alkynylsilane PhC₂SiMe₂H. The complex crystallizes with two independent molecules in the asymmetric unit, which differ in the conformation of the propenyl unit, resulting in their having opposite helicity. No intermolecular interactions or interactions involving the Si-H bond are present. The observed geometrical parameters are unexceptional compared to known structures of the same type.

Related literature

For the preparation and structures of analogous compounds, see: Pinkas et al. (2008). For the preparation of group 4 metallocene complexes with alkynylsilanes, see: Ohff et al. (1995); Peulecke et al. (1998).

11296 independent reflections 6527 reflections with $I > 2\sigma(I)$

 $R_{\rm int}=0.058$

Experimental

Crystal data

$V = 5327.10 (19) \text{ Å}^3$
Z = 8
Mo $K\alpha$ radiation
$\mu = 0.38 \text{ mm}^{-1}$
T = 200 K
$0.32 \times 0.24 \times 0.22$ mm

Data collection

Stoe IPDS II diffractometer Absorption correction: none 73260 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.034$ wR(F²) = 0.075 H atoms treated by a mixture of independent and constrained S = 0.77refinement $\Delta \rho_{\rm max} = 0.26 \text{ e} \text{ Å}^{-3}$ 11296 reflections $\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$ 607 parameters

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: PLATON (Spek, 2009).

We thank our technical staff, in particular Regina Jesse, for assistance. This work was supported by the Deutsche Forschungsgemeinschaft (Project No. GRK 1213).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2178).

References

Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany. Ohff, A., Kosse, P., Baumann, W., Tillack, A., Kempe, R., Görls, H., Burlakov, V. V. & Rosenthal, U. (1995). J. Am. Chem. Soc. 117, 10399-10400.

- Peulecke, N., Ohff, A., Kosse, P., Tillack, A., Spannenberg, A., Kempe, R., Baumann, W., Burlakov, V. V. & Rosenthal, U. (1998). Chem. Eur. J. 4, 1852-1861.
- Pinkas, J., Císařová, I., Gyepes, R., Horáček, M., Kubišta, J., Čejka, J., Gómez-Ruiz, S., Hey-Hawkins, E. & Mach, K. (2008). Organometallics, 27, 5532-5547.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Stoe & Cie (2005). X-AREA. Stoe & Cie, Darmstadt, Germany.

[‡] On leave from: J. Heyrovský Institute of Physical Chemistry of Academy of Sciences of the Czech Republic, Dolejškova 3, 182 23 Prague 8, Czech Republic.

supporting information

Acta Cryst. (2009). E65, m1481 [https://doi.org/10.1107/S1600536809044845]

[1-Dimethylsilyl-2-phenyl-3-(η^5 -tetramethylcyclopentadienyl)prop-1-en-1-yl- κC^1](η^5 -pentamethylcyclopentadienyl)titanium(III)

Martin Lamač, Anke Spannenberg, Perdita Arndt and Uwe Rosenthal

S1. Comment

In order to extend our previous studies concerning the reactivity of alkynylsilanes towards Ti and Zr metallocene complexes (Ohff et al., 1995; Peulecke et al., 1998), we decided to explore the reaction of the tucked-in permethylated titanocene complex [Ti { $\eta^5: \eta^1-C_5Me_4(CH_2)$ } ($\eta^5-C_5Me_5$)] with PhC_2SiMe_2H . Contrary to our expectation, no reactivity involving the Si-H bond was observed. Instead, the known type of structure was obtained, which was formed by an insertion of the substituted alkyne into the titanium-methylene bond of the titanocene derivative, while the SiMe₂H substituent stayed intact. Notably, only the described regioisomer was isolated as the preferentially crystallizing product of the insertion, which is in line with previous findings (Pinkas et al., 2008). Observed geometrical parameters (for numbering scheme, see Fig. 1) are comparable to those of the analogous $[Ti\{\eta^5-C_5Me_4[-CH_2C(Ph)=C(SiMe_3)-]\}$ $(\eta^5-C_5Me_4[-CH_2C(Ph)=C(SiMe_3)-]]$ C_5Me_5], while the differences between two independent molecules in the title structure are insignificant. For instance, the Ti1-C22 distance is 2.236 (2)Å (the corresponding Ti2-C52 is 2.223 (2)Å; cf. the distance in the reference compound: 2.251 (2)Å), the torsion angle Ti1-C22-C21-C6 is 26.3 (2)° (the corresponding Ti2-C52-C51-C36 is -26.9 (2)°; cf. -24.6 (2)° in the reference compound), and the torsion angle Si1-C22-C21-C25 is 31.4 (3)° (the corresponding Si2-C52-C51-C55 is -30.6 (3)°; cf. -29.5 (2)° in the reference compound). Ti-ring centroid distances to both substituted cyclopentadienyl rings C1-C5 and C11-C15 are 2.038 (1) and 2.072 (1)Å, respectively, the dihedral angle between least-square planes of these rings is 33.78 (12)° (2.039 (1) and 2.072 (1)Å, and 33.41 (12)° for C31-C35 and C41-C45, respectively; cf. the values for the reference compound: 2.047 (1) and 2.073 (1)Å, and $33.22 (5)^{\circ}$).

S2. Experimental

The title compound was obtained from the reaction of 120 mg (0.38 mmol) of $[Ti{\eta^5:\eta^1-C_5Me_4(CH_2)}(\eta^5-C_5Me_5)]$ and threefold excess of PhC_2SiMe_2H in 5 ml of *n*-hexane. After stirring the mixture for 3 h at room temperature the colour changed from deep purple to brown. The solvent was removed and the residue extracted with *n*-pentane. The solution afforded dark brown crystals suitable for X-ray analysis upon standing at 195 K overnight. Yield: 59 mg (33%). M.p. 406-407 K (under argon).

S3. Refinement

H1 and H2 were found from a difference Fourier map and refined without restraints. All other H atoms were placed in idealized positions with d(C-H) = 0.99Å (CH₂), 0.98Å (CH₃) and 0.95Å (CH) and refined using a riding model with $U_{iso}(H)$ fixed at 1.5 $U_{eq}(C)$ for CH₃ and 1.2 $U_{eq}(C)$ for CH₂ and CH.

Figure 1

A view of the molecular structure along the crystallographic c axis showing the asymmetric unit together with the atom numbering scheme. Displacement ellipsoids are shown at 30% probability level. H atoms are presented as a small spheres of arbitrary radius.

 $[1-Dimethylsilyl-2-phenyl-3-(\eta^5-tetramethylcyclopentadienyl) prop-1-en-1-yl- \kappa C^1](\eta^5-tetramethylcyclopentadienyl) prop-1-en-1-xl- \kappa C^1](\eta^5-tetramethylcyclopentadienyl) prop-1-en-1-xl- \kappa C^1](\eta^5-tetramethylcyclopentadienyl) prop-1-en-1-xl- \kappa C^1](\eta^5-tetramethylcyclopentadienyl) prop-1-en-1-xl- \kappa C^1]$

 $pentamethyl cyclopentadienyl) titanium ({\rm III})$

Crystal data

$[Ti(C_{10}H_{15})(C_{20}H_{26}Si)]$ $M_r = 477.59$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 16.4143 (3) Å b = 11.6194 (3) Å c = 28.0315 (5) Å $\beta = 94.856$ (1)° V = 5327.10 (19) Å ³ Z = 8	F(000) = 2056 $D_x = 1.191 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7992 reflections $\theta = 1.9-27.0^{\circ}$ $\mu = 0.38 \text{ mm}^{-1}$ T = 200 K Prism, brown $0.32 \times 0.24 \times 0.22 \text{ mm}$
Data collection	
 Stoe IPDS II diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans 73260 measured reflections 11296 independent reflections 	6527 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.058$ $\theta_{\text{max}} = 26.7^{\circ}, \ \theta_{\text{min}} = 1.4^{\circ}$ $h = -19 \rightarrow 20$ $k = -14 \rightarrow 14$ $l = -35 \rightarrow 35$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.034$	Hydrogen site location: inferred from
$wR(F^2) = 0.075$	neighbouring sites
S = 0.77	H atoms treated by a mixture of independent
11296 reflections	and constrained refinement
607 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0382P)^2]$
0 restraints	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.26 \text{ e} \text{ Å}^{-3}$
	$\Delta \rho_{\rm min} = -0.20 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.32601 (12)	0.81677 (18)	0.05676 (7)	0.0270 (4)
C2	0.41180 (13)	0.81503 (19)	0.05322 (7)	0.0297 (5)
C3	0.44162 (13)	0.92744 (19)	0.06261 (7)	0.0313 (5)
C4	0.37424 (14)	0.99916 (18)	0.07003 (7)	0.0318 (5)
C5	0.30275 (12)	0.93075 (18)	0.06759 (7)	0.0284 (5)
C6	0.27240 (14)	0.71338 (19)	0.05791 (8)	0.0346 (5)
H6A	0.2740	0.6698	0.0277	0.042*
H6B	0.2153	0.7379	0.0608	0.042*
C7	0.46226 (15)	0.7153 (2)	0.03894 (8)	0.0422 (6)
H7A	0.4797	0.7288	0.0068	0.063*
H7B	0.4296	0.6447	0.0389	0.063*
H7C	0.5105	0.7073	0.0618	0.063*
C8	0.52970 (14)	0.9631 (2)	0.06112 (9)	0.0466 (6)
H8A	0.5624	0.9300	0.0886	0.070*
H8B	0.5336	1.0473	0.0624	0.070*
H8C	0.5503	0.9353	0.0314	0.070*
С9	0.37578 (17)	1.12853 (19)	0.06992 (9)	0.0459 (6)
H9A	0.4306	1.1554	0.0813	0.069*
H9B	0.3360	1.1578	0.0911	0.069*
H9C	0.3618	1.1567	0.0373	0.069*
C10	0.21611 (13)	0.9718 (2)	0.06965 (8)	0.0420 (6)
H10A	0.1840	0.9520	0.0397	0.063*
H10B	0.2159	1.0555	0.0741	0.063*
H10C	0.1921	0.9347	0.0965	0.063*

C11	0.32990 (12)	0.89228 (18)	0.20675 (7)	0.0274 (4)
C12	0.40412 (12)	0.83158 (18)	0.21737 (7)	0.0279 (4)
C13	0.46852 (12)	0.90263 (19)	0.20351 (7)	0.0301 (5)
C14	0.43409 (13)	1.00735 (18)	0.18655 (7)	0.0305 (5)
C15	0.34842 (12)	1.00188 (18)	0.18875 (7)	0.0288 (5)
C16	0.24569 (13)	0.8498 (2)	0.21516 (8)	0.0412 (6)
H16A	0.2313	0.8760	0.2466	0.062*
H16B	0.2449	0.7655	0.2141	0.062*
H16C	0.2060	0.8802	0.1902	0.062*
C17	0.41264 (15)	0.7241(2)	0.24654 (8)	0.0414 (6)
H17A	0.4639	0.6855	0 2407	0.062*
H17B	0.3665	0.6727	0.2375	0.062*
H17C	0.4130	0 7435	0.2806	0.062*
C18	0.55908 (13)	0.8822(2)	0.21251 (9)	0.0455 (6)
H18A	0.5687	0.8086	0.2291	0.068*
H18B	0.5837	0.9445	0.2324	0.068*
HISC	0.5838	0.8803	0.1810	0.068*
C10	0.3838	1,1121,(2)	0.1317 (0)	0.000
U10A	0.460	1.1121 (2)	0.17042 (9)	0.0401 (0)
1119A 1110D	0.4409	1.1770	0.1098	0.009
П19Б	0.5144	1.0973	0.1480	0.069*
П19C	0.3217	1.1294	0.2045	0.069
C20	0.28851 (14)	1.0991 (2)	0.18128 (8)	0.0427(6)
H20A	0.2386	1.0/13	0.1633	0.064*
H20B	0.3127	1.1608	0.1633	0.064*
H20C	0.2752	1.1287	0.2124	0.064*
C21	0.30070 (12)	0.63626 (17)	0.10005 (7)	0.0279 (4)
C22	0.36613 (13)	0.66434 (18)	0.13080 (7)	0.0280 (5)
C23	0.53886 (13)	0.5882 (2)	0.16556 (9)	0.0430 (6)
H23A	0.5719	0.5404	0.1458	0.065*
H23B	0.5586	0.5793	0.1993	0.065*
H23C	0.5434	0.6690	0.1562	0.065*
C24	0.43016 (17)	0.4187 (2)	0.11409 (11)	0.0636 (8)
H24A	0.4431	0.4469	0.0827	0.095*
H24B	0.3763	0.3818	0.1112	0.095*
H24C	0.4716	0.3626	0.1260	0.095*
C25	0.25185 (12)	0.52849 (17)	0.10278 (7)	0.0284 (4)
C26	0.22987 (13)	0.48986 (19)	0.14695 (8)	0.0349 (5)
H26	0.2451	0.5336	0.1749	0.042*
C27	0.18631 (14)	0.3891 (2)	0.15085 (9)	0.0416 (6)
H27	0.1723	0.3641	0.1814	0.050*
C28	0.16313 (14)	0.3247 (2)	0.11063 (9)	0.0442 (6)
H28	0.1336	0.2551	0.1134	0.053*
C29	0.18299 (15)	0.3618 (2)	0.06673 (9)	0.0443 (6)
H29	0.1669	0.3179	0.0389	0.053*
C30	0.22632 (14)	0.46268 (19)	0.06274 (8)	0.0370 (5)
H30	0.2390	0.4878	0.0320	0.044*
C31	0.81515 (12)	0.77256 (18)	0.05379 (7)	0.0283 (4)
C32	0.79439 (13)	0.65761 (18)	0.06447 (7)	0.0283 (5)
	X - 7	(-)		(-)

C33	0.86659 (13)	0.59103 (18)	0.06494 (7)	0.0307 (5)
C34	0.93196 (13)	0.66513 (19)	0.05530(7)	0.0324 (5)
C35	0.90001 (13)	0.77657 (18)	0.04733 (7)	0.0298 (5)
C36	0.76127 (13)	0.87527 (18)	0.05787 (7)	0.0335 (5)
H36A	0.7053	0.8498	0.0634	0.040*
H36B	0.7584	0.9197	0.0276	0.040*
C37	0.70856 (13)	0.6143 (2)	0.06782 (8)	0.0414 (6)
H37A	0.6772	0.6232	0.0367	0.062*
H37B	0.6825	0.6586	0.0921	0.062*
H37C	0.7102	0.5328	0.0769	0.062*
C38	0.86991 (16)	0.46165 (18)	0.06501 (8)	0.0421 (6)
H38A	0.8576	0.4330	0.0323	0.063*
H38B	0.8296	0.4314	0.0856	0.063*
H38C	0.9247	0.4363	0.0772	0.063*
C39	1.01891 (14)	0.6297 (2)	0.04940 (9)	0.0505 (6)
H39A	1.0261	0.6195	0.0153	0.076*
H39B	1.0308	0.5571	0.0663	0.076*
H39C	1.0563	0.6895	0.0627	0.076*
C40	0.94667 (15)	0.8778 (2)	0.03055 (8)	0.0432 (6)
H40A	0.9990	0.8844	0.0500	0.065*
H40B	0.9147	0.9482	0.0338	0.065*
H40C	0.9568	0.8669	-0.0031	0.065*
C41	0.96798 (12)	0.68581 (19)	0.19751 (7)	0.0295 (5)
C42	0.90395 (12)	0.75580 (17)	0.21228 (7)	0.0270 (4)
C43	0.82958 (12)	0.69442 (18)	0.20265 (7)	0.0276 (4)
C44	0.84810 (12)	0.58542 (18)	0.18456 (7)	0.0286 (4)
C45	0.93381 (12)	0.58074 (18)	0.18101 (7)	0.0304 (5)
C46	1.05862 (13)	0.7072 (2)	0.20591 (9)	0.0431 (6)
H46A	1.0844	0.6434	0.2244	0.065*
H46B	1.0681	0.7792	0.2238	0.065*
H46C	1.0823	0.7131	0.1750	0.065*
C47	0.91308 (15)	0.86374 (19)	0.24154 (8)	0.0393 (5)
H47A	0.9170	0.8440	0.2757	0.059*
H47B	0.8655	0.9134	0.2340	0.059*
H47C	0.9628	0.9044	0.2341	0.059*
C48	0.74549 (13)	0.7364 (2)	0.21174 (8)	0.0391 (5)
H48A	0.7068	0.7164	0.1844	0.059*
H48B	0.7466	0.8202	0.2159	0.059*
H48C	0.7283	0.7000	0.2408	0.059*
C49	0.78849 (14)	0.4877 (2)	0.17790 (8)	0.0418 (6)
H49A	0.7747	0.4602	0.2093	0.063*
H49B	0.8131	0.4248	0.1608	0.063*
H49C	0.7388	0.5142	0.1593	0.063*
C50	0.98355 (15)	0.4770 (2)	0.16986 (9)	0.0438 (6)
H50A	1.0157	0.4943	0.1428	0.066*
H50B	0.9469	0.4121	0.1615	0.066*
H50C	1.0205	0.4569	0.1979	0.066*
C51	0.79481 (12)	0.95176 (17)	0.09929 (7)	0.0278 (4)
	· · · · ·			

C52	0.86394 (11)	0.92305 (17)	0.12721 (7)	0.0256 (4)
C53	1.03847 (14)	0.9989 (2)	0.15754 (10)	0.0466 (6)
H53A	1.0443	0.9304	0.1780	0.070*
H53B	1.0726	1.0611	0.1719	0.070*
H53C	1.0558	0.9806	0.1258	0.070*
C54	0.92600 (16)	1.1694 (2)	0.10873 (10)	0.0546 (7)
H54A	0.9346	1.1409	0.0766	0.082*
H54B	0.9692	1.2244	0.1190	0.082*
H54C	0.8727	1.2075	0.1081	0.082*
C55	0.74705 (12)	1.05918 (17)	0.10507 (7)	0.0272 (4)
C56	0.73006 (13)	1.09480 (19)	0.15038 (8)	0.0339 (5)
H56	0.7478	1.0490	0.1773	0.041*
C57	0.68790 (14)	1.1954 (2)	0.15717 (9)	0.0415 (6)
H57	0.6772	1.2182	0.1886	0.050*
C58	0.66136 (13)	1.2626 (2)	0.11861 (9)	0.0413 (5)
H58	0.6332	1.3326	0.1233	0.050*
C59	0.67563 (14)	1.22821 (19)	0.07342 (9)	0.0404 (5)
H59	0.6568	1.2741	0.0467	0.048*
C60	0.71741 (13)	1.12665 (19)	0.06637 (8)	0.0359 (5)
H60	0.7259	1.1028	0.0347	0.043*
Si1	0.42936 (4)	0.54183 (5)	0.15673 (2)	0.03421 (15)
Si2	0.92888 (4)	1.04570 (5)	0.15165 (2)	0.03194 (14)
Ti1	0.38431 (2)	0.85502 (3)	0.132787 (13)	0.02321 (9)
Ti2	0.88083 (2)	0.73319 (3)	0.127974 (13)	0.02302 (9)
H1	0.4075 (13)	0.4888 (19)	0.2016 (8)	0.045 (6)*
H2	0.9127 (12)	1.0935 (18)	0.1958 (7)	0.036 (6)*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0293 (11)	0.0286 (11)	0.0223 (10)	-0.0043 (9)	-0.0031 (8)	0.0030 (8)
C2	0.0291 (11)	0.0376 (12)	0.0225 (10)	0.0025 (9)	0.0018 (8)	0.0011 (9)
C3	0.0315 (11)	0.0372 (12)	0.0254 (11)	-0.0055 (9)	0.0042 (9)	0.0023 (9)
C4	0.0388 (12)	0.0302 (12)	0.0262 (11)	-0.0026 (10)	0.0013 (9)	0.0027 (9)
C5	0.0287 (11)	0.0330 (12)	0.0230 (10)	0.0027 (9)	-0.0003 (8)	0.0041 (8)
C6	0.0350 (12)	0.0334 (13)	0.0335 (12)	-0.0078 (10)	-0.0087 (9)	0.0029 (9)
C7	0.0442 (14)	0.0468 (14)	0.0365 (13)	0.0108 (11)	0.0076 (10)	-0.0016 (10)
C8	0.0363 (13)	0.0624 (17)	0.0419 (14)	-0.0150 (12)	0.0078 (10)	0.0035 (12)
C9	0.0645 (16)	0.0312 (13)	0.0414 (14)	-0.0052 (12)	0.0012 (12)	0.0060 (10)
C10	0.0369 (13)	0.0502 (15)	0.0381 (13)	0.0089 (11)	-0.0014 (10)	0.0061 (11)
C11	0.0220 (10)	0.0352 (12)	0.0252 (10)	0.0004 (9)	0.0037 (8)	-0.0004 (9)
C12	0.0269 (10)	0.0334 (11)	0.0234 (10)	0.0032 (9)	0.0023 (8)	-0.0017 (9)
C13	0.0235 (10)	0.0405 (13)	0.0254 (11)	-0.0007 (9)	-0.0025 (8)	-0.0061 (9)
C14	0.0326 (11)	0.0327 (12)	0.0263 (11)	-0.0059 (9)	0.0033 (9)	-0.0063 (9)
C15	0.0291 (11)	0.0327 (11)	0.0243 (11)	0.0028 (9)	0.0010 (8)	-0.0032 (8)
C16	0.0282 (12)	0.0562 (16)	0.0398 (13)	-0.0029 (11)	0.0061 (10)	0.0020 (11)
C17	0.0487 (14)	0.0438 (14)	0.0321 (12)	0.0124 (11)	0.0064 (10)	0.0067 (10)
C18	0.0256 (11)	0.0653 (17)	0.0448 (14)	0.0029 (11)	-0.0026 (10)	-0.0116 (12)

C19	0.0504 (15)	0.0453 (15)	0.0428 (14)	-0.0189 (12)	0.0044 (11)	-0.0075 (11)
C20	0.0459 (14)	0.0398 (14)	0.0420 (14)	0.0133 (11)	0.0021 (11)	-0.0030 (11)
C21	0.0284 (10)	0.0271 (11)	0.0280 (11)	0.0009 (9)	0.0019 (8)	-0.0007 (9)
C22	0.0304 (12)	0.0266 (11)	0.0266 (10)	-0.0026 (9)	0.0005 (9)	0.0012 (9)
C23	0.0356 (13)	0.0408 (14)	0.0521 (15)	0.0009 (11)	0.0008 (11)	0.0021 (11)
C24	0.0584 (17)	0.0354 (15)	0.093 (2)	0.0135 (13)	-0.0164 (16)	-0.0120 (14)
C25	0.0251 (10)	0.0290 (11)	0.0307 (11)	0.0002 (9)	-0.0007 (8)	-0.0002 (9)
C26	0.0315 (12)	0.0383 (13)	0.0347 (12)	-0.0015 (10)	0.0018 (9)	-0.0013 (10)
C27	0.0350 (13)	0.0415 (14)	0.0490 (14)	-0.0046 (11)	0.0070 (10)	0.0085 (11)
C28	0.0352 (13)	0.0326 (13)	0.0636 (17)	-0.0097 (11)	-0.0030 (11)	0.0043 (12)
C29	0.0484 (14)	0.0345 (13)	0.0480 (15)	-0.0098 (11)	-0.0077 (11)	-0.0071 (11)
C30	0.0423 (13)	0.0341 (13)	0.0339 (12)	-0.0053 (10)	-0.0011 (10)	-0.0029 (10)
C31	0.0304 (11)	0.0321 (11)	0.0216 (10)	0.0012 (9)	-0.0017 (8)	-0.0037 (9)
C32	0.0306 (11)	0.0312 (12)	0.0225 (10)	-0.0025 (9)	-0.0011 (8)	-0.0053 (9)
C33	0.0365 (12)	0.0292 (12)	0.0264 (11)	0.0019 (10)	0.0029 (9)	-0.0049 (9)
C34	0.0316 (11)	0.0385 (13)	0.0278 (11)	0.0018 (10)	0.0069 (9)	-0.0067 (9)
C35	0.0339 (11)	0.0327 (11)	0.0230 (10)	-0.0024 (9)	0.0038 (8)	-0.0025 (9)
C36	0.0353 (12)	0.0332 (12)	0.0304 (12)	0.0030 (10)	-0.0069 (9)	-0.0020(9)
C37	0.0352 (12)	0.0453 (14)	0.0431 (14)	-0.0089 (11)	-0.0011 (10)	-0.0035 (11)
C38	0.0586 (16)	0.0280 (13)	0.0392 (13)	0.0043 (11)	0.0015 (11)	-0.0069 (10)
C39	0.0396 (13)	0.0594 (16)	0.0548 (16)	0.0079 (12)	0.0167 (11)	-0.0083 (13)
C40	0.0507 (14)	0.0444 (14)	0.0359 (13)	-0.0095 (11)	0.0109 (11)	0.0020 (10)
C41	0.0218 (10)	0.0389 (12)	0.0274 (11)	-0.0005 (9)	-0.0011 (8)	0.0080 (9)
C42	0.0279 (10)	0.0310(11)	0.0215 (10)	-0.0007 (9)	-0.0007 (8)	0.0003 (8)
C43	0.0239 (10)	0.0360 (12)	0.0230 (10)	0.0006 (9)	0.0019 (8)	0.0040 (8)
C44	0.0280 (11)	0.0310(11)	0.0264 (11)	-0.0026 (9)	-0.0006 (8)	0.0038 (9)
C45	0.0303 (11)	0.0321 (12)	0.0285 (11)	0.0048 (9)	0.0007 (9)	0.0024 (9)
C46	0.0243 (11)	0.0563 (16)	0.0480 (14)	-0.0037 (11)	-0.0017 (10)	0.0070 (11)
C47	0.0493 (14)	0.0395 (13)	0.0292 (12)	-0.0080(11)	0.0035 (10)	-0.0045 (10)
C48	0.0276 (11)	0.0537 (15)	0.0370 (12)	0.0021 (10)	0.0078 (9)	-0.0018 (11)
C49	0.0442 (14)	0.0383 (13)	0.0425 (14)	-0.0100 (11)	0.0012 (11)	0.0054 (10)
C50	0.0477 (14)	0.0402 (14)	0.0429 (14)	0.0175 (11)	0.0002 (11)	0.0035 (11)
C51	0.0300 (11)	0.0281 (11)	0.0253 (11)	0.0012 (9)	0.0023 (8)	0.0016 (8)
C52	0.0259 (10)	0.0251 (10)	0.0256 (10)	-0.0009 (8)	0.0018 (8)	0.0003 (8)
C53	0.0323 (13)	0.0420 (14)	0.0654 (17)	-0.0045 (11)	0.0033 (11)	-0.0008(12)
C54	0.0531 (16)	0.0321 (14)	0.0766 (19)	-0.0104 (12)	-0.0056 (14)	0.0097 (13)
C55	0.0245 (10)	0.0276 (11)	0.0294 (11)	-0.0008 (8)	0.0003 (8)	-0.0011 (8)
C56	0.0318 (11)	0.0375 (13)	0.0324 (12)	0.0039 (10)	0.0020 (9)	-0.0012 (9)
C57	0.0361 (13)	0.0447 (14)	0.0441 (14)	0.0056 (11)	0.0053 (10)	-0.0124 (11)
C58	0.0308 (12)	0.0319 (12)	0.0604 (16)	0.0070 (10)	-0.0005 (11)	-0.0063 (11)
C59	0.0403 (13)	0.0332 (12)	0.0459 (14)	0.0053 (10)	-0.0064 (11)	0.0071 (10)
C60	0.0391 (12)	0.0353 (13)	0.0328 (12)	0.0054 (10)	0.0009 (9)	0.0009 (9)
Si1	0.0327 (3)	0.0266 (3)	0.0419 (4)	-0.0004 (3)	-0.0056 (3)	0.0060 (3)
Si2	0.0295 (3)	0.0264 (3)	0.0391 (4)	-0.0005 (3)	-0.0017 (3)	-0.0047 (3)
Ti1	0.02236 (18)	0.02384 (19)	0.02319 (18)	-0.00113 (15)	0.00053 (14)	0.00132 (15)
Ti2	0.02240 (19)	0.02309 (19)	0.02351 (19)	0.00067 (16)	0.00162 (14)	-0.00133 (15)
	× -)				× /	

Geometric parameters (Å, °)

C1—C5	1.418 (3)	C31—C35	1.421 (3)
C1—C2	1.420 (3)	C31—C36	1.496 (3)
C1—C6	1.491 (3)	C31—Ti2	2.306 (2)
C1—Ti1	2.3044 (19)	C32—C33	1.414 (3)
C2—C3	1.412 (3)	C32—C37	1.507 (3)
C2—C7	1.498 (3)	C32—Ti2	2.351 (2)
C2—Ti1	2.359 (2)	C33—C34	1.419 (3)
C3—C4	1.414 (3)	C33—C38	1.504 (3)
C3—C8	1.508 (3)	C33—Ti2	2.416 (2)
C3—Ti1	2.403 (2)	C34—C35	1.408 (3)
C4—C5	1.414 (3)	C34—C39	1.508 (3)
C4—C9	1.503 (3)	C34—Ti2	2.402 (2)
C4—Ti1	2.425 (2)	C35—C40	1.501 (3)
C5—C10	1.506 (3)	C35—Ti2	2.3629 (19)
C5—Ti1	2.344 (2)	C36—C51	1.527 (3)
C6—C21	1.524 (3)	C36—H36A	0.9900
С6—Н6А	0.9900	С36—Н36В	0.9900
С6—Н6В	0.9900	С37—Н37А	0.9800
С7—Н7А	0.9800	С37—Н37В	0.9800
С7—Н7В	0.9800	С37—Н37С	0.9800
С7—Н7С	0.9800	C38—H38A	0.9800
C8—H8A	0.9800	C38—H38B	0.9800
C8—H8B	0.9800	C38—H38C	0.9800
C8—H8C	0.9800	С39—Н39А	0.9800
С9—Н9А	0.9800	С39—Н39В	0.9800
С9—Н9В	0.9800	С39—Н39С	0.9800
С9—Н9С	0.9800	C40—H40A	0.9800
C10—H10A	0.9800	C40—H40B	0.9800
C10—H10B	0.9800	C40—H40C	0.9800
C10—H10C	0.9800	C41—C45	1.405 (3)
C11—C15	1.412 (3)	C41—C42	1.418 (3)
C11—C12	1.417 (3)	C41—C46	1.507 (3)
C11—C16	1.505 (3)	C41—Ti2	2.383 (2)
C11—Ti1	2.3658 (19)	C42—C43	1.420 (3)
C12—C13	1.421 (3)	C42—C47	1.499 (3)
C12—C17	1.493 (3)	C42—Ti2	2.3762 (19)
C12—Ti1	2.381 (2)	C43—C44	1.407 (3)
C13—C14	1.407 (3)	C43—C48	1.506 (3)
C13—C18	1.505 (3)	C43—Ti2	2.3645 (19)
C13—Ti1	2.384 (2)	C44—C45	1.420 (3)
C14—C15	1.414 (3)	C44—C49	1.500 (3)
C14—C19	1.504 (3)	C44—Ti2	2.428 (2)
C14—Ti1	2.421 (2)	C45—C50	1.504 (3)
C15—C20	1.500 (3)	C45—Ti2	2.426 (2)
C15—Ti1	2.424 (2)	C46—H46A	0.9800
C16—H16A	0.9800	C46—H46B	0.9800

supporting information

C16—H16B	0.9800	C46—H46C	0.9800
C16—H16C	0.9800	C47—H47A	0.9800
C17—H17A	0.9800	C47—H47B	0.9800
C17—H17B	0.9800	C47—H47C	0.9800
С17—Н17С	0.9800	C48—H48A	0.9800
C18—H18A	0.9800	C48—H48B	0.9800
C18—H18B	0.9800	C48—H48C	0.9800
C18—H18C	0.9800	C49—H49A	0.9800
C19—H19A	0.9800	C49—H49B	0.9800
C19—H19B	0.9800	C49—H49C	0.9800
C19—H19C	0.9800	C50—H50A	0.9800
C20—H20A	0.9800	C50—H50B	0.9800
C20 H20R	0.9800	C50—H50C	0.9800
C20 H20C	0.9800	C_{51} C_{52}	1.364(3)
C_{20} C_{21} C_{22}	1,350(3)	C51_C55	1.304(3)
$C_{21} - C_{22}$	1.339(3) 1.402(3)	C51 = C55	1.490(3) 1.874(2)
$C_{21} - C_{23}$	1.432(3)	C52—512	1.074(2)
C22—511	1.872(2)		2.225(2)
C_{22} [1]	2.236 (2)	C53—S12	1.873 (2)
C23—S11	1.872 (2)	C53—H53A	0.9800
C23—H23A	0.9800	С53—Н53В	0.9800
С23—Н23В	0.9800	C53—H53C	0.9800
C23—H23C	0.9800	C54—Si2	1.872 (2)
C24—Sil	1.865 (3)	C54—H54A	0.9800
C24—H24A	0.9800	C54—H54B	0.9800
C24—H24B	0.9800	C54—H54C	0.9800
C24—H24C	0.9800	C55—C56	1.386 (3)
C25—C30	1.393 (3)	C55—C60	1.392 (3)
C25—C26	1.393 (3)	C56—C57	1.379 (3)
C26—C27	1.381 (3)	C56—H56	0.9500
C26—H26	0.9500	C57—C58	1.374 (3)
C27—C28	1.380 (3)	С57—Н57	0.9500
С27—Н27	0.9500	C58—C59	1.367 (3)
C28—C29	1.369 (3)	C58—H58	0.9500
C28—H28	0.9500	C59—C60	1.387 (3)
C29—C30	1.381 (3)	С59—Н59	0.9500
С29—Н29	0.9500	C60—H60	0.9500
С30—Н30	0.9500	Si1—H1	1.47 (2)
C31—C32	1.417 (3)	Si2—H2	1.40 (2)
C5—C1—C2	108.35 (19)	C45—C41—C46	123.8 (2)
$C_{5}-C_{1}-C_{6}$	125 28 (19)	C42—C41—C46	127.3(2)
$C_{2}-C_{1}-C_{6}$	125.5(2)	C45-C41-Ti2	74 71 (12)
C5-C1-Ti1	73 75 (11)	C42-C41-Ti2	72 41 (11)
C2-C1-Ti1	74 38 (11)	C46-C41-Ti2	127 29 (14)
C6-C1-Ti1	109 57 (13)	C41-C42-C43	107 63 (18)
$C_{3}-C_{2}-C_{1}$	107 69 (19)	C41 - C42 - C47	126 67 (10)
C_{3} C_{2} C_{7}	125 1 (2)	C43-C42-C47	120.07 (19)
C1 - C2 - C7	125.1(2) 127.1(2)	C_{41} C_{42} C_{47} C_{47}	72 01 (11)
$C_1 = C_2 = C_1$	12/11 (2)	UT1-UT2-112	12.71 (11)

C3—C2—Ti1	74.48 (11)	C43—C42—Ti2	72.12 (11)
C1—C2—Ti1	70.18 (11)	C47—C42—Ti2	129.55 (14)
C7—C2—Ti1	124.01 (14)	C44—C43—C42	108.19 (17)
C2—C3—C4	108.03 (18)	C44—C43—C48	125.57 (19)
C2—C3—C8	124.6 (2)	C42—C43—C48	126.21 (19)
C4—C3—C8	127.3 (2)	C44—C43—Ti2	75.44 (11)
C2—C3—Ti1	71.04 (11)	C42—C43—Ti2	73.03 (11)
C4—C3—Ti1	73.79 (11)	C48—C43—Ti2	119.20 (14)
C8—C3—Ti1	124.16 (15)	C43—C44—C45	107.77 (18)
C5-C4-C3	108.52 (19)	C43—C44—C49	124.59 (19)
C5-C4-C9	125.2 (2)	C45—C44—C49	127.0(2)
$C_3 - C_4 - C_9$	125.2(2) 125.1(2)	C43 - C44 - Ti2	70.45(11)
C5-C4-Til	69 64 (11)	C45-C44-Ti2	72 90 (11)
$C_3 - C_4 - T_1$	72, 15 (12)	C49 - C44 - Ti2	129 19 (14)
C9-C4-Til	133.79(15)	C_{41} C_{45} C_{44}	108 29 (18)
C4-C5-C1	107 33 (18)	$C_{41} - C_{45} - C_{50}$	123 80 (19)
C4-C5-C10	127.0(2)	C_{44} C_{45} C_{50} C_{50}	123.00(1)) 127.2(2)
C1 - C5 - C10	127.0(2) 125.2(2)	C41 - C45 - Ti2	71 32 (12)
C4-C5-Til	75.90 (12)	C44 - C45 - Ti2	73.09(12)
C1 - C5 - Til	70.73 (11)	C_{50} C_{45} T_{12}	129 10 (12)
C10-C5-Til	124.61(14)	$C_{30} = C_{43} = H_{20}$	109 5
C1 - C6 - C21	124.01(14) 110.42(17)	C41 - C46 - H46B	109.5
C1 - C6 - H6A	109.6	H46A - C46 - H46B	109.5
C_{21} C_{6} H_{6A}	109.6	C41 - C46 - H46C	109.5
$C_1 C_6 H_{6B}$	109.6	$H_{46A} = C_{46} = H_{46C}$	109.5
C_{1} C_{6} H_{6} H_{6	109.6	H46B - C46 - H46C	109.5
H6A C6 H6B	108.1	C_{42} C_{47} H_{47A}	109.5
$C_2 - C_7 - H_7 \Delta$	109.5	C42 - C47 - H47B	109.5
$C_2 = C_7 = H_7 R$	109.5	$H_{47A} = C_{47} = H_{47B}$	109.5
$H_{2} - C_{1} - H_{7} B$	109.5	C42 - C47 - H47C	109.5
$C_2 - C_7 - H_7C$	109.5	H47A - C47 - H47C	109.5
$H_{7}A - C_{7} - H_{7}C$	109.5	H47B - C47 - H47C	109.5
H7B-C7-H7C	109.5	C43 - C48 - H48A	109.5
$\begin{array}{c} \mathbf{H} \mathbf{H} \mathbf{E} \\ \mathbf{C} 3 \\ \mathbf{C} 8 \\ \mathbf{H} 8 4 \end{array}$	109.5	C43 - C48 - H48B	109.5
$C_3 = C_8 = H_{8B}$	109.5	H48A - C48 - H48B	109.5
H8A - C8 - H8B	109.5	C43 - C48 - H48C	109.5
$C_3 - C_8 - H_8C$	109.5	H48A - C48 - H48C	109.5
H8A - C8 - H8C	109.5	H48B - C48 - H48C	109.5
H8B-C8-H8C	109.5	C44 - C49 - H49A	109.5
C4 - C9 - H9A	109.5	C44— $C49$ — $H49B$	109.5
C4-C9-H9B	109.5	H49A - C49 - H49B	109.5
H9A - C9 - H9B	109.5	C44 - C49 - H49C	109.5
C4—C9—H9C	109.5	H49A - C49 - H49C	109.5
H9A—C9—H9C	109.5	H49B-C49-H49C	109.5
H9B—C9—H9C	109.5	C45—C50—H50A	109.5
C5—C10—H10A	109.5	C45—C50—H50B	109.5
С5—С10—Н10В	109.5	H50A—C50—H50B	109.5
H10A—C10—H10B	109.5	C45—C50—H50C	109.5

C5-C10-H10C	109.5	H50A—C50—H50C	109.5
H10A-C10-H10C	109.5	H50B—C50—H50C	109.5
H10B-C10-H10C	109.5	C52—C51—C55	124.22 (18)
C15—C11—C12	108.46 (17)	C52—C51—C36	121.50 (18)
C15—C11—C16	125.45 (19)	C55—C51—C36	114.26 (17)
C12—C11—C16	126.04 (19)	C51—C52—Si2	116.32 (15)
C15—C11—Ti1	75.12 (11)	C51—C52—Ti2	110.20 (14)
C12—C11—Ti1	73.24 (11)	Si2—C52—Ti2	133.18 (10)
C16—C11—Ti1	119.81 (14)	Si2—C53—H53A	109.5
C11—C12—C13	107.43 (18)	Si2—C53—H53B	109.5
C11—C12—C17	124.78 (18)	H53A—C53—H53B	109.5
C13—C12—C17	126.75 (19)	Si2—C53—H53C	109.5
C11—C12—Ti1	72.02 (11)	Н53А—С53—Н53С	109.5
C13—C12—Ti1	72.74 (11)	H53B—C53—H53C	109.5
C17—C12—Ti1	129.76 (15)	Si2—C54—H54A	109.5
C14—C13—C12	107.93 (17)	Si2—C54—H54B	109.5
C14—C13—C18	123.7 (2)	H54A—C54—H54B	109.5
C12—C13—C18	127.6 (2)	Si2—C54—H54C	109.5
C14—C13—Ti1	74.43 (12)	H54A—C54—H54C	109.5
C12—C13—Ti1	72.56 (11)	H54B—C54—H54C	109.5
C18—C13—Ti1	126.71 (14)	C56—C55—C60	117.48 (19)
C13—C14—C15	108.59 (18)	C56—C55—C51	119.87 (18)
C13—C14—C19	123.8 (2)	C60—C55—C51	122.64 (18)
C15—C14—C19	126.8 (2)	C57—C56—C55	121.4 (2)
C13—C14—Ti1	71.52 (12)	С57—С56—Н56	119.3
C15—C14—Ti1	73.13 (12)	С55—С56—Н56	119.3
C19—C14—Ti1	129.31 (14)	C58—C57—C56	120.1 (2)
C11—C15—C14	107.51 (18)	С58—С57—Н57	119.9
C11—C15—C20	124.77 (19)	С56—С57—Н57	119.9
C14—C15—C20	127.0 (2)	C59—C58—C57	119.7 (2)
C11—C15—Ti1	70.60 (11)	С59—С58—Н58	120.2
C14—C15—Ti1	72.93 (11)	С57—С58—Н58	120.2
C20—C15—Ti1	129.19 (14)	C58—C59—C60	120.4 (2)
C11—C16—H16A	109.5	С58—С59—Н59	119.8
C11—C16—H16B	109.5	С60—С59—Н59	119.8
H16A—C16—H16B	109.5	C59—C60—C55	120.8 (2)
C11—C16—H16C	109.5	С59—С60—Н60	119.6
H16A—C16—H16C	109.5	С55—С60—Н60	119.6
H16B—C16—H16C	109.5	C24—Si1—C22	111.61 (11)
С12—С17—Н17А	109.5	C24—Si1—C23	104.27 (12)
С12—С17—Н17В	109.5	C22—Si1—C23	109.10 (10)
H17A—C17—H17B	109.5	C24—Si1—H1	104.0 (9)
С12—С17—Н17С	109.5	C22—Si1—H1	118.9 (9)
H17A—C17—H17C	109.5	C23—Si1—H1	108.0 (9)
H17B—C17—H17C	109.5	C54—Si2—C53	104.57 (12)
C13—C18—H18A	109.5	C54—Si2—C52	111.48 (11)
C13—C18—H18B	109.5	C53—Si2—C52	108.88 (10)
H18A—C18—H18B	109.5	C54—Si2—H2	105.5 (8)
		····	

C13—C18—H18C	109.5	C53—Si2—H2	106.8 (8)
H18A—C18—H18C	109.5	C52—Si2—H2	118.6 (8)
H18B—C18—H18C	109.5	C22—Ti1—C1	75.03 (7)
C14—C19—H19A	109.5	C22—Ti1—C5	106.64 (8)
C14—C19—H19B	109.5	C1—Ti1—C5	35.52 (7)
H19A—C19—H19B	109.5	C22—Ti1—C2	79.45 (8)
C14—C19—H19C	109.5	C1—Ti1—C2	35.44 (7)
H19A—C19—H19C	109.5	C5—Ti1—C2	58.60 (7)
H19B—C19—H19C	109.5	C22—Ti1—C11	98.26 (7)
C15—C20—H20A	109.5	C1—Ti1—C11	133.46 (7)
C15—C20—H20B	109.5	C5—Ti1—C11	112.43 (7)
H20A—C20—H20B	109.5	C2—Ti1—C11	168.89 (7)
C15—C20—H20C	109.5	C22—Ti1—C12	85.31 (7)
H20A—C20—H20C	109.5	C1—Ti1—C12	155.48 (7)
H20B-C20-H20C	109.5	C5—Ti1—C12	147.16 (7)
C22—C21—C25	124.62 (18)	C2—Ti1—C12	153.89 (7)
C22—C21—C6	121.56 (18)	C11—Ti1—C12	34.74 (7)
C25—C21—C6	113.80 (17)	C22—Ti1—C13	108.51 (8)
C21—C22—Si1	116.51 (16)	C1—Ti1—C13	168.53 (7)
C21—C22—Ti1	110.52 (15)	C5—Ti1—C13	144.50 (8)
Si1—C22—Ti1	132.49 (11)	C2—Ti1—C13	133.48 (7)
Si1—C23—H23A	109.5	C11—Ti1—C13	57.59 (7)
Si1—C23—H23B	109.5	C12—Ti1—C13	34.70 (7)
H23A—C23—H23B	109.5	C22—Ti1—C3	112.78 (7)
Si1—C23—H23C	109.5	C1—Ti1—C3	58.07 (7)
H23A—C23—H23C	109.5	C5—Ti1—C3	57.83 (7)
H23B—C23—H23C	109.5	C2—Ti1—C3	34.47 (7)
Si1—C24—H24A	109.5	C11—Ti1—C3	148.89 (7)
Si1—C24—H24B	109.5	C12—Ti1—C3	145.60 (7)
H24A—C24—H24B	109.5	C13—Ti1—C3	111.09 (7)
Si1—C24—H24C	109.5	C22—Ti1—C14	141.01 (7)
H24A—C24—H24C	109.5	C1—Ti1—C14	143.94 (7)
H24B—C24—H24C	109.5	C5—Ti1—C14	110.57 (7)
C30—C25—C26	117.16 (19)	C2—Ti1—C14	130.62 (7)
C30—C25—C21	123.06 (19)	C11—Ti1—C14	56.86 (7)
C26—C25—C21	119.78 (18)	C12—Ti1—C14	56.87 (7)
C27—C26—C25	121.2 (2)	C13—Ti1—C14	34.05 (7)
С27—С26—Н26	119.4	C3—Ti1—C14	96.81 (7)
C25—C26—H26	119.4	C22—Ti1—C15	132.42 (7)
C28—C27—C26	120.3 (2)	C1—Ti1—C15	129.02 (7)
С28—С27—Н27	119.9	C5—Ti1—C15	94.95 (7)
С26—С27—Н27	119.9	C2—Ti1—C15	145.79 (7)
C29—C28—C27	119.6 (2)	C11—Ti1—C15	34.27 (7)
C29—C28—H28	120.2	C12—Ti1—C15	57.07 (7)
C27—C28—H28	120.2	C13—Ti1—C15	56.91 (7)
C28—C29—C30	120.2 (2)	C3—Ti1—C15	114.62 (7)
С28—С29—Н29	119.9	C14—Ti1—C15	33.94 (7)
С30—С29—Н29	119.9	C22—Ti1—C4	131.74 (7)

C29—C30—C25	121.5 (2)	C1—Ti1—C4	57.63 (7)
С29—С30—Н30	119.2	C5—Ti1—C4	34.45 (7)
C25—C30—H30	119.2	C2—Ti1—C4	57.10(7)
C_{32} — C_{31} — C_{35}	108.29 (19)	C11—Ti1—C4	120.12 (7)
$C_{32} = C_{31} = C_{36}$	125 58 (19)	C12— $Ti1$ — $C4$	142.81(7)
C_{35} $-C_{31}$ $-C_{36}$	125.18 (19)	C13— $Ti1$ — $C4$	11625(7)
$C_{32} = C_{31} = T_{12}$	74 03 (11)	C3-Ti1-C4	34.06(7)
$C_{35} = C_{31} = T_{12}$	74 50 (11)	C14— $Ti1$ — $C4$	86 87 (7)
$C_{36} = C_{31} = T_{12}$	108 89 (13)	C15— $Ti1$ — $C4$	88 73 (7)
C_{33} C_{32} C_{31}	107 53 (18)	C_{52} Ti2 C_{31}	75 29 (7)
C_{33} C_{32} C_{37}	127 15 (19)	C_{52} T_{12} C_{51}	107.25(7)
$C_{31} - C_{32} - C_{37}$	127.13(17) 124.84(19)	$C_{32} = T_{12} = C_{32}$	3541(7)
$C_{33} = C_{32} = C_{37}$	75 27 (12)	$C_{51} = 112 = C_{52}$	78 80 (7)
$C_{33} = C_{32} = T_{12}$	70.56 (11)	$C_{32} = 112 = C_{33}$	78.80(7)
$C_{31} = C_{32} = T_{12}$	125.83(14)	$C_{31} = 112 = C_{33}$	58.40 (7)
$C_{32} = C_{32} = C_{34}$	125.05(14) 108.23(18)	$C_{52} = T_{12} = C_{53}$	38.40(7)
$C_{32} = C_{33} = C_{34}$	106.23(16) 125.2(2)	C_{32} T_{12} C_{43} C_{21} T_{12} C_{43}	36.23(7)
$C_{24} = C_{22} = C_{28}$	125.2(2) 125.25(10)	C_{22} T_{22} C_{42}	131.40(7)
$C_{34} = C_{33} = C_{38}$	125.55(19)	C_{32} $-T_{12}$ $-C_{43}$ C_{25} $-T_{12}$ $-C_{43}$	111.23(7)
$C_{32} = C_{33} = T_{12}$	70.24(11)	$C_{55} = 112 = C_{45}$	100.83(7)
$C_{34} = C_{33} = T_{12}$	72.34(11) 122.04(15)	C_{32} C_{42} C_{42} C_{42} C_{42}	64.79(7)
$C_{36} = C_{35} = 112$	132.94(13)	C_{31} -112 $-C_{42}$	133.92(7)
$C_{33} = C_{34} = C_{33}$	106.10(16) 125.2(2)	C_{32} — C_{42}	140.08(7)
$C_{33} = C_{34} = C_{39}$	125.2(2)	C_{33} -112 $-C_{42}$	154.80 (7)
$C_{33} = C_{34} = C_{39}$	126.4(2)	C43 - 112 - C42	34.85 (7)
$C_{33} = C_{34} = 1_{12}$	/1.30 (11)	$C_{2} = 1_{12} = C_{41}$	107.63 (7)
$C_{33} = C_{34} = 1_{12}$	/3.39(11)	C_{31} —112—C41	1/0.4/(/)
C39 - C34 - 112	125.79 (15)	C_{32} -1_{12} $-C_{41}$	144.62 (8)
$C_{34} = C_{35} = C_{31}$	107.80 (19)	C_{35} —112—C41	135.44 (7)
$C_{34} - C_{35} - C_{40}$	125.3 (2)	C43 - 112 - C41	57.70(7)
$C_{31} = C_{35} = C_{40}$	126.7 (2)	C42-112-C41	34.67 (7)
C34—C35—112	74.34 (12)	C52—Ti2—C34	111.76(7)
C31—C35—Ti2	70.10 (11)	C31—Ti2—C34	58.04 (7)
C40—C35—Ti2	125.45 (14)	C32—Ti2—C34	57.76 (7)
C31—C36—C51	110.19 (17)	C35—Ti2—C34	34.35 (7)
С31—С36—Н36А	109.6	C43—Ti2—C34	149.79 (8)
С51—С36—Н36А	109.6	C42—Ti2—C34	147.36 (7)
С31—С36—Н36В	109.6	C41—Ti2—C34	112.90 (7)
С51—С36—Н36В	109.6	C52—Ti2—C33	131.85 (7)
H36A—C36—H36B	108.1	C31—Ti2—C33	57.80 (7)
С32—С37—Н37А	109.5	C32—Ti2—C33	34.49 (7)
С32—С37—Н37В	109.5	C35—Ti2—C33	57.22 (7)
H37A—C37—H37B	109.5	C43—Ti2—C33	119.85 (7)
С32—С37—Н37С	109.5	C42—Ti2—C33	143.18 (7)
H37A—C37—H37C	109.5	C41—Ti2—C33	117.04 (8)
Н37В—С37—Н37С	109.5	C34—Ti2—C33	34.27 (7)
C33—C38—H38A	109.5	C52—Ti2—C45	140.21 (7)
C33—C38—H38B	109.5	C31—Ti2—C45	144.45 (7)
H38A—C38—H38B	109.5	C32—Ti2—C45	110.70 (7)

C33—C38—H38C	109.5	C35—Ti2—C45	132.23 (7)
H38A—C38—H38C	109.5	C43—Ti2—C45	56.92 (7)
H38B-C38-H38C	109.5	C42—Ti2—C45	56.80 (7)
С34—С39—Н39А	109.5	C41—Ti2—C45	33.97 (7)
С34—С39—Н39В	109.5	C34—Ti2—C45	98.43 (7)
H39A—C39—H39B	109.5	C33—Ti2—C45	87.51 (7)
С34—С39—Н39С	109.5	C52—Ti2—C44	132.34 (7)
Н39А—С39—Н39С	109.5	C31—Ti2—C44	128.10(7)
Н39В—С39—Н39С	109.5	C32—Ti2—C44	94.46 (7)
C35—C40—H40A	109.5	C35—Ti2—C44	146.15 (7)
С35—С40—Н40В	109.5	C43—Ti2—C44	34.11 (7)
H40A—C40—H40B	109.5	C42—Ti2—C44	56.91 (7)
С35—С40—Н40С	109.5	C41—Ti2—C44	56.83 (7)
H40A—C40—H40C	109.5	C34—Ti2—C44	115.70 (7)
H40B-C40-H40C	109.5	C33—Ti2—C44	88.93 (7)
C45—C41—C42	108.02 (17)	C45—Ti2—C44	34.01 (7)