organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Hydr­­oxy-3-nitro­methyl­indolin-2-one

aXi'an Shiyou University, College of Chemistry and Chemical Engineering, Dianzi'er Road No. 18 Xi'an 710065, Xi'an, People's Republic of China
*Correspondence e-mail: tangying78@xsyu.edu.cn

(Received 19 September 2009; accepted 26 September 2009; online 3 October 2009)

In the title compound, C9H8N2O4, the indolin-2-one ring system is substanti­ally planar [maximum deviation = 0.0353 (15) Å]. In the crystal structure, inter­molecular N—H⋯O and O—H⋯O hydrogen bonds are responsible for the formation of a three-dimensional network.

Related literature

For the synthesis of the title compound, see: Imre et al. (2001[Imre, F., Miklós, N., Áron, S., Gábor, B. & László, T. (2001). Tetrahedron, 57, 1129-1137.]); Long et al. (1978[Long D. R., Richards C. G. & Ross M. S. F. (1978). J. Heterocycl. Chem. 15, 633-637.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8N2O4

  • Mr = 208.17

  • Orthorhombic, P b c a

  • a = 10.515 (2) Å

  • b = 7.3736 (14) Å

  • c = 23.261 (4) Å

  • V = 1803.6 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.21 × 0.18 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]) Tmin = 0.941, Tmax = 0.961

  • 16322 measured reflections

  • 3807 independent reflections

  • 2098 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.135

  • S = 1.03

  • 3807 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.86 2.13 2.9849 (14) 171
O2—H2A⋯O1ii 0.82 1.93 2.7408 (13) 171
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z]; (ii) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND Brandenburg (1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

3-Hydroxy-3-nitromethyl-1,3-dihydro-indolin-2-one, an important intermediate for the synthesis of natural products, has been synthesized by Henry reaction (Imre et al.,2001; Long et al., 1978). Dehydration of this compound as well as its derivatives provides 3-nitromethylene-1,3-dihydro-indolin-2-one, which is used as a dipolarophile in 1,3-dipolar cycloadditon reactions to synthesize spiro-oxindole compounds. In this paper we report the X-ray crystal structure of the title compound.

The X-ray structural analysis confirmed the assignment of the structure of the title compound from spectroscopic data. The molecular structure is depicted in Fig. 1, and a packing diagram of is depicted in Fig. 2. Geometric parameters of the title compound are in the usual ranges. The indolin-2-one ring system is substantially planar, with a maximum deviation of 0.0353 (15) Å for atom C4. In the crystal structure, intermolecular N–H···O and O–H···O hydrogen bonds (Table 1) are effective in the stabilization of the structure and are responsible for the formation of a three-dimensional network. The O atoms of nitro group are not involved in any hydrogen bond.

Related literature top

For the synthesis of the title compound, see: Imre et al. (2001); Long et al. (1978).

Experimental top

Isatin (1 mmol) was dissolved in nitromethane (20 ml), catalyzed by DBU, until the disappearance of the starting material, as evidenced by thin-layer chromatography. The solvent was removed in vacuo and the residue was separated by column chromatography (silica gel, petroleum ether/ethyl acetate = 5:1 v/v), giving the title compound. 1H-NMR (D6—DMSO, 400 MHz): 10.56 (1H, s), 7.39 (1H, d, J = 7.2 Hz), 7.26 (1H, td, J = 7.6, 1.2 Hz), 6.98 (1H, t, J = 7.6 Hz), 6.85 (1H, d, J = 7.6 Hz), 6.75 (1H, s), 4.99 (2H, dd, J = 12.8, 8.0 Hz); 13C-NMR (CDCl3, 100 MHz): 176.0, 142.6, 130.3, 127.9, 124.7, 121.9, 110.1, 78.5, 72.8; MS (EI) m/z: 208 (M+). 30 mg of the solid compound was dissolved in methanol (30 ml) and the solution was kept at room temperature for 4 d. Slow evaporation of the solvent gave colourless single crystals suitable for X-ray analysis.

Refinement top

All H atoms were positioned geometrically, with C–H = 0.93–0.97 Å, O–H = 0.82 Å, N–H = 0.86 Å, and refined using riding model, with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(O).

Structure description top

3-Hydroxy-3-nitromethyl-1,3-dihydro-indolin-2-one, an important intermediate for the synthesis of natural products, has been synthesized by Henry reaction (Imre et al.,2001; Long et al., 1978). Dehydration of this compound as well as its derivatives provides 3-nitromethylene-1,3-dihydro-indolin-2-one, which is used as a dipolarophile in 1,3-dipolar cycloadditon reactions to synthesize spiro-oxindole compounds. In this paper we report the X-ray crystal structure of the title compound.

The X-ray structural analysis confirmed the assignment of the structure of the title compound from spectroscopic data. The molecular structure is depicted in Fig. 1, and a packing diagram of is depicted in Fig. 2. Geometric parameters of the title compound are in the usual ranges. The indolin-2-one ring system is substantially planar, with a maximum deviation of 0.0353 (15) Å for atom C4. In the crystal structure, intermolecular N–H···O and O–H···O hydrogen bonds (Table 1) are effective in the stabilization of the structure and are responsible for the formation of a three-dimensional network. The O atoms of nitro group are not involved in any hydrogen bond.

For the synthesis of the title compound, see: Imre et al. (2001); Long et al. (1978).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND Brandenburg (1999); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 drawing of the title compound, with the atom-numbering scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed approximately along the b axis. Dashed lines indicate hydrogen bonds.
3-Hydroxy-3-nitromethylindolin-2-one top
Crystal data top
C9H8N2O4F(000) = 864
Mr = 208.17Dx = 1.533 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3122 reflections
a = 10.515 (2) Åθ = 1.8–34.3°
b = 7.3736 (14) ŵ = 0.12 mm1
c = 23.261 (4) ÅT = 293 K
V = 1803.6 (6) Å3Block, colourless
Z = 80.21 × 0.18 × 0.15 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3807 independent reflections
Radiation source: fine-focus sealed tube2098 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 34.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1212
Tmin = 0.941, Tmax = 0.961k = 911
16322 measured reflectionsl = 2836
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0699P)2 + 0.2564P]
where P = (Fo2 + 2Fc2)/3
3807 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C9H8N2O4V = 1803.6 (6) Å3
Mr = 208.17Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.515 (2) ŵ = 0.12 mm1
b = 7.3736 (14) ÅT = 293 K
c = 23.261 (4) Å0.21 × 0.18 × 0.15 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3807 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2098 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 0.961Rint = 0.026
16322 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.03Δρmax = 0.31 e Å3
3807 reflectionsΔρmin = 0.21 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.73793 (10)0.22536 (14)0.59575 (4)0.0345 (2)
H1A0.81210.26840.58820.041*
C70.68870 (11)0.20320 (15)0.65183 (5)0.0313 (3)
C80.56744 (11)0.12898 (14)0.64887 (5)0.0294 (2)
C20.53211 (11)0.10262 (14)0.58677 (5)0.0287 (2)
O10.67140 (9)0.16574 (14)0.50346 (4)0.0452 (3)
C30.50087 (12)0.08802 (17)0.69844 (5)0.0374 (3)
H3A0.41960.03860.69660.045*
C90.41221 (12)0.20580 (16)0.56828 (5)0.0354 (3)
H9A0.40590.20480.52670.043*
H9B0.33770.14530.58370.043*
C60.74609 (13)0.24268 (17)0.70380 (5)0.0396 (3)
H6A0.82640.29510.70550.048*
N20.41524 (12)0.39586 (15)0.58894 (5)0.0470 (3)
C50.67832 (15)0.20049 (18)0.75336 (6)0.0450 (3)
H5A0.71450.22530.78900.054*
C40.55872 (14)0.1227 (2)0.75123 (5)0.0448 (3)
H4A0.51670.09340.78520.054*
O30.50508 (14)0.48843 (17)0.57450 (9)0.0904 (5)
O40.32881 (14)0.44827 (19)0.61941 (6)0.0776 (4)
C10.65394 (11)0.17044 (15)0.55545 (5)0.0317 (3)
O20.51621 (8)0.08414 (11)0.57414 (4)0.0391 (2)
H2A0.45860.09660.55070.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0244 (5)0.0384 (5)0.0408 (5)0.0081 (4)0.0017 (4)0.0000 (4)
C70.0299 (6)0.0267 (5)0.0372 (6)0.0003 (4)0.0040 (4)0.0000 (4)
C80.0259 (6)0.0268 (5)0.0353 (5)0.0019 (4)0.0030 (4)0.0005 (4)
C20.0237 (6)0.0254 (5)0.0370 (5)0.0008 (4)0.0022 (4)0.0024 (4)
O10.0378 (5)0.0603 (6)0.0374 (5)0.0092 (4)0.0023 (4)0.0040 (4)
C30.0303 (6)0.0389 (6)0.0431 (6)0.0043 (5)0.0031 (5)0.0048 (5)
C90.0276 (6)0.0352 (6)0.0435 (6)0.0037 (5)0.0069 (5)0.0055 (5)
C60.0370 (7)0.0356 (6)0.0463 (6)0.0006 (5)0.0139 (5)0.0037 (5)
N20.0474 (7)0.0366 (6)0.0569 (7)0.0135 (5)0.0168 (5)0.0048 (5)
C50.0520 (8)0.0454 (7)0.0377 (6)0.0136 (6)0.0120 (5)0.0052 (5)
C40.0476 (8)0.0503 (7)0.0364 (6)0.0154 (6)0.0037 (5)0.0044 (5)
O30.0736 (9)0.0354 (6)0.1620 (17)0.0061 (6)0.0100 (9)0.0024 (7)
O40.0866 (10)0.0763 (8)0.0700 (8)0.0389 (7)0.0037 (7)0.0255 (7)
C10.0262 (6)0.0314 (5)0.0374 (6)0.0017 (4)0.0008 (4)0.0019 (4)
O20.0317 (5)0.0265 (4)0.0591 (5)0.0010 (3)0.0098 (4)0.0076 (3)
Geometric parameters (Å, º) top
N1—C11.3500 (16)C3—H3A0.9300
N1—C71.4130 (16)C9—N21.4819 (17)
N1—H1A0.8600C9—H9A0.9700
C7—C61.3822 (17)C9—H9B0.9700
C7—C81.3893 (17)C6—C51.390 (2)
C8—C31.3823 (17)C6—H6A0.9300
C8—C21.5042 (15)N2—O31.2129 (19)
C2—O21.4180 (13)N2—O41.2155 (18)
C2—C91.5340 (16)C5—C41.383 (2)
C2—C11.5563 (16)C5—H5A0.9300
O1—C11.2237 (14)C4—H4A0.9300
C3—C41.3940 (19)O2—H2A0.8200
C1—N1—C7111.51 (10)C2—C9—H9A109.4
C1—N1—H1A124.2N2—C9—H9B109.4
C7—N1—H1A124.2C2—C9—H9B109.4
C6—C7—C8121.81 (11)H9A—C9—H9B108.0
C6—C7—N1128.55 (11)C7—C6—C5117.02 (12)
C8—C7—N1109.63 (10)C7—C6—H6A121.5
C3—C8—C7120.63 (11)C5—C6—H6A121.5
C3—C8—C2130.37 (11)O3—N2—O4124.39 (14)
C7—C8—C2108.98 (10)O3—N2—C9117.33 (13)
O2—C2—C8110.71 (9)O4—N2—C9118.28 (14)
O2—C2—C9109.07 (9)C4—C5—C6121.94 (12)
C8—C2—C9114.09 (9)C4—C5—H5A119.0
O2—C2—C1108.19 (9)C6—C5—H5A119.0
C8—C2—C1101.81 (9)C5—C4—C3120.29 (12)
C9—C2—C1112.70 (9)C5—C4—H4A119.9
C8—C3—C4118.28 (12)C3—C4—H4A119.9
C8—C3—H3A120.9O1—C1—N1126.62 (11)
C4—C3—H3A120.9O1—C1—C2125.24 (10)
N2—C9—C2111.13 (9)N1—C1—C2108.05 (10)
N2—C9—H9A109.4C2—O2—H2A109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.132.9849 (14)171
O2—H2A···O1ii0.821.932.7408 (13)171
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC9H8N2O4
Mr208.17
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)10.515 (2), 7.3736 (14), 23.261 (4)
V3)1803.6 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.21 × 0.18 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.941, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
16322, 3807, 2098
Rint0.026
(sin θ/λ)max1)0.793
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.135, 1.03
No. of reflections3807
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.21

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND Brandenburg (1999), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.132.9849 (14)170.8
O2—H2A···O1ii0.821.932.7408 (13)171.1
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x+1, y, z+1.
 

Acknowledgements

This work was supported financially by two grants from the Natural Science Research Plan Projects of Shaanxi Science and Technology Department (SJ08B20) and the Scientific Research Plan Projects of Shaanxi Education Department (08JK413).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationImre, F., Miklós, N., Áron, S., Gábor, B. & László, T. (2001). Tetrahedron, 57, 1129–1137.  Google Scholar
First citationLong D. R., Richards C. G. & Ross M. S. F. (1978). J. Heterocycl. Chem. 15, 633–637.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds