organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Benzyl-6-iso­propyl-5-phen­­oxy-3H-1,2,3-triazolo[4,5-d]pyrimidin-7(6H)-one

aCenter of Oncology, People's Hospital affiliated with the YunYang Medical College, Shi Yan 442000, People's Republic of China, and bInstitute of Medicinal Chemistry, Yunyang Medical College, Shiyan 442000, People's Republic of China
*Correspondence e-mail: zengken@126.com

(Received 30 September 2009; accepted 9 October 2009; online 17 October 2009)

In the title compound, C20H19N5O2, all atoms of the 1,2,3-triazolo[4,5-d]pyrimidine ring system are essentially coplanar [maximum deviation = 0.015 (2) Å], indicating the existence of a conjugate system in which each carbon and nitrogen atom is sp2 hybridized and ten π electrons (three from carbon atoms and seven from nitrogen atoms) constitute an aromatic heterocycle. The ring system forms dihedral angles of 68.37 (10) and 71.57 (9)° with the phenyl rings. The crystal packing is stabilized by van der Waals inter­actions and intermolecular C—H⋯π interactions.

Related literature

For the biological activity of 8-aza­guanine derivatives, see: Roblin et al. (1945[Roblin, R. O., Lampen, J. O., English, J. P., Cole, Q. P. & Vaughan, J. R. (1945). J. Am. Chem. Soc. 67, 290-294.]); Ding et al. (2004[Ding, M. W., Xu, S. Z. & Zhao, J. F. (2004). J. Org. Chem. 69, 8366-8371.]); Mitchell et al. (1950[Mitchell, J. H., Skipper, H. E. & Bennett, L. L. (1950). Cancer Res. 10, 647-649.]); Levine et al. (1963[Levine, R. J., Hall, T. C. & Harris, C. A. (1963). Cancer (N. Y.), 16, 269-272.]); Montgomery et al. (1962[Montgomery, J. A., Schabel, F. M. & Skipper, H. E. (1962). Cancer Res. 22, 504-509.]); Yamamoto et al. (1967[Yamamoto, I., Inoki, R., Tamari, Y. & Iwatsubo, K. (1967). Jpn J. Pharmacol. 17, 140-142.]); Bariana (1971[Bariana, D. S. (1971). J. Med. Chem. 14, 535-543.]); Holland et al. (1975[Holland, A., Jackson, D., Chaplen, P., Lunt, E., Marshall, S., Pain, C. L. & Wooldridge, K. R. H. (1975). Eur. J. Med. Chem. 10, 447-449.]). For related structures, see: Ferguson et al. (1998[Ferguson, G., Low, J. N., Nogueras, M., Cobo, J., Lopez, M. D., Quijano, M. L. & Sanchez, A. (1998). Acta Cryst. C54, IUC9800031.]); Li et al. (2004[Li, M., Wen, L. R., Fu, W. J., Hu, F. Z. & Yang, H. Z. (2004). Chin. J. Struct. Chem. 23, 11-14.]); Zhao, Xie et al. (2005[Zhao, J. F., Xie, C., Ding, M. W. & He, H. W. (2005). Chem. Lett. 34, 1020-1022.]); Zhao, Hu et al. (2005[Zhao, J.-F., Hu, Y.-G., Ding, M.-W. & He, H.-W. (2005). Acta Cryst. E61, o2791-o2792.]); Zhao, Wang & Ding (2005[Zhao, J. F., Wang, C. G. & Ding, M. W. (2005). Chin. J. Struct. Chem. 24, 439-444.]); Chen & Shi (2006[Chen, X.-B. & Shi, D.-Q. (2006). Acta Cryst. E62, o4780-o4782.]); Maldonado et al. (2006[Maldonado, C. R., Quirós, M. & Salas, J. M. (2006). Acta Cryst. C62, o489-o491.]); Xiao & Shi (2007[Xiao, L.-X. & Shi, D.-Q. (2007). Acta Cryst. E63, o2843.]); Wang et al. (2006[Wang, H.-M., Zeng, X.-H., Hu, Z.-Q., Li, G.-H. & Tian, J.-H. (2006). Acta Cryst. E62, o5038-o5040.], 2008[Wang, H.-M., Chen, L.-L., Hu, T. & Zeng, X.-H. (2008). Acta Cryst. E64, o2404.]); Zeng, Deng, Qu & Wang (2009[Zeng, X.-H., Deng, S.-H., Qu, Y.-N. & Wang, H.-M. (2009). Acta Cryst. E65, o1142-o1143.]); Zeng, Deng, Chen et al. (2009[Zeng, X.-H., Deng, S.-H., Chen, P., Wang, H.-M. & Gao, H.-T. (2009). Acta Cryst. E65, o2653-o2654.]); Zeng, Liu et al. (2009[Zeng, X.-H., Liu, X.-L., Deng, S.-H., Chen, P. & Wang, H.-M. (2009). Acta Cryst. E65, o2583-o2584.]).

[Scheme 1]

Experimental

Crystal data
  • C20H19N5O2

  • Mr = 361.40

  • Monoclinic, P 21 /c

  • a = 9.4585 (13) Å

  • b = 9.0846 (12) Å

  • c = 21.992 (3) Å

  • β = 100.523 (2)°

  • V = 1858.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.16 × 0.13 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.986, Tmax = 0.991

  • 10907 measured reflections

  • 3655 independent reflections

  • 3079 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.167

  • S = 1.14

  • 3655 reflections

  • 246 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13ACgi 0.96 2.75 3.696 (3) 171
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg is the centroid of the C15–C20 phenyl ring.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The derivatives of heterocycles containing 8-azaguanine system, which are well known bioisosteres of guanine, are of great importance because of their remarkable biological properties. Some of these activities include antimicrobial or antifungal activities (Roblin et al., 1945; Ding et al., 2004), encephaloma cell inhibitor activity (Mitchell et al., 1950; Levine et al., 1963), antileukemie activity (Montgomery et al., 1962), hypersusceptibility inhibitor activity and acesodyne activity (Yamamoto et al., 1967; Bariana, 1971; Holland et al., 1975).

In recent years, we have been engaged in the preparation of derivatives of 8-azaguanine via aza-Wittig reaction of beta-ethoxycarbonyl iminophosphorane with aromatic isocyanate (Zhao, Xie et al., 2005). As a continuation of our research for new biologically active heterocycles, the title compound was obtained from beta-ethoxycarbonyl iminophosphorane with alphalic isocyanate, and structurally characterized in this context.

In the title compound (Fig. 1), bond lengths and angles within the triazolopyrimidinone moiety are in good agreement with those observed for closely related structures (Zhao, Hu et al., 2005; Zhao, Wang & Ding, 2005). As reported for related compounds (Ferguson et al., 1998; Maldonado et al., 2006; Zeng, Deng, Qu et al., 2009; Zeng, Deng, Chen et al., 2009; Zeng, Liu et al., 2009; Wang et al., 2008; Xiao & Shi, 2007; Chen & Shi, 2007), all atoms in the 1,2,3-triazolo[4,5-d]pyrimidine ring system are essentially coplanar (maximum deviation 0.015 (2)Å for atom N2), indicating that the 1,2,3-triazolo[4,5-d]pyrimidine moiety is a conjugate system, in which each carbon and nitrogen atom is sp2 hybridized and ten π electrons (three from carbon atoms and seven from nitrogen atoms) constitute an aromatic heterocycle (Li et al., 2004). The dihedral angles it forms with the C4–C9 and C15–C20 phenyl rings are 68.37 (10) and 71.57 (9)°, respectively.

The crystal packing is stabilized mainly by van der Waals interactions, no intermolecular hydrogen bonds or ππ stacking interactions being observed. One of the methyl H atoms is involved in a contact to the centroid (Cg) of the C15/C20 phenyl ring (C13–H13A···Cg = 2.75 Å), which may be considered as a C—H···π interaction.

Related literature top

For the biological activity of 8-azaguanine derivatives, see: et al. (1945); Ding et al. (2004); Mitchell et al. (1950); Levine et al. (1963); Montgomery et al. (1962); Yamamoto et al. (1967); Bariana (1971); Holland et al. (1975). For related structures, see: Ferguson et al. (1998); Li et al. (2004); Zhao, Xie et al. (2005); Zhao, Hu et al. (2005); Zhao, Wang & Ding (2005); Chen & Shi (2006); Maldonado et al. (2006); Xiao & Shi (2007); Wang et al. (2006, 2008); Zeng, Deng, Qu & Wang (2009); Zeng, Deng, Chen et al. (2009); Zeng, Liu et al. (2009).

Experimental top

To a solution of carbodiimide in CH2Cl2/CH3CN (1:4 v/v, 15 ml) prepared according to the literature method (Wang et al., 2006), was added phenol (3 mmol) and excess K2CO3, and the reaction mixture was stirred for 12 h. The solvent was removed under reduced pressure and the residue was recrystallized from EtOH to give the title compound (yield 75%; m.p. 405 K). Elemental analysis: calculated for C20H19N5O2: C, 66.47; H, 5.30; N, 19.38%. Found: C, 65.67; H, 5.56; N, 18.92%. Crystals suitable for single-crystal X-ray diffraction analysis were obtained by slow evaporation of a hexane/dichloromethane (1:3 v/v) solution at room temperature.

Refinement top

H atoms were placed at calculated positions and treated as riding atoms, with C—H = 0.93–0.98 Å, and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Structure description top

The derivatives of heterocycles containing 8-azaguanine system, which are well known bioisosteres of guanine, are of great importance because of their remarkable biological properties. Some of these activities include antimicrobial or antifungal activities (Roblin et al., 1945; Ding et al., 2004), encephaloma cell inhibitor activity (Mitchell et al., 1950; Levine et al., 1963), antileukemie activity (Montgomery et al., 1962), hypersusceptibility inhibitor activity and acesodyne activity (Yamamoto et al., 1967; Bariana, 1971; Holland et al., 1975).

In recent years, we have been engaged in the preparation of derivatives of 8-azaguanine via aza-Wittig reaction of beta-ethoxycarbonyl iminophosphorane with aromatic isocyanate (Zhao, Xie et al., 2005). As a continuation of our research for new biologically active heterocycles, the title compound was obtained from beta-ethoxycarbonyl iminophosphorane with alphalic isocyanate, and structurally characterized in this context.

In the title compound (Fig. 1), bond lengths and angles within the triazolopyrimidinone moiety are in good agreement with those observed for closely related structures (Zhao, Hu et al., 2005; Zhao, Wang & Ding, 2005). As reported for related compounds (Ferguson et al., 1998; Maldonado et al., 2006; Zeng, Deng, Qu et al., 2009; Zeng, Deng, Chen et al., 2009; Zeng, Liu et al., 2009; Wang et al., 2008; Xiao & Shi, 2007; Chen & Shi, 2007), all atoms in the 1,2,3-triazolo[4,5-d]pyrimidine ring system are essentially coplanar (maximum deviation 0.015 (2)Å for atom N2), indicating that the 1,2,3-triazolo[4,5-d]pyrimidine moiety is a conjugate system, in which each carbon and nitrogen atom is sp2 hybridized and ten π electrons (three from carbon atoms and seven from nitrogen atoms) constitute an aromatic heterocycle (Li et al., 2004). The dihedral angles it forms with the C4–C9 and C15–C20 phenyl rings are 68.37 (10) and 71.57 (9)°, respectively.

The crystal packing is stabilized mainly by van der Waals interactions, no intermolecular hydrogen bonds or ππ stacking interactions being observed. One of the methyl H atoms is involved in a contact to the centroid (Cg) of the C15/C20 phenyl ring (C13–H13A···Cg = 2.75 Å), which may be considered as a C—H···π interaction.

For the biological activity of 8-azaguanine derivatives, see: et al. (1945); Ding et al. (2004); Mitchell et al. (1950); Levine et al. (1963); Montgomery et al. (1962); Yamamoto et al. (1967); Bariana (1971); Holland et al. (1975). For related structures, see: Ferguson et al. (1998); Li et al. (2004); Zhao, Xie et al. (2005); Zhao, Hu et al. (2005); Zhao, Wang & Ding (2005); Chen & Shi (2006); Maldonado et al. (2006); Xiao & Shi (2007); Wang et al. (2006, 2008); Zeng, Deng, Qu & Wang (2009); Zeng, Deng, Chen et al. (2009); Zeng, Liu et al. (2009).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at 50% probability level. H-atoms are represented by circles of arbitrary size.
3-Benzyl-6-isopropyl-5-phenoxy-3H-1,2,3- triazolo[4,5-d]pyrimidin-7(6H)-one top
Crystal data top
C20H19N5O2F(000) = 760
Mr = 361.40Dx = 1.292 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3682 reflections
a = 9.4585 (13) Åθ = 2.4–25.1°
b = 9.0846 (12) ŵ = 0.09 mm1
c = 21.992 (3) ÅT = 298 K
β = 100.523 (2)°Block, colourless
V = 1858.0 (4) Å30.16 × 0.13 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3655 independent reflections
Radiation source: fine-focus sealed tube3079 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
φ and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 811
Tmin = 0.986, Tmax = 0.991k = 1111
10907 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.167H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0685P)2 + 0.418P]
where P = (Fo2 + 2Fc2)/3
3655 reflections(Δ/σ)max = 0.001
246 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C20H19N5O2V = 1858.0 (4) Å3
Mr = 361.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.4585 (13) ŵ = 0.09 mm1
b = 9.0846 (12) ÅT = 298 K
c = 21.992 (3) Å0.16 × 0.13 × 0.10 mm
β = 100.523 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3655 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3079 reflections with I > 2σ(I)
Tmin = 0.986, Tmax = 0.991Rint = 0.074
10907 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.167H-atom parameters constrained
S = 1.14Δρmax = 0.19 e Å3
3655 reflectionsΔρmin = 0.31 e Å3
246 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3436 (2)0.4731 (2)0.22493 (9)0.0422 (5)
C20.3377 (2)0.4926 (2)0.28596 (9)0.0400 (5)
C30.4595 (3)0.3594 (3)0.38253 (11)0.0615 (6)
H3A0.49070.25790.38840.074*
H3B0.37300.37010.40000.074*
C40.5747 (2)0.4573 (2)0.41799 (10)0.0486 (5)
C50.5893 (3)0.6038 (3)0.40342 (11)0.0616 (6)
H50.52770.64480.36990.074*
C60.6935 (3)0.6893 (3)0.43782 (12)0.0697 (7)
H60.70160.78780.42760.084*
C70.7851 (4)0.6317 (3)0.48672 (12)0.0810 (9)
H70.85490.69060.51030.097*
C80.7738 (4)0.4858 (4)0.50106 (13)0.0974 (11)
H80.83730.44500.53400.117*
C90.6685 (3)0.3994 (3)0.46668 (12)0.0751 (8)
H90.66140.30060.47680.090*
C100.2657 (2)0.5691 (2)0.17917 (9)0.0435 (5)
C110.1931 (2)0.6823 (2)0.26940 (9)0.0409 (5)
C120.0995 (3)0.7849 (3)0.16396 (10)0.0594 (6)
H120.11860.76350.12250.071*
C130.0597 (3)0.7597 (3)0.16099 (13)0.0810 (9)
H13A0.08370.66060.14780.121*
H13B0.11330.82740.13210.121*
H13C0.08310.77510.20120.121*
C140.1452 (4)0.9438 (3)0.17780 (15)0.0853 (9)
H14A0.10020.98070.21050.128*
H14B0.11631.00250.14140.128*
H14C0.24780.94830.19030.128*
C150.1523 (3)0.8427 (2)0.34770 (9)0.0479 (5)
C160.0476 (3)0.8378 (3)0.38311 (12)0.0635 (7)
H160.04220.79770.36770.076*
C170.0788 (4)0.8938 (3)0.44193 (13)0.0838 (10)
H170.00900.89170.46670.101*
C180.2099 (4)0.9524 (3)0.46459 (11)0.0810 (10)
H180.22970.98880.50480.097*
C190.3141 (3)0.9579 (3)0.42792 (12)0.0723 (8)
H190.40350.99910.44320.087*
C200.2849 (3)0.9021 (3)0.36845 (10)0.0591 (6)
H200.35380.90490.34320.071*
N10.4331 (2)0.3583 (2)0.21950 (10)0.0601 (5)
N20.4819 (2)0.3075 (2)0.27476 (11)0.0633 (6)
N30.42351 (19)0.38878 (19)0.31642 (8)0.0488 (5)
N40.26237 (18)0.59583 (19)0.31105 (7)0.0444 (4)
N50.18677 (18)0.67677 (18)0.20678 (7)0.0411 (4)
O10.26306 (19)0.56707 (19)0.12390 (7)0.0635 (5)
O20.11490 (17)0.79269 (18)0.28643 (6)0.0572 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0411 (11)0.0384 (10)0.0493 (11)0.0012 (8)0.0138 (9)0.0112 (8)
C20.0374 (10)0.0343 (9)0.0487 (11)0.0003 (8)0.0094 (9)0.0007 (8)
C30.0607 (15)0.0502 (13)0.0711 (16)0.0003 (11)0.0051 (12)0.0202 (11)
C40.0540 (13)0.0454 (11)0.0475 (12)0.0092 (10)0.0123 (10)0.0075 (9)
C50.0682 (16)0.0488 (13)0.0632 (15)0.0028 (12)0.0000 (12)0.0114 (11)
C60.091 (2)0.0526 (14)0.0628 (16)0.0057 (14)0.0072 (14)0.0002 (11)
C70.106 (2)0.0769 (19)0.0526 (15)0.0154 (17)0.0042 (15)0.0061 (13)
C80.125 (3)0.089 (2)0.0612 (17)0.006 (2)0.0294 (18)0.0158 (15)
C90.100 (2)0.0570 (15)0.0616 (15)0.0009 (15)0.0032 (15)0.0169 (12)
C100.0478 (12)0.0438 (11)0.0403 (11)0.0039 (9)0.0115 (9)0.0117 (8)
C110.0415 (11)0.0433 (11)0.0387 (10)0.0057 (9)0.0089 (8)0.0045 (8)
C120.0767 (17)0.0649 (15)0.0354 (11)0.0199 (13)0.0073 (11)0.0058 (10)
C130.0683 (18)0.0792 (18)0.0812 (19)0.0162 (15)0.0237 (15)0.0102 (15)
C140.095 (2)0.0628 (17)0.103 (2)0.0139 (16)0.0296 (18)0.0320 (16)
C150.0629 (14)0.0431 (11)0.0394 (11)0.0186 (10)0.0133 (10)0.0029 (8)
C160.0803 (18)0.0497 (13)0.0690 (15)0.0098 (12)0.0361 (14)0.0083 (11)
C170.137 (3)0.0626 (17)0.0659 (18)0.0074 (19)0.0572 (19)0.0088 (14)
C180.152 (3)0.0538 (15)0.0372 (12)0.0233 (18)0.0171 (17)0.0061 (11)
C190.093 (2)0.0560 (15)0.0598 (15)0.0115 (14)0.0083 (14)0.0043 (12)
C200.0656 (16)0.0636 (15)0.0489 (13)0.0154 (13)0.0126 (11)0.0025 (11)
N10.0563 (12)0.0541 (11)0.0707 (13)0.0107 (9)0.0138 (10)0.0194 (10)
N20.0584 (13)0.0452 (11)0.0843 (15)0.0133 (9)0.0081 (11)0.0134 (10)
N30.0466 (10)0.0381 (9)0.0604 (11)0.0049 (8)0.0063 (8)0.0010 (8)
N40.0486 (10)0.0474 (10)0.0387 (9)0.0117 (8)0.0121 (7)0.0014 (7)
N50.0456 (10)0.0428 (9)0.0350 (8)0.0036 (7)0.0079 (7)0.0024 (7)
O10.0826 (12)0.0719 (11)0.0383 (8)0.0049 (9)0.0172 (8)0.0126 (7)
O20.0638 (10)0.0664 (10)0.0401 (8)0.0306 (8)0.0057 (7)0.0096 (7)
Geometric parameters (Å, º) top
C1—N11.362 (3)C12—N51.500 (3)
C1—C21.365 (3)C12—C131.513 (4)
C1—C101.430 (3)C12—C141.521 (4)
C2—N31.341 (2)C12—H120.9800
C2—N41.355 (2)C13—H13A0.9600
C3—N31.456 (3)C13—H13B0.9600
C3—C41.509 (3)C13—H13C0.9600
C3—H3A0.9700C14—H14A0.9600
C3—H3B0.9700C14—H14B0.9600
C4—C91.365 (3)C14—H14C0.9600
C4—C51.382 (3)C15—C201.365 (3)
C5—C61.369 (3)C15—C161.367 (3)
C5—H50.9300C15—O21.405 (2)
C6—C71.356 (4)C16—C171.371 (4)
C6—H60.9300C16—H160.9300
C7—C81.371 (4)C17—C181.358 (5)
C7—H70.9300C17—H170.9300
C8—C91.380 (4)C18—C191.383 (4)
C8—H80.9300C18—H180.9300
C9—H90.9300C19—C201.383 (3)
C10—O11.211 (2)C19—H190.9300
C10—N51.431 (2)C20—H200.9300
C11—N41.291 (2)N1—N21.303 (3)
C11—O21.339 (2)N2—N31.369 (3)
C11—N51.368 (2)
N1—C1—C2108.83 (19)C14—C12—H12106.3
N1—C1—C10130.83 (19)C12—C13—H13A109.5
C2—C1—C10120.31 (18)C12—C13—H13B109.5
N3—C2—N4126.77 (18)H13A—C13—H13B109.5
N3—C2—C1105.72 (17)C12—C13—H13C109.5
N4—C2—C1127.51 (18)H13A—C13—H13C109.5
N3—C3—C4115.02 (18)H13B—C13—H13C109.5
N3—C3—H3A108.5C12—C14—H14A109.5
C4—C3—H3A108.5C12—C14—H14B109.5
N3—C3—H3B108.5H14A—C14—H14B109.5
C4—C3—H3B108.5C12—C14—H14C109.5
H3A—C3—H3B107.5H14A—C14—H14C109.5
C9—C4—C5118.3 (2)H14B—C14—H14C109.5
C9—C4—C3118.9 (2)C20—C15—C16122.6 (2)
C5—C4—C3122.7 (2)C20—C15—O2120.2 (2)
C6—C5—C4120.7 (2)C16—C15—O2117.0 (2)
C6—C5—H5119.7C15—C16—C17118.2 (3)
C4—C5—H5119.7C15—C16—H16120.9
C7—C6—C5120.7 (2)C17—C16—H16120.9
C7—C6—H6119.6C18—C17—C16121.1 (3)
C5—C6—H6119.6C18—C17—H17119.5
C6—C7—C8119.3 (3)C16—C17—H17119.5
C6—C7—H7120.3C17—C18—C19120.0 (2)
C8—C7—H7120.3C17—C18—H18120.0
C7—C8—C9120.2 (3)C19—C18—H18120.0
C7—C8—H8119.9C20—C19—C18119.8 (3)
C9—C8—H8119.9C20—C19—H19120.1
C4—C9—C8120.8 (2)C18—C19—H19120.1
C4—C9—H9119.6C15—C20—C19118.3 (2)
C8—C9—H9119.6C15—C20—H20120.9
O1—C10—C1127.61 (19)C19—C20—H20120.9
O1—C10—N5121.29 (19)N2—N1—C1108.03 (18)
C1—C10—N5111.10 (16)N1—N2—N3108.40 (17)
N4—C11—O2119.46 (17)C2—N3—N2109.02 (18)
N4—C11—N5127.95 (18)C2—N3—C3129.62 (19)
O2—C11—N5112.58 (16)N2—N3—C3121.34 (19)
N5—C12—C13110.9 (2)C11—N4—C2111.65 (16)
N5—C12—C14113.1 (2)C11—N5—C10121.45 (16)
C13—C12—C14113.3 (2)C11—N5—C12121.72 (16)
N5—C12—H12106.3C10—N5—C12116.81 (16)
C13—C12—H12106.3C11—O2—C15117.06 (15)
N1—C1—C2—N30.2 (2)N4—C2—N3—N2179.02 (19)
C10—C1—C2—N3178.61 (18)C1—C2—N3—N20.4 (2)
N1—C1—C2—N4179.23 (19)N4—C2—N3—C30.5 (3)
C10—C1—C2—N40.8 (3)C1—C2—N3—C3178.9 (2)
N3—C3—C4—C9145.0 (2)N1—N2—N3—C20.5 (2)
N3—C3—C4—C535.3 (3)N1—N2—N3—C3179.14 (19)
C9—C4—C5—C61.3 (4)C4—C3—N3—C280.8 (3)
C3—C4—C5—C6178.5 (2)C4—C3—N3—N297.6 (2)
C4—C5—C6—C70.3 (4)O2—C11—N4—C2178.81 (18)
C5—C6—C7—C80.9 (5)N5—C11—N4—C21.8 (3)
C6—C7—C8—C91.2 (6)N3—C2—N4—C11178.18 (19)
C5—C4—C9—C81.0 (4)C1—C2—N4—C111.1 (3)
C3—C4—C9—C8178.8 (3)N4—C11—N5—C102.1 (3)
C7—C8—C9—C40.2 (5)O2—C11—N5—C10178.45 (17)
N1—C1—C10—O10.3 (4)N4—C11—N5—C12179.2 (2)
C2—C1—C10—O1178.4 (2)O2—C11—N5—C120.2 (3)
N1—C1—C10—N5178.9 (2)O1—C10—N5—C11177.88 (19)
C2—C1—C10—N50.8 (3)C1—C10—N5—C111.4 (3)
C20—C15—C16—C170.7 (4)O1—C10—N5—C120.9 (3)
O2—C15—C16—C17176.3 (2)C1—C10—N5—C12179.87 (18)
C15—C16—C17—C180.1 (4)C13—C12—N5—C1169.5 (3)
C16—C17—C18—C190.8 (4)C14—C12—N5—C1159.1 (3)
C17—C18—C19—C200.8 (4)C13—C12—N5—C10111.8 (2)
C16—C15—C20—C190.7 (3)C14—C12—N5—C10119.6 (2)
O2—C15—C20—C19176.16 (19)N4—C11—O2—C1522.9 (3)
C18—C19—C20—C150.1 (4)N5—C11—O2—C15157.54 (18)
C2—C1—N1—N20.1 (2)C20—C15—O2—C1162.1 (3)
C10—C1—N1—N2178.1 (2)C16—C15—O2—C11122.2 (2)
C1—N1—N2—N30.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···Cgi0.962.753.696 (3)171
Symmetry code: (i) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H19N5O2
Mr361.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)9.4585 (13), 9.0846 (12), 21.992 (3)
β (°) 100.523 (2)
V3)1858.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.16 × 0.13 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.986, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
10907, 3655, 3079
Rint0.074
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.167, 1.14
No. of reflections3655
No. of parameters246
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.31

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···Cgi0.962.753.696 (3)171
Symmetry code: (i) x, y1/2, z+1/2.
 

Acknowledgements

We gratefully acknowledge financial support of this work by the National Basic Research Program of China (2003CB114400), the National Natural Science Foundation of China (20372023, 20102001), the Educational Commission of Hubei Province of China (grant No. Q20092401, B20092412), the Public Health Department of Hubei of China (grant No. QJX200842), the Shiyan Municipal Science and Technology Bureau (grant No. 20061835) and the Yunyang Medical College (grant Nos. 2008CXZ02, 2007ZQB19).

References

First citationBariana, D. S. (1971). J. Med. Chem. 14, 535–543.  PubMed Web of Science Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, X.-B. & Shi, D.-Q. (2006). Acta Cryst. E62, o4780–o4782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDing, M. W., Xu, S. Z. & Zhao, J. F. (2004). J. Org. Chem. 69, 8366–8371.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFerguson, G., Low, J. N., Nogueras, M., Cobo, J., Lopez, M. D., Quijano, M. L. & Sanchez, A. (1998). Acta Cryst. C54, IUC9800031.  CrossRef IUCr Journals Google Scholar
First citationHolland, A., Jackson, D., Chaplen, P., Lunt, E., Marshall, S., Pain, C. L. & Wooldridge, K. R. H. (1975). Eur. J. Med. Chem. 10, 447–449.  CAS Google Scholar
First citationLevine, R. J., Hall, T. C. & Harris, C. A. (1963). Cancer (N. Y.), 16, 269–272.  CrossRef CAS Google Scholar
First citationLi, M., Wen, L. R., Fu, W. J., Hu, F. Z. & Yang, H. Z. (2004). Chin. J. Struct. Chem. 23, 11–14.  Google Scholar
First citationMaldonado, C. R., Quirós, M. & Salas, J. M. (2006). Acta Cryst. C62, o489–o491.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMitchell, J. H., Skipper, H. E. & Bennett, L. L. (1950). Cancer Res. 10, 647–649.  CAS Google Scholar
First citationMontgomery, J. A., Schabel, F. M. & Skipper, H. E. (1962). Cancer Res. 22, 504–509.  PubMed CAS Web of Science Google Scholar
First citationRoblin, R. O., Lampen, J. O., English, J. P., Cole, Q. P. & Vaughan, J. R. (1945). J. Am. Chem. Soc. 67, 290–294.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H.-M., Chen, L.-L., Hu, T. & Zeng, X.-H. (2008). Acta Cryst. E64, o2404.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, H.-M., Zeng, X.-H., Hu, Z.-Q., Li, G.-H. & Tian, J.-H. (2006). Acta Cryst. E62, o5038–o5040.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXiao, L.-X. & Shi, D.-Q. (2007). Acta Cryst. E63, o2843.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYamamoto, I., Inoki, R., Tamari, Y. & Iwatsubo, K. (1967). Jpn J. Pharmacol. 17, 140–142.  CrossRef CAS PubMed Web of Science Google Scholar
First citationZeng, X.-H., Deng, S.-H., Chen, P., Wang, H.-M. & Gao, H.-T. (2009). Acta Cryst. E65, o2653–o2654.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZeng, X.-H., Deng, S.-H., Qu, Y.-N. & Wang, H.-M. (2009). Acta Cryst. E65, o1142–o1143.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZeng, X.-H., Liu, X.-L., Deng, S.-H., Chen, P. & Wang, H.-M. (2009). Acta Cryst. E65, o2583–o2584.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, J.-F., Hu, Y.-G., Ding, M.-W. & He, H.-W. (2005). Acta Cryst. E61, o2791–o2792.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, J. F., Wang, C. G. & Ding, M. W. (2005). Chin. J. Struct. Chem. 24, 439–444.  Web of Science CrossRef CAS Google Scholar
First citationZhao, J. F., Xie, C., Ding, M. W. & He, H. W. (2005). Chem. Lett. 34, 1020–1022.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds