organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-4-Hexyl-1-(5-nitro-2-oxo-2,3-di­hydro-1H-indol-3-yl­­idene)thio­semicarbazide

aDepartment of Chemistry, Bahauddin Zakariya University, Multan 60800, Pakistan, bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and cDepartment of Chemistry, Government College University, Lahore, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 26 September 2009; accepted 2 October 2009; online 10 October 2009)

In the title compound, C15H19N5O3S, intra­molecular N—H⋯O, N—H⋯N and C—H⋯S inter­actions occur and the three terminal C atoms of the hexyl group are disordered over two sites with an occupancy ratio of 0.664 (12):0.336 (12). In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds occur and C—H⋯O bonds link the dimers into chains. A short C=O⋯π contact is also present.

Related literature

For the syntheses and structures of isatin and isatin-derived thio­semicarbazones with biological and medicinal properties, see: Beauchard et al. (2006[Beauchard, A., Ferandin, F. S., Lozach, O., Blairvacq, M., Meijer, L., Thiéry, V. & Besson. T. (2006). Bioorg. Med. Chem. 14, 6434-6443.]); Hyatt et al. (2007[Hyatt, J. L., Moak, T., Hatfield, M. J., Tsurkan, L., Edwards, C. C., Wierdl, M., Danks, M. K., Wadkins, R. M. & Potter, P. M. (2007). J. Med. Chem. 50, 1876-1885.]); Quenelle et al. (2006[Quenelle, D. C., Keith, K. A. & Kern, E. R. (2006). Antivir. Res. 71, 24-30.]); Karali et al. (2007[Karali, N., Gürsoy, A., Kandemirli, F., Shvets, N., Kaynak, F. B., Özbey, S., Kovalishyn, V. & Dimoglo, A. (2007). Bioorg. Med. Chem. 15, 5888-5904.]). For a related crystal structure, see: Bain et al. (1997[Bain, G. A., West, D. X., Krejci, J., Valdés-Martínez, J., Hernández- Ortega, S. & Toscano, R. A. (1997). Polyhedron, 16, 855-862.]). For the syntheses of potent urease inhibitors based on N(4)-aryl­substituted isatin-3-thio­semicarbazones, see: Pervez et al. (2008[Pervez, H., Iqbal, M. S., Tahir, M. Y., Nasim, F. H., Choudhary, M. I. & Khan, K. M. (2008). J. Enz. Inhib. Med. Chem. 23, 848-854.], 2009[Pervez, H., Chohan, Z. H., Ramzan, M., Nasim, F. H. & Khan, K. M. (2009). J. Enz. Inhib. Med. Chem. 24, 437-446.]). For the graph set analysis of hydrogen-bond patterns in crystal structures, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H19N5O3S

  • Mr = 349.42

  • Monoclinic, P 21 /c

  • a = 11.9464 (6) Å

  • b = 4.8845 (3) Å

  • c = 29.9688 (17) Å

  • β = 101.131 (3)°

  • V = 1715.85 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 K

  • 0.26 × 0.14 × 0.12 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.963, Tmax = 0.974

  • 19438 measured reflections

  • 4283 independent reflections

  • 1964 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.143

  • S = 1.00

  • 4283 reflections

  • 247 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.86 2.08 2.871 (3) 153
N4—H4A⋯O1 0.86 2.02 2.721 (2) 138
N5—H5A⋯N3 0.86 2.32 2.688 (3) 106
C2—H2⋯O3ii 0.93 2.52 3.438 (3) 167
C10—H10B⋯O2ii 0.97 2.48 3.232 (4) 134
C7—O1⋯Cg1iii 1.23 (1) 3.25 (1) 3.896 (3) 113 (1)
Symmetry codes: (i) -x+2, -y-1, -z; (ii) -x+1, -y+1, -z; (iii) -x+2, -y, -z. Cg1 is the centroid of the N2/C6/C1/C8/C7 ring.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Isatin and its derivatives are known to possess a broad spectrum of pharmacological properties including antibacterial, anticonvulsant, antifungal, antineoplastic, antiviral, and enzymatic inhibition (Beauchard et al. 2006; Hyatt et al. 2007). Amongst these, isatins-derived thiosemicarbazones have gained a great deal of attention (Beauchard et al., 2006; Quenelle et al., 2006; Karali et al., 2007). Very recently, a number of N(4)-arylsubstituted isatin-3-thiosemicarbazones have been synthesized and reported as potent urease (a nickel-dependent metallo-enzyme) inhibitors (Pervez et al., 2008; Pervez et al., 2009). In continuation to the development of potent and non- or less toxic urease inhibitors, we report herein the crystal structure and preparation of the title compound (I, Fig. 1).

The crystal structure of (II) Indole-2,3-dione 3-(N(4)-ethylthiosemicarbazone) (N'-2-(Thienylidene))benzhydrazide (Bain et al., 1997) has been published. The title compound (I) differs from (II) due to hexyl moiety instead of ethyl moiety.

The molecules of the title compound consist of dimers owing to N–H···O type of intermolecular H-bondings forming R22(8) ring motifs (Bernstein et al., 1995). The molecules are interlinked in the form of polymeric chains due to C—H···O type of intermolecular H-bondings (Table 1, Fig. 2). There exist two S(5) and a S(6), R22(10) and R33(12) or R22(13) ring motifs as well (Fig. 2). In the title compound the group (C1—C9/N1—N5/O—O3) of the isatin moiety along with nitro substitution is planar with maximum r.m.s. deviation of 0.0348 Å from the mean square plane and the sulphur atom S1 is at a distance of -0.3497 (16) Å from this mean square plane. The terminating three carbons of the hexyl group are disordered over two sites with occupancy ratio of 0.664 (12):0.336 (12). The C==O···π and N—O···π interactions (Table 1), may also be responsible for stabilizing of the molecules.

Related literature top

For the syntheses and structures of isatin and isatin-derived thiosemicarbazones with biological and medicinal properties, see: Beauchard et al. (2006); Hyatt et al. (2007); Quenelle et al. (2006); Karali et al. (2007). For a related crystal structure, see: Bain et al. (1997). For the syntheses of potent urease inhibitors based on N(4)-arylsubstituted isatin-3-thiosemicarbazones, see: Pervez et al. (2008, 2009). For the graph set analysis of hydrogen-bond patterns in crystal structures, see: Bernstein et al. (1995). Cg1 and Cg2 are the centroids of the N2/C6/C1/C8/C7 and C1–C6 rings, respectively.

Experimental top

A solution of N4-hexylthiosemicarbazide (0.44 g, 2.5 mmol) in ethanol (10 ml) was added to a hot solution of 5-nitroisatin (0.48 g, 2.5 mmol) in 50% aqueous ethanol (30 ml) containing a few drops of glacial acetic acid. The reaction mixture was then heated under reflux for 2 h. The yellow crystalline solid formed during heating was collected by suction filtration. Thorough washing with hot aqueous ethanol gave the title compound (I) in pure form (0.72 g, 82%), m.p. 513 K. The single crystals of (I) were grown in ethanol-n-hexane (1:4) system by diffusion method at room temperature.

Refinement top

The H-atoms were positioned geometrically with N—H = 0.86, C—H = 0.93, 0.96 and 0.97 Å for aryl, methyl and methylene H atoms respectively and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl and 1.2 for all other H atoms.

Structure description top

Isatin and its derivatives are known to possess a broad spectrum of pharmacological properties including antibacterial, anticonvulsant, antifungal, antineoplastic, antiviral, and enzymatic inhibition (Beauchard et al. 2006; Hyatt et al. 2007). Amongst these, isatins-derived thiosemicarbazones have gained a great deal of attention (Beauchard et al., 2006; Quenelle et al., 2006; Karali et al., 2007). Very recently, a number of N(4)-arylsubstituted isatin-3-thiosemicarbazones have been synthesized and reported as potent urease (a nickel-dependent metallo-enzyme) inhibitors (Pervez et al., 2008; Pervez et al., 2009). In continuation to the development of potent and non- or less toxic urease inhibitors, we report herein the crystal structure and preparation of the title compound (I, Fig. 1).

The crystal structure of (II) Indole-2,3-dione 3-(N(4)-ethylthiosemicarbazone) (N'-2-(Thienylidene))benzhydrazide (Bain et al., 1997) has been published. The title compound (I) differs from (II) due to hexyl moiety instead of ethyl moiety.

The molecules of the title compound consist of dimers owing to N–H···O type of intermolecular H-bondings forming R22(8) ring motifs (Bernstein et al., 1995). The molecules are interlinked in the form of polymeric chains due to C—H···O type of intermolecular H-bondings (Table 1, Fig. 2). There exist two S(5) and a S(6), R22(10) and R33(12) or R22(13) ring motifs as well (Fig. 2). In the title compound the group (C1—C9/N1—N5/O—O3) of the isatin moiety along with nitro substitution is planar with maximum r.m.s. deviation of 0.0348 Å from the mean square plane and the sulphur atom S1 is at a distance of -0.3497 (16) Å from this mean square plane. The terminating three carbons of the hexyl group are disordered over two sites with occupancy ratio of 0.664 (12):0.336 (12). The C==O···π and N—O···π interactions (Table 1), may also be responsible for stabilizing of the molecules.

For the syntheses and structures of isatin and isatin-derived thiosemicarbazones with biological and medicinal properties, see: Beauchard et al. (2006); Hyatt et al. (2007); Quenelle et al. (2006); Karali et al. (2007). For a related crystal structure, see: Bain et al. (1997). For the syntheses of potent urease inhibitors based on N(4)-arylsubstituted isatin-3-thiosemicarbazones, see: Pervez et al. (2008, 2009). For the graph set analysis of hydrogen-bond patterns in crystal structures, see: Bernstein et al. (1995). Cg1 and Cg2 are the centroids of the N2/C6/C1/C8/C7 and C1–C6 rings, respectively.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with the atom numbering scheme. The thermal ellipsoids are drawn at the 30% probability level. H-atoms are shown by small circles of arbitrary radii. The single dotted lines represent the intramolecular H-bondings and the atoms of low occupancy factor are joined by double dotted lines.
[Figure 2] Fig. 2. The partial packing (PLATON; Spek, 2009) which shows that the molecules form dimers which are joined in the form of polymeric chains.
(Z)-4-Hexyl-1-(5-nitro-2-oxo-2,3-dihydro-1H-indol-3- ylidene)thiosemicarbazide top
Crystal data top
C15H19N5O3SF(000) = 736
Mr = 349.42Dx = 1.353 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4283 reflections
a = 11.9464 (6) Åθ = 2.8–28.3°
b = 4.8845 (3) ŵ = 0.21 mm1
c = 29.9688 (17) ÅT = 296 K
β = 101.131 (3)°Needle, yellow
V = 1715.85 (17) Å30.26 × 0.14 × 0.12 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4283 independent reflections
Radiation source: fine-focus sealed tube1964 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
Detector resolution: 7.40 pixels mm-1θmax = 28.3°, θmin = 2.8°
ω scansh = 1515
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 66
Tmin = 0.963, Tmax = 0.974l = 3939
19438 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0588P)2]
where P = (Fo2 + 2Fc2)/3
4283 reflections(Δ/σ)max = 0.001
247 parametersΔρmax = 0.18 e Å3
6 restraintsΔρmin = 0.21 e Å3
Crystal data top
C15H19N5O3SV = 1715.85 (17) Å3
Mr = 349.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.9464 (6) ŵ = 0.21 mm1
b = 4.8845 (3) ÅT = 296 K
c = 29.9688 (17) Å0.26 × 0.14 × 0.12 mm
β = 101.131 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4283 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1964 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.974Rint = 0.062
19438 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0546 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.00Δρmax = 0.18 e Å3
4283 reflectionsΔρmin = 0.21 e Å3
247 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S11.08831 (6)0.36613 (17)0.14896 (3)0.0774 (3)
O10.99569 (14)0.2388 (3)0.03674 (5)0.0529 (6)
O20.3667 (2)0.1096 (6)0.11002 (9)0.1287 (13)
O30.41037 (17)0.3726 (5)0.05287 (8)0.0877 (9)
N10.4324 (2)0.1883 (6)0.07641 (10)0.0709 (10)
N20.85164 (16)0.3241 (4)0.02531 (7)0.0490 (7)
N30.83033 (16)0.1924 (4)0.05490 (7)0.0458 (7)
N40.93056 (16)0.1876 (4)0.08428 (7)0.0510 (8)
N50.87198 (16)0.5295 (4)0.12710 (6)0.0503 (7)
C10.71964 (19)0.0082 (4)0.01440 (8)0.0433 (8)
C20.6158 (2)0.1275 (5)0.02523 (8)0.0484 (8)
C30.5423 (2)0.0476 (5)0.06399 (9)0.0542 (9)
C40.5668 (2)0.1580 (5)0.09235 (9)0.0605 (10)
C50.6693 (2)0.2938 (5)0.08188 (9)0.0568 (10)
C60.7441 (2)0.2180 (4)0.04288 (8)0.0459 (8)
C70.9006 (2)0.1945 (4)0.01354 (8)0.0448 (8)
C80.81712 (19)0.0150 (4)0.02204 (8)0.0427 (8)
C90.9565 (2)0.3694 (5)0.11984 (9)0.0496 (8)
C100.8834 (2)0.7192 (5)0.16504 (9)0.0623 (10)
C110.8653 (3)0.5848 (7)0.20820 (10)0.0824 (14)
C120.7498 (3)0.4789 (8)0.20746 (12)0.0955 (17)
C13A0.7475 (5)0.3834 (17)0.2565 (2)0.077 (3)0.664 (12)
C14A0.6340 (6)0.279 (2)0.2605 (3)0.102 (3)0.664 (12)
C15A0.6209 (16)0.201 (4)0.3075 (5)0.127 (6)0.664 (12)
C15B0.635 (3)0.256 (6)0.3121 (11)0.109 (10)0.336 (12)
C13B0.6968 (19)0.273 (3)0.2355 (6)0.112 (7)0.336 (12)
C14B0.6793 (19)0.418 (3)0.2762 (4)0.094 (6)0.336 (12)
H20.596830.267070.006920.0581*
H2A0.883060.455360.037550.0587*
H40.514250.204170.118380.0726*
H4A0.980360.066520.080740.0612*
H10B0.828260.865780.157260.0747*
H11A0.883350.716530.232760.0988*
H11B0.918880.434420.215090.0988*
H12A0.693450.621060.198180.1147*
H12B0.733460.326860.186380.1147*
H13A0.767590.535670.277260.0930*0.664 (12)
H13B0.803920.240410.265090.0930*0.664 (12)
H14A0.577650.417440.249050.1224*0.664 (12)
H14B0.617270.119300.241000.1224*0.664 (12)
H15A0.615200.364070.324920.1907*0.664 (12)
H15B0.553110.093420.305980.1907*0.664 (12)
H15C0.686050.096860.321900.1907*0.664 (12)
H50.687640.432310.100520.0681*
H5A0.807550.520500.108490.0603*
H10A0.958940.799890.170130.0747*
H13C0.747390.118160.243710.1345*0.336 (12)
H13D0.624690.206630.218350.1345*0.336 (12)
H14C0.751410.499730.290300.1130*0.336 (12)
H14D0.626250.566480.266570.1130*0.336 (12)
H15D0.676300.308340.341640.1633*0.336 (12)
H15E0.555570.292600.309990.1633*0.336 (12)
H15F0.646300.064100.307490.1633*0.336 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0496 (5)0.0958 (6)0.0813 (6)0.0104 (4)0.0009 (4)0.0106 (4)
O10.0500 (11)0.0514 (10)0.0578 (11)0.0164 (8)0.0117 (9)0.0052 (8)
O20.0754 (17)0.194 (3)0.1011 (19)0.0471 (16)0.0218 (15)0.0188 (19)
O30.0657 (14)0.0890 (15)0.1102 (18)0.0332 (11)0.0215 (13)0.0064 (13)
N10.0488 (15)0.093 (2)0.0701 (17)0.0148 (14)0.0096 (14)0.0203 (15)
N20.0509 (13)0.0428 (11)0.0559 (13)0.0130 (9)0.0171 (10)0.0032 (10)
N30.0427 (12)0.0470 (12)0.0495 (12)0.0089 (9)0.0136 (10)0.0063 (10)
N40.0472 (13)0.0520 (13)0.0538 (13)0.0136 (9)0.0097 (11)0.0028 (10)
N50.0474 (12)0.0554 (12)0.0465 (12)0.0073 (10)0.0054 (10)0.0050 (10)
C10.0450 (15)0.0396 (12)0.0485 (14)0.0062 (11)0.0170 (12)0.0059 (11)
C20.0480 (15)0.0466 (13)0.0547 (16)0.0125 (11)0.0201 (13)0.0062 (12)
C30.0433 (15)0.0621 (17)0.0588 (17)0.0075 (12)0.0136 (14)0.0118 (14)
C40.0526 (17)0.0727 (19)0.0545 (17)0.0010 (14)0.0062 (14)0.0036 (14)
C50.0601 (18)0.0592 (16)0.0523 (16)0.0038 (14)0.0142 (14)0.0077 (13)
C60.0468 (15)0.0418 (13)0.0524 (15)0.0066 (11)0.0177 (12)0.0059 (12)
C70.0469 (15)0.0405 (13)0.0498 (15)0.0092 (11)0.0167 (13)0.0077 (12)
C80.0432 (14)0.0400 (13)0.0475 (14)0.0092 (11)0.0153 (12)0.0049 (11)
C90.0478 (15)0.0524 (14)0.0497 (15)0.0064 (12)0.0122 (12)0.0052 (12)
C100.0660 (18)0.0582 (16)0.0613 (18)0.0066 (13)0.0092 (14)0.0105 (14)
C110.100 (3)0.091 (2)0.057 (2)0.0197 (19)0.0171 (18)0.0106 (17)
C120.108 (3)0.099 (3)0.093 (3)0.007 (2)0.053 (2)0.009 (2)
C13A0.079 (4)0.104 (5)0.049 (4)0.012 (3)0.012 (3)0.008 (3)
C14A0.089 (5)0.130 (7)0.090 (6)0.017 (4)0.023 (4)0.023 (5)
C15A0.113 (9)0.188 (14)0.078 (7)0.020 (7)0.012 (6)0.033 (8)
C15B0.112 (18)0.107 (12)0.13 (2)0.020 (12)0.079 (16)0.002 (12)
C13B0.142 (15)0.096 (9)0.115 (13)0.021 (9)0.068 (12)0.024 (9)
C14B0.123 (14)0.089 (10)0.081 (9)0.006 (8)0.047 (10)0.012 (7)
Geometric parameters (Å, º) top
S1—C91.647 (3)C13A—C14A1.475 (10)
O1—C71.231 (3)C13B—C14B1.46 (2)
O2—N11.214 (4)C14A—C15A1.496 (18)
O3—N11.204 (4)C14B—C15B1.51 (4)
N1—C31.465 (4)C2—H20.9300
N2—C61.391 (3)C4—H40.9300
N2—C71.355 (3)C5—H50.9300
N3—N41.343 (3)C10—H10A0.9700
N3—C81.298 (3)C10—H10B0.9700
N4—C91.376 (3)C11—H11A0.9700
N5—C91.328 (3)C11—H11B0.9700
N5—C101.453 (3)C12—H12A0.9700
N2—H2A0.8600C12—H12B0.9700
N4—H4A0.8600C13A—H13A0.9700
N5—H5A0.8600C13A—H13B0.9700
C1—C21.389 (3)C13B—H13D0.9700
C1—C81.439 (3)C13B—H13C0.9700
C1—C61.400 (3)C14A—H14B0.9700
C2—C31.371 (4)C14A—H14A0.9700
C3—C41.383 (4)C14B—H14C0.9700
C4—C51.375 (3)C14B—H14D0.9700
C5—C61.378 (3)C15A—H15B0.9600
C7—C81.485 (3)C15A—H15C0.9600
C10—C111.503 (4)C15A—H15A0.9600
C11—C121.470 (5)C15B—H15D0.9600
C12—C13B1.524 (18)C15B—H15E0.9600
C12—C13A1.547 (7)C15B—H15F0.9600
S1···C113.636 (4)C15A···H5xii3.0200
S1···H10A2.7700C15B···H5xii3.0200
S1···H11B3.1100H2···O3vi2.5200
S1···H13Ai3.0000H2···O32.4400
S1···H15Cii2.9000H2A···O1v2.0800
S1···H14Ci2.9700H2A···C7v3.0700
O1···N33.008 (3)H4···O22.3900
O1···N42.721 (2)H4A···O12.0200
O1···C9iii3.246 (3)H4A···C72.4200
O1···C7iv3.001 (3)H5···H15Cxiii2.4600
O1···O1iv3.223 (2)H5···C15Bxiii3.0200
O1···N2v2.871 (3)H5···C15Axiii3.0200
O1···C8iv3.289 (3)H5···H15Dxiii2.5100
O2···C10vi3.232 (4)H5A···N32.3200
O3···C4vii3.317 (3)H5A···O2vi2.7600
O3···C1viii3.295 (3)H5A···O3vi2.8600
O1···H4A2.0200H10A···S12.7700
O1···H2Av2.0800H10B···O2vi2.4800
O2···H10Bvi2.4800H10B···H12A2.5100
O2···H12Avi2.9100H11A···H13A2.2800
O2···H5Avi2.7600H11B···S13.1100
O2···H42.3900H11B···H13B2.4100
O3···H22.4400H11B···C92.9900
O3···H2vi2.5200H12A···H10B2.5100
O3···H5Avi2.8600H12A···H14D2.3600
N2···O1v2.871 (3)H12A···O2vi2.9100
N3···O13.008 (3)H12A···H14A2.4600
N3···N52.688 (3)H12B···N52.8300
N3···C7vii3.408 (3)H12B···H14B2.5500
N4···O12.721 (2)H13A···H11A2.2800
N5···N32.688 (3)H13A···S1ii3.0000
N3···H5A2.3200H13B···H15C2.5100
N5···H12B2.8300H13B···H11B2.4100
C1···O3viii3.295 (3)H13C···H15F2.4600
C2···C5vii3.421 (3)H14A···C14Axi3.0500
C4···O3iii3.317 (3)H14A···C15Axi2.9800
C5···C2iii3.421 (3)H14A···H15Bxi2.2100
C7···N3iii3.408 (3)H14A···H14Bxi2.6000
C7···C7iv3.264 (3)H14A···H12A2.4600
C7···O1iv3.001 (3)H14B···H12B2.5500
C8···O1iv3.289 (3)H14B···H14Ax2.6000
C9···O1vii3.246 (3)H14C···C113.0600
C10···O2vi3.232 (4)H14C···S1ii2.9700
C11···S13.636 (4)H14D···H12A2.3600
C4···H15Dix3.0900H15A···C4xiv3.0200
C4···H15Aix3.0200H15B···C14Ax3.1000
C7···H2Av3.0700H15B···H14Ax2.2100
C7···H4A2.4200H15C···S1i2.9000
C9···H11B2.9900H15C···H5xii2.4600
C11···H14C3.0600H15C···H13B2.5100
C14A···H14Ax3.0500H15D···C4xiv3.0900
C14A···H15Bxi3.1000H15D···H5xii2.5100
C15A···H14Ax2.9800H15F···H13C2.4600
O2—N1—O3122.9 (3)N5—C10—H10B109.00
O2—N1—C3117.8 (3)C11—C10—H10A109.00
O3—N1—C3119.3 (3)C11—C10—H10B109.00
C6—N2—C7111.42 (19)H10A—C10—H10B108.00
N4—N3—C8116.6 (2)C10—C11—H11A108.00
N3—N4—C9122.4 (2)C10—C11—H11B108.00
C9—N5—C10123.0 (2)C12—C11—H11A108.00
C7—N2—H2A124.00C12—C11—H11B108.00
C6—N2—H2A124.00H11A—C11—H11B107.00
N3—N4—H4A119.00C11—C12—H12A110.00
C9—N4—H4A119.00C11—C12—H12B110.00
C10—N5—H5A119.00C13A—C12—H12A110.00
C9—N5—H5A119.00C13A—C12—H12B110.00
C2—C1—C6119.3 (2)H12A—C12—H12B109.00
C6—C1—C8106.66 (19)C13B—C12—H12A107.00
C2—C1—C8134.1 (2)C13B—C12—H12B79.00
C1—C2—C3117.4 (2)C12—C13A—H13A109.00
C2—C3—C4123.4 (2)C12—C13A—H13B109.00
N1—C3—C4118.0 (2)C14A—C13A—H13A109.00
N1—C3—C2118.5 (2)C14A—C13A—H13B109.00
C3—C4—C5119.7 (2)H13A—C13A—H13B108.00
C4—C5—C6117.9 (2)H13C—C13B—H13D109.00
N2—C6—C1109.2 (2)C12—C13B—H13C110.00
N2—C6—C5128.4 (2)C12—C13B—H13D110.00
C1—C6—C5122.4 (2)C14B—C13B—H13C110.00
O1—C7—C8127.0 (2)C14B—C13B—H13D110.00
O1—C7—N2127.0 (2)C15A—C14A—H14A109.00
N2—C7—C8106.1 (2)C15A—C14A—H14B108.00
N3—C8—C1126.2 (2)C13A—C14A—H14B108.00
N3—C8—C7127.1 (2)C13A—C14A—H14A108.00
C1—C8—C7106.71 (19)H14A—C14A—H14B107.00
N4—C9—N5116.3 (2)C13B—C14B—H14C108.00
S1—C9—N5126.8 (2)C13B—C14B—H14D108.00
S1—C9—N4116.98 (18)H14C—C14B—H14D107.00
N5—C10—C11112.8 (2)C15B—C14B—H14D108.00
C10—C11—C12115.6 (3)C15B—C14B—H14C108.00
C11—C12—C13B135.4 (8)C14A—C15A—H15C110.00
C11—C12—C13A106.3 (3)C14A—C15A—H15B110.00
C12—C13A—C14A111.5 (5)H15B—C15A—H15C110.00
C12—C13B—C14B106.4 (11)H15A—C15A—H15B109.00
C13A—C14A—C15A115.4 (9)H15A—C15A—H15C109.00
C13B—C14B—C15B117.9 (17)C14A—C15A—H15A109.00
C1—C2—H2121.00C14B—C15B—H15D109.00
C3—C2—H2121.00C14B—C15B—H15E110.00
C3—C4—H4120.00C14B—C15B—H15F109.00
C5—C4—H4120.00H15D—C15B—H15E110.00
C4—C5—H5121.00H15D—C15B—H15F109.00
C6—C5—H5121.00H15E—C15B—H15F110.00
N5—C10—H10A109.00
O2—N1—C3—C2177.7 (3)C8—C1—C6—C5179.2 (2)
O2—N1—C3—C42.9 (4)C2—C1—C8—N32.5 (4)
O3—N1—C3—C21.3 (4)C2—C1—C8—C7179.8 (2)
O3—N1—C3—C4178.1 (3)C6—C1—C8—N3177.5 (2)
C7—N2—C6—C10.2 (3)C6—C1—C8—C70.2 (2)
C7—N2—C6—C5179.2 (2)C1—C2—C3—N1179.6 (2)
C6—N2—C7—O1179.0 (2)C1—C2—C3—C40.2 (4)
C6—N2—C7—C80.1 (3)N1—C3—C4—C5179.7 (2)
C8—N3—N4—C9178.2 (2)C2—C3—C4—C50.3 (4)
N4—N3—C8—C1176.8 (2)C3—C4—C5—C60.2 (4)
N4—N3—C8—C70.5 (3)C4—C5—C6—N2179.9 (2)
N3—N4—C9—S1172.11 (18)C4—C5—C6—C10.7 (4)
N3—N4—C9—N58.0 (3)O1—C7—C8—N31.5 (4)
C10—N5—C9—S14.1 (4)O1—C7—C8—C1179.2 (2)
C10—N5—C9—N4175.8 (2)N2—C7—C8—N3177.6 (2)
C9—N5—C10—C1183.5 (3)N2—C7—C8—C10.1 (2)
C6—C1—C2—C30.3 (3)N5—C10—C11—C1265.1 (3)
C8—C1—C2—C3179.7 (2)C10—C11—C12—C13A173.3 (4)
C2—C1—C6—N2179.7 (2)C11—C12—C13A—C14A178.4 (6)
C2—C1—C6—C50.8 (3)C12—C13A—C14A—C15A175.7 (10)
C8—C1—C6—N20.3 (2)
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+2, y+1/2, z+1/2; (iii) x, y1, z; (iv) x+2, y, z; (v) x+2, y1, z; (vi) x+1, y+1, z; (vii) x, y+1, z; (viii) x+1, y, z; (ix) x, y+1/2, z1/2; (x) x+1, y1/2, z+1/2; (xi) x+1, y+1/2, z+1/2; (xii) x, y1/2, z+1/2; (xiii) x, y1/2, z1/2; (xiv) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1v0.86002.08002.871 (3)153.00
N4—H4A···O10.86002.02002.721 (2)138.00
N5—H5A···N30.86002.32002.688 (3)106.00
C2—H2···O3vi0.93002.52003.438 (3)167.00
C10—H10A···S10.97002.77003.107 (3)101.00
C10—H10B···O2vi0.97002.48003.232 (4)134.00
C7—O1···Cg1iv1.23 (1)3.25 (1)3.896 (3)113 (1)
N1—O3···Cg1viii1.20 (1)3.65 (1)4.201 (3)109 (1)
N1—O3···Cg2viii1.20 (1)3.65 (1)4.192 (3)109 (1)
Symmetry codes: (iv) x+2, y, z; (v) x+2, y1, z; (vi) x+1, y+1, z; (viii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC15H19N5O3S
Mr349.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.9464 (6), 4.8845 (3), 29.9688 (17)
β (°) 101.131 (3)
V3)1715.85 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.26 × 0.14 × 0.12
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.963, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
19438, 4283, 1964
Rint0.062
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.143, 1.00
No. of reflections4283
No. of parameters247
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.21

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.86002.08002.871 (3)153.00
N4—H4A···O10.86002.02002.721 (2)138.00
N5—H5A···N30.86002.32002.688 (3)106.00
C2—H2···O3ii0.93002.52003.438 (3)167.00
C10—H10A···S10.97002.77003.107 (3)101.00
C10—H10B···O2ii0.97002.48003.232 (4)134.00
C7—O1···Cg1iii1.231 (3)3.245 (2)3.896 (3)113.13 (13)
N1—O3···Cg1iv1.204 (4)3.646 (2)4.201 (3)109.29 (18)
N1—O3···Cg2iv1.204 (4)3.652 (3)4.192 (3)108.50 (19)
Symmetry codes: (i) x+2, y1, z; (ii) x+1, y+1, z; (iii) x+2, y, z; (iv) x+1, y, z.
 

Acknowledgements

NM greatfully acknowledges the Higher Education Commission, Islamabad, Pakistan, for providing her with a Scholarship under the Indigenous PhD Program and also for partial funding of this research work.

References

First citationBain, G. A., West, D. X., Krejci, J., Valdés-Martínez, J., Hernández- Ortega, S. & Toscano, R. A. (1997). Polyhedron, 16, 855–862.  CSD CrossRef CAS Web of Science Google Scholar
First citationBeauchard, A., Ferandin, F. S., Lozach, O., Blairvacq, M., Meijer, L., Thiéry, V. & Besson. T. (2006). Bioorg. Med. Chem. 14, 6434–6443.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHyatt, J. L., Moak, T., Hatfield, M. J., Tsurkan, L., Edwards, C. C., Wierdl, M., Danks, M. K., Wadkins, R. M. & Potter, P. M. (2007). J. Med. Chem. 50, 1876–1885.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKarali, N., Gürsoy, A., Kandemirli, F., Shvets, N., Kaynak, F. B., Özbey, S., Kovalishyn, V. & Dimoglo, A. (2007). Bioorg. Med. Chem. 15, 5888–5904.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPervez, H., Chohan, Z. H., Ramzan, M., Nasim, F. H. & Khan, K. M. (2009). J. Enz. Inhib. Med. Chem. 24, 437–446.  Web of Science CrossRef CAS Google Scholar
First citationPervez, H., Iqbal, M. S., Tahir, M. Y., Nasim, F. H., Choudhary, M. I. & Khan, K. M. (2008). J. Enz. Inhib. Med. Chem. 23, 848–854.  Web of Science CrossRef CAS Google Scholar
First citationQuenelle, D. C., Keith, K. A. & Kern, E. R. (2006). Antivir. Res. 71, 24–30.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds