Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

4,6-Dimethyl-2-p-tolylpyrimidine

Chen Xu, ${ }^{\text {a }}{ }^{*}$ Zhi-Qiang Wang, ${ }^{\text {a }}$ Fei-Fei Cen, ${ }^{\text {b }}$ Lin Cheng ${ }^{\text {b }}$ and Bao-Ming Jia

${ }^{\text {a }}$ College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China, and ${ }^{\text {b }}$ Chemical Engineering and Pharmaceutics School, Henan University of Science and Technology, Luoyang 471003, People's Republic of China
Correspondence e-mail: xubohan@163.com
Received 5 October 2009; accepted 14 October 2009
Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.042 ; w R$ factor $=0.131$; data-to-parameter ratio $=14.0$.

The molecule of the title compound, $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2}$, is located on a crystallographic mirror plane. The aromatic rings make a dihedral angle of $3.4(2)^{\circ}$. The H atoms of the methyl groups on the benzene ring are disordered over two positions; their site-occupation factors were fixed at 0.5 . In the crystal, intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ contacts form infinite chains perpendicular to the b axis.

Related literature

The title compound was derived from the reaction of p tolylmercutic chlorides and 4,6-dimethyl-2-iodopyrimidine. For general background to theuse of organomercury compounds in cross-coupling reactions, see: Beletskaya et al. (2001); Braga et al. (2004). For a related structure, see: Santoni et al. (2008). For the synthesis, see: Xu et al. (2009a,b).

Experimental

Crystal data

$$
\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \quad M_{r}=198.26
$$

Orthorhombic, Pnma
$a=7.2086$ (10) \AA
$Z=4$
$b=12.4668$ (18) \AA
Mo $K \alpha$ radiation
$c=12.4335$ (18) \AA
$\mu=0.07 \mathrm{~mm}^{-1}$
$V=1117.4(3) \AA^{3}$
$T=296 \mathrm{~K}$
$0.35 \times 0.25 \times 0.22 \mathrm{~mm}$
Data collection
Bruker SMART APEX CCD areadetector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.976, T_{\text {max }}=0.985$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.131$
78 parameters
H -atom parameters constrained
$S=1.06$
1089 reflections
$\Delta \rho_{\max }=0.19 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.14 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 8-\mathrm{H} 8 \cdots C g 1^{\mathrm{i}}$	0.93	2.79	$3.638(2)$	152
Symmetry code: (i)	$-x-1, y+\frac{1}{2},-z$.	$C g 1$ is the centroid of the pyrimidine ring.		

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

This work was supported by the Natural Science Foundation of Henan Education Department (No. 2009B150019).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2211).

References

Beletskaya, I. P., Tsvetkov, A. V., Latyshev, G. V., Tafeenko, V. A. \& Lukashev, N. V. (2001). J. Organomet. Chem. 637, 653-663.

Braga, D., D'Addario, D. \& Polito, M. (2004). Organometallics 23, 2810-2812.
Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Santoni, M.-P. C., Yu, S. H., Hanan, G. S., Proust, A. \& Hasenknopf, B. (2008). Acta Cryst. E64, o584.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Xu, C., Hao, X.-Q., Liu, F., Wu, X.-J. \& Song, M.-P. (2009a). Acta Cryst. E65, m517.
Xu, C., Wang, Z. Q., Fu, W. J., Lou, X. H., Li, Y. F., Cen, F. F., Ma, H. J. \& Ji, B. M. (2009b). Organometallics 28, 1909-1916.

supporting information

Acta Cryst. (2009). E65, o2785 [https://doi.org/10.1107/S160053680904210X]

4,6-Dimethyl-2-p-tolylpyrimidine

Chen Xu, Zhi-Qiang Wang, Fei-Fei Cen, Lin Cheng and Bao-Ming Ji

S1. Comment

The organomercury compounds have a number of notable advantages over other organometallic compounds commonly used in cross-coupling reactions, including higher selectivity of reactions, extra stability and easy availability by a direct mercuration (Beletskaya et al., 2001; Braga et al., 2004). We have recently reported ferrocene-heterocycles were obtained from the coupling reaction(Xu et al., 2009a,b). Here we report the crystal structure of the title compound, derived from the reaction of p-tolylmercutic chlorides and 4,6-dimethyl-2-iodopyrimidine.
Due to the molecular mirror symmetry m of the title compound (Fig.1), and coincidence with the crystallographic mirror plane m (space group Pnma), the atoms $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 5, \mathrm{C} 8, \mathrm{H} 8$ are half occupied and the H atoms of the methyl groups in the benzene ring are disordered over two positions; their site-occupation factors were fixed at 0.5 . The aromatic rings have very small angles between their planes (dihedral angle is $\left.3.4(2)^{\circ}\right)$ due to the absence of $\mathrm{H}-\mathrm{H}$ repulsion (Santoni et al., 2008). Fig. 2 shows that in the crystal there exist intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (Table 1, $C g 1$ is the centroid of the pyrimidine ring).

S2. Experimental

The title compound was obtained from the coupling reaction of p-tolylmercutic chlorides and 4,6-dimethyl-2-iodopyrimidine as described in literature (Xu et al., 2009b) and recrystallized from ethanol at room temperature to give the desired crystals suitable for single-crystal X-ray diffraction.

S3. Refinement

H atoms attached to C atoms of the title compound were placed in geometrically idealized positions and treated as riding with $\mathrm{C}-\mathrm{H}$ distances constrained to $0.93-0.96 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2-1.5 U_{\mathrm{eq}}(\mathrm{C})$.

Figure 1
The molecular structure of the title compound with displacement ellipsoids at the 30% probability level, the disordered H atoms are omitted (Symmetry code A: $-x+2,-y,-z$).

Figure 2
Partial view of the crystal packing showing the formation of the infinite chain of molecules formed by the $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

4,6-Dimethyl-2-p-tolylpyrimidine

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2}$
$M_{r}=198.26$
Orthorhombic, Pnma
$a=7.2086$ (10) \AA
$b=12.4668$ (18) \AA
$c=12.4335(18) \AA$
$V=1117.4$ (3) \AA^{3}
$Z=4$
$F(000)=424$
$D_{\mathrm{x}}=1.179 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1634 reflections
$\theta=2.3-23.3^{\circ}$
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Block, colourless
$0.35 \times 0.25 \times 0.22 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
phi and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.976, T_{\text {max }}=0.985$

> 7934 measured reflections
> 1089 independent reflections
> 777 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.025$
> $\theta_{\max }=25.5^{\circ}, \theta_{\min }=2.3^{\circ}$
> $h=-8 \rightarrow 8$
> $k=-15 \rightarrow 15$
> $l=-15 \rightarrow 14$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.131$
$S=1.06$
1089 reflections
78 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

> Secondary atom site location: difference Fourier map
> Hydrogen site location: inferred from neighbouring sites
> H -atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0557 P)^{2}+0.291 P\right]$
> where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\text {max }}<0.001$
> $\Delta \rho_{\text {max }}=0.19 \mathrm{e}_{\AA^{-3}}$
> $\Delta \rho_{\text {min }}=-0.14 \mathrm{e} \AA^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$	Occ. (<1)
C1	$0.8988(4)$	0.2500	$0.6728(2)$	$0.0709(8)$	
H1A	0.8781	0.2870	0.7394	0.106^{*}	0.50
H1B	0.9952	0.2856	0.6332	0.106^{*}	0.50
H1C	0.9355	0.1774	0.6874	0.106^{*}	0.50
C2	$0.7231(3)$	0.2500	$0.60770(17)$	$0.0499(6)$	
C3	$0.6383(2)$	$0.34507(13)$	$0.57708(13)$	$0.0544(5)$	
H3	0.6934	0.4100	0.5953	0.065^{*}	
C4	$0.4741(2)$	$0.34546(12)$	$0.52012(13)$	$0.0522(5)$	
H4	0.4201	0.4105	0.5009	0.063^{*}	
C5	$0.3884(3)$	0.2500	$0.49107(16)$	$0.0449(5)$	
C6	$0.2078(3)$	0.2500	$0.43367(17)$	$0.0468(5)$	
C7	$-0.0325(2)$	$0.34504(13)$	$0.36089(13)$	$0.0529(5)$	

supporting information

C8	$-0.1188(3)$	0.2500	$0.33466(18)$	$0.0549(6)$
H8	-0.2331	0.2500	0.3000	0.066^{*}
C9	$-0.1170(3)$	$0.45227(14)$	$0.33570(16)$	$0.0732(6)$
H9A	-0.0974	0.5001	0.3951	0.110^{*}
H9B	-0.2477	0.4438	0.3235	0.110^{*}
H9C	-0.0598	0.4814	0.2724	0.110^{*}
N1	$0.13292(18)$	$0.34589(10)$	$0.41062(10)$	$0.0509(4)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0703(17)$	$0.0703(18)$	$0.0720(17)$	0.000	$-0.0169(14)$	0.000
C2	$0.0541(14)$	$0.0531(13)$	$0.0425(11)$	0.000	$-0.0007(10)$	0.000
C3	$0.0600(11)$	$0.0446(9)$	$0.0584(10)$	$-0.0043(8)$	$-0.0036(8)$	$-0.0048(7)$
C4	$0.0588(10)$	$0.0390(9)$	$0.0589(10)$	$0.0022(7)$	$-0.0028(8)$	$0.0002(7)$
C5	$0.0507(12)$	$0.0407(11)$	$0.0433(11)$	0.000	$0.0027(10)$	0.000
C6	$0.0545(13)$	$0.0430(12)$	$0.0428(11)$	0.000	$0.0018(10)$	0.000
C7	$0.0550(10)$	$0.0541(10)$	$0.0496(9)$	$0.0045(8)$	$0.0009(7)$	$0.0034(7)$
C8	$0.0510(13)$	$0.0608(15)$	$0.0528(13)$	0.000	$-0.0047(11)$	0.000
C9	$0.0702(12)$	$0.0598(12)$	$0.0896(14)$	$0.0091(10)$	$-0.0128(10)$	$0.0094(10)$
N1	$0.0546(8)$	$0.0449(8)$	$0.0532(8)$	$0.0031(6)$	$-0.0025(6)$	$0.0021(6)$

Geometric parameters $\left(\stackrel{A}{A},{ }^{\circ}\right)$

$\mathrm{C} 1-\mathrm{C} 2$	1.503 (3)	C5-C6	1.485 (3)
C1-H1A	0.9600	C6-N1 ${ }^{\text {i }}$	1.3426 (16)
C1-H1B	0.9600	C6-N1	1.3426 (16)
C1-H1C	0.9600	C7-N1	1.343 (2)
$\mathrm{C} 2-\mathrm{C} 3{ }^{\text {i }}$	1.387 (2)	C7-C8	1.378 (2)
C2-C3	1.387 (2)	C7-C9	1.502 (2)
C3-C4	1.380 (2)	C8-C7 ${ }^{\text {i }}$	1.378 (2)
C3-H3	0.9300	C8-H8	0.9300
C4-C5	1.3885 (19)	C9-H9A	0.9600
C4-H4	0.9300	C9-H9B	0.9600
$\mathrm{C} 5-\mathrm{C} 4{ }^{\text {i }}$	1.3885 (19)	C9-H9C	0.9600
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.5	C4- ${ }^{\text {i }} 5$ - 66	121.00 (11)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5	N1--C6-N1	125.8 (2)
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5	N1-C6-C5	117.07 (10)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	N1-C6-C5	117.07 (10)
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	N1-C7-C8	121.12 (16)
$\mathrm{H} 1 \mathrm{~B}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	N1-C7-C9	116.67 (15)
C3 ${ }^{\text {i }}$ - $2-\mathrm{C} 3$	117.4 (2)	C8-C7-C9	122.20 (16)
C3 ${ }^{\text {i }}$ - $22-\mathrm{C} 1$	121.28 (11)	C7-C8-C7 ${ }^{\text {i }}$	118.7 (2)
C3-C2-C1	121.28 (11)	C7-C8-H8	120.7
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	121.48 (16)	C7- ${ }^{\text {i }} 8$ - H 8	120.7
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	119.3	C7-C9-H9A	109.5
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	119.3	C7-C9-H9B	109.5

$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$120.81(16)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	119.6
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	119.6
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 4$	$118.0(2)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$121.00(11)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$1.2(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-178.02(19)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-0.3(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 4{ }^{\mathrm{i}}$	$-0.7(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$177.47(16)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 1^{\mathrm{i}}$	$-178.65(17)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 1^{\mathrm{i}}$	$-0.6(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 1$	$0.6(3)$

$\mathrm{H} 9 \mathrm{~A}-\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B}$	109.5
$\mathrm{C} 7-\mathrm{C} 9-\mathrm{H} 9 \mathrm{C}$	109.5
$\mathrm{H} 9 \mathrm{~A}-\mathrm{C} 9-\mathrm{H} 9 \mathrm{C}$	109.5
$\mathrm{H} 9 \mathrm{~B}-\mathrm{C} 9-\mathrm{H} 9 \mathrm{C}$	109.5
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 7$	$116.62(15)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 1$	$178.65(17)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 7^{\mathrm{i}}$	$0.3(3)$
$\mathrm{C} 9-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 7^{\mathrm{i}}$	$-179.77(14)$
$\mathrm{N} 1-\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 7$	$0.6(3)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 7$	$-178.53(15)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 6$	$-0.4(3)$
$\mathrm{C} 9-\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 6$	$179.62(16)$

Symmetry code: (i) $x,-y+1 / 2, z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D — \mathrm{H} \cdots A$
$\mathrm{C} 8 — \mathrm{H} 8 \cdots C g 1^{\mathrm{ii}}$	0.93	2.79	$3.638(2)$	152

Symmetry code: (ii) $-x-1, y+1 / 2,-z$.

