

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Carboxy-1-phenylethanaminium nitrate

Wen-Xian Liang, Xiao-Wei Chu and Zhi-Rong Qu*

Ordered Matter Science Research Center, College of Chemistry and Chemical, Engineering, Southeast University, Nanjing 210096, People's Republic of China Correspondence e-mail: quzr@seu.edu.cn

Received 17 September 2009; accepted 18 October 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.080; wR factor = 0.231; data-to-parameter ratio = 17.1.

In the title salt, $C_9H_{12}NO_2^+ \cdot NO_3^-$, the cation and anion are linked by a bifurcated $N-H \cdots (O,O)$ hydrogen bond. The crystal packing is stabilized by intermolecular N-H···O, O- $H \cdots O$ and $C - H \cdots O$ hydrogen bonds, which connect neighbouring cations and anions, resulting in a two-dimensional network.

Related literature

For details of the preparation of β -amino acids, see: Cohen *et* al. (2002); Qu et al. (2004).

Experimental

Crystal data

 $C_9H_{12}NO_2^+ \cdot NO_3^ M_r = 228.21$ Monoclinic, $P2_1/c$ a = 6.2017 (12) Åb = 10.313 (2) Å c = 18.077 (4) Å $\beta = 105.36 (3)^{\circ}$

V = 1114.9 (4) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.11 \text{ mm}^{-1}$ T = 293 K $0.50\,\times\,0.30\,\times\,0.15$ mm 11050 measured reflections

 $R_{\rm int} = 0.061$

2549 independent reflections

1652 reflections with $I > 2\sigma(I)$

Data collection

```
Rigaku SCXmini diffractometer
Absorption correction: multi-scan
  (CrystalClear; Rigaku, 2005)
  T_{\min} = 0.960, T_{\max} = 0.982
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.080$	1 restraint
$wR(F^2) = 0.231$	H-atom parameters constrained
S = 1.11	$\Delta \rho_{\rm max} = 0.59 \ {\rm e} \ {\rm \AA}^{-3}$
2549 reflections	$\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$
149 parameters	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C8-H8\cdots O2^{i}$	0.93	2.56	3.414 (5)	152
$C2-H2A\cdots O4^{ii}$	0.97	2.46	3.256 (5)	140
$O2-H2\cdots O5^{iii}$	0.82	2.01	2.743 (4)	148
$N1 - H1C \cdot \cdot \cdot O5^{ii}$	0.88	2.13	2.979 (4)	160
$N1 - H1C \cdot \cdot \cdot O4^{ii}$	0.88	2.41	3.129 (4)	139
$N1 - H1B \cdots O1^{iv}$	0.88	1.97	2.830 (4)	166
$N1 - H1A \cdots O4$	0.88	2.39	3.101 (4)	138
$N1 - H1A \cdots O3$	0.88	2.07	2.933 (4)	165

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) x + 1, y, z; (iii) x + 1, $-y + \frac{1}{2}$, $z + \frac{1}{2}$; (iv) $-x+2, y+\frac{1}{2}, -z+\frac{1}{2}.$

Data collection: CrystalClear (Rigaku 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999).

This work was supported by the Technical Fund Financing Projects (No. 9207042464 and 9207041482) from Southeast University to ZRQ.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2656).

References

- Cohen, J. H., Abdel-Magid, A. F., Almond, H. R. Jr & Maryanoff, C. A. (2002). Tetrahedron Lett. 43, 1977-1981.
- Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.
- Qu, Z.-R., Zhao, H., Wang, Y.-P., Wang, X.-S., Ye, Q., Li, Y.-H., Xiong, R.-G., Abrahams, B. F., Liu, Z.-G. & Xue, Z.-L. (2004). Chem. Eur. J. 10, 54-60.
- Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2009). E65, o2895 [https://doi.org/10.1107/S1600536809042792]

2-Carboxy-1-phenylethanaminium nitrate

Wen-Xian Liang, Xiao-Wei Chu and Zhi-Rong Qu

S1. Comment

 β -Amino acids are important molecules due to their pharmacological properties. Recently, there has been an increased interest in the enantiomeric preparation of β -amino acids as precursors for the synthesis of novel biologically active compounds (Cohen *et al.*, 2002; Qu *et al.* 2004).

The title compound $C_9H_{12}NO_2^+.NO_3^-$ exists as two independent ions linked by bifurcated N—H…O hydrogen bonds (Fig. 1). The crystal structure is stabilized by intermolecular N—H…O, O—H…O and C—H …O hydrogen bonds (Table 1) which connect neighbouring cations and anions, resulting in a two-dimensional network (Fig. 2).

S2. Experimental

Benzaldehyde (1.59 g, 15 mmol), malonic acid (2.5 g, 24 mmol) and ammonium acetate (3.0 g, 39 mmol) were added in a flask under nitrogen and refluxed for 24 h yielding a white precipitate. After cooling to room temperature, the solution was filtered to yield 3-3mino-3-phenylpropionic acid. This was dissolved in ethanol and nitric acid. After slowly evaporating over a period of 5 d, colorless prism-like crystals of the title compound, suitable for X-ray diffraction experiments were isolated.

S3. Refinement

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on the C, N atoms to which they are bonded, with C—H = 0.93 to 1.00 Å, $U_{iso}(H) = 1.2 U_{eq}(C)$, N—H = 0.88 Å, $U_{iso}(H) = 1.5 U_{eq}(N)$.

Figure 1

The asymmetric unit of the title compound, with displacement ellipsoids drawn at the 30% probability level. Intramolecular hydrogen bonds are drawn as a dashed lines.

Figure 2

Packing diagram of the title compound, showing the structure along the *b* axis. Hydrogen bonds are drawn as dashed lines.

2-Carboxy-1-phenylethanaminium nitrate

Crystal data

C₉H₁₂NO₂⁺·NO₃⁻ $M_r = 228.21$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 6.2017 (12) Å b = 10.313 (2) Å c = 18.077 (4) Å $\beta = 105.36$ (3)° V = 1114.9 (4) Å³ Z = 4

Data collection

Rigaku SCXmini	11050 measured reflections
diffractometer	2549 independent reflections
Radiation source: fine-focus sealed tube	1652 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.061$
Detector resolution: 13.6612 pixels mm ⁻¹	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 3.1^{\circ}$
CCD_Profile_fitting scans	$h = -8 \rightarrow 8$
Absorption correction: multi-scan	$k = -13 \rightarrow 13$
(CrystalClear; Rigaku, 2005)	$l = -23 \rightarrow 23$
$T_{\min} = 0.960, \ T_{\max} = 0.982$	
Refinement	
Refinement on F^2	Secondary atom site location: different

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0829P)^2 + 1.0943P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.59 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

F(000) = 480

 $\theta = 3.1 - 27.5^{\circ}$

 $\mu = 0.11 \text{ mm}^{-1}$ T = 293 K

Prism. colorless

 $0.50 \times 0.30 \times 0.15 \text{ mm}$

 $D_{\rm x} = 1.360 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1797 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and	isotropic or equivalent	t isotropic displacement	parameters (A	Ų,
-----------------------------------	-------------------------	--------------------------	---------------	----

				TT \$\/TT
	x	У У	Z	$U_{\rm iso}*/U_{\rm eq}$
01	1.1549 (5)	0.1241 (2)	0.30410 (14)	0.0613 (8)
O2	0.8967 (5)	0.2333 (3)	0.34151 (16)	0.0631 (8)
H2	0.9252	0.1813	0.3771	0.095*
N1	0.7398 (5)	0.3900 (2)	0.11238 (14)	0.0382 (6)
	0.7590 (5)	0.5900 (2)	0.11250 (11)	0.0502(0)

H1A	0.6020	0.3868	0.0823	0.066 (12)*
H1B	0.7688	0.4697	0.1305	0.050 (10)*
H1C	0.8352	0.3690	0.0856	0.050 (11)*
C3	1.0254 (6)	0.2102 (3)	0.29593 (19)	0.0466 (8)
C4	0.6953 (6)	0.1620 (3)	0.14746 (19)	0.0442 (8)
C1	0.7597 (6)	0.2980 (3)	0.17750 (18)	0.0434 (8)
H1	0.6540	0.3255	0.2063	0.052*
C2	0.9930 (6)	0.3062 (3)	0.23070 (19)	0.0505 (9)
H2A	1.1015	0.2890	0.2019	0.061*
H2B	1.0190	0.3933	0.2514	0.061*
C7	0.5759 (11)	-0.0891 (4)	0.0971 (3)	0.0857 (17)
H7	0.5361	-0.1733	0.0805	0.103*
C8	0.4647 (9)	-0.0261 (5)	0.1410 (4)	0.0903 (18)
H8	0.3468	-0.0675	0.1541	0.108*
C5	0.8088 (8)	0.0973 (4)	0.1026 (2)	0.0620 (11)
Н5	0.9274	0.1374	0.0892	0.074*
C9	0.5224 (7)	0.1002 (4)	0.1675 (3)	0.0649 (11)
H9	0.4448	0.1417	0.1982	0.078*
C6	0.7458 (10)	-0.0285 (5)	0.0774 (3)	0.0817 (16)
H6	0.8219	-0.0711	0.0466	0.098*
O3	0.3218 (4)	0.3769 (3)	-0.01018 (15)	0.0562 (7)
O4	0.2293 (5)	0.3826 (3)	0.09586 (15)	0.0706 (9)
O5	-0.0245 (4)	0.3499 (3)	-0.00958 (16)	0.0597 (7)
N2	0.1772 (5)	0.3697 (3)	0.02545 (17)	0.0457 (7)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.094 (2)	0.0400 (14)	0.0476 (15)	0.0168 (14)	0.0138 (14)	0.0082 (11)
O2	0.0649 (18)	0.0546 (16)	0.0658 (18)	0.0237 (13)	0.0100 (14)	0.0187 (13)
N1	0.0436 (15)	0.0318 (14)	0.0352 (14)	-0.0020 (11)	0.0035 (12)	0.0044 (11)
C3	0.060 (2)	0.0397 (18)	0.0345 (17)	0.0015 (16)	0.0034 (15)	-0.0028 (14)
C4	0.053 (2)	0.0337 (16)	0.0381 (17)	-0.0049 (14)	-0.0023 (15)	0.0075 (14)
C1	0.0523 (19)	0.0366 (17)	0.0377 (17)	-0.0064 (14)	0.0055 (14)	0.0062 (13)
C2	0.059 (2)	0.0430 (19)	0.043 (2)	-0.0033 (16)	0.0017 (17)	0.0061 (15)
C7	0.110 (4)	0.037 (2)	0.079 (3)	-0.010 (3)	-0.028 (3)	0.002 (2)
C8	0.081 (3)	0.058 (3)	0.110 (4)	-0.032 (3)	-0.012 (3)	0.022 (3)
C5	0.078 (3)	0.046 (2)	0.056 (2)	0.0012 (19)	0.009 (2)	0.0072 (18)
C9	0.058 (2)	0.051 (2)	0.082 (3)	-0.0113 (18)	0.012 (2)	0.011 (2)
C6	0.125 (5)	0.052 (3)	0.054 (3)	0.017 (3)	-0.001 (3)	-0.002 (2)
O3	0.0519 (15)	0.0685 (17)	0.0521 (15)	-0.0016 (12)	0.0203 (12)	0.0067 (13)
O4	0.0683 (18)	0.105 (2)	0.0385 (15)	0.0053 (16)	0.0137 (13)	0.0178 (15)
O5	0.0421 (14)	0.0672 (17)	0.0668 (18)	-0.0069 (12)	0.0093 (12)	-0.0081 (14)
N2	0.0524 (17)	0.0380 (15)	0.0472 (17)	0.0036 (12)	0.0142 (14)	0.0113 (13)

Geometric parameters	(Å,	9
----------------------	-----	---

1.180 (4)	C2—H2B	0.9700
1.312 (4)	C7—C8	1.349 (8)
0.8200	C7—C6	1.352 (8)
1.492 (4)	С7—Н7	0.9300
0.8837	C8—C9	1.401 (7)
0.8848	C8—H8	0.9300
0.8849	C5—C6	1.396 (6)
1.512 (5)	С5—Н5	0.9300
1.375 (5)	С9—Н9	0.9300
1.378 (5)	С6—Н6	0.9300
1.519 (5)	O3—N2	1.237 (4)
1.513 (5)	O4—N2	1.235 (4)
0.9800	O5—N2	1.260 (4)
0.9700		
109.5	C3—C2—H2B	109.3
109.0	C1—C2—H2B	109.3
109.4	H2A—C2—H2B	108.0
109.4	C8—C7—C6	119.2 (4)
110.4	С8—С7—Н7	120.4
109.4	С6—С7—Н7	120.4
109.3	C7—C8—C9	121.7 (5)
124.4 (3)	С7—С8—Н8	119.2
122.4 (3)	С9—С8—Н8	119.2
113.2 (3)	C4—C5—C6	120.0 (5)
119.1 (4)	C4—C5—H5	120.0
118.9 (4)	C6—C5—H5	120.0
122.0 (3)	C4—C9—C8	119.2 (5)
109.3 (3)	С4—С9—Н9	120.4
110.3 (3)	С8—С9—Н9	120.4
113.3 (3)	C7—C6—C5	121.0 (5)
107.9	С7—С6—Н6	119.5
107.9	С5—С6—Н6	119.5
107.9	O4—N2—O3	120.2 (3)
111.5 (3)	O4—N2—O5	119.3 (3)
109.3	O3—N2—O5	120.5 (3)
109.3		
	$\begin{array}{c} 1.180 \ (4) \\ 1.312 \ (4) \\ 0.8200 \\ 1.492 \ (4) \\ 0.8837 \\ 0.8848 \\ 0.8849 \\ 1.512 \ (5) \\ 1.375 \ (5) \\ 1.378 \ (5) \\ 1.519 \ (5) \\ 1.513 \ (5) \\ 0.9800 \\ 0.9700 \\ \hline \\ 109.5 \\ 109.0 \\ 109.4 \\ 109.4 \\ 109.4 \\ 109.4 \\ 109.4 \\ 109.3 \\ 124.4 \ (3) \\ 122.4 \ (3) \\ 113.2 \ (3) \\ 113.2 \ (3) \\ 119.1 \ (4) \\ 118.9 \ (4) \\ 122.0 \ (3) \\ 109.3 \ (3) \\ 110.3 \ (3) \\ 113.3 \ (3) \\ 107.9 \\ 1$	1.180(4) $C2-H2B$ $1.312(4)$ $C7-C8$ 0.8200 $C7-C6$ $1.492(4)$ $C7-H7$ 0.8837 $C8-C9$ 0.8848 $C8-H8$ 0.8849 $C5-C6$ $1.512(5)$ $C5-H5$ $1.375(5)$ $C9-H9$ $1.378(5)$ $C6-H6$ $1.519(5)$ $O3-N2$ $1.513(5)$ $O4-N2$ 0.9800 $O5-N2$ 0.9700 $05-N2$ 109.5 $C3-C2-H2B$ 109.4 $H2A-C2-H2B$ 109.4 $C8-C7-C6$ 110.4 $C8-C7-H7$ 109.3 $C7-C8-H8$ $122.4(3)$ $C9-C8-H8$ $122.4(3)$ $C9-C8-H8$ $113.2(3)$ $C4-C5-C6$ $119.1(4)$ $C4-C5-H5$ $122.0(3)$ $C4-C9-C8$ $109.3(3)$ $C7-C6-C5$ 107.9 $C7-C6-H6$ 107.9 $C7-C6-H6$ 107.9 $C7-C6-H6$ 107.9 $O4-N2-O3$ $111.5(3)$ $O4-N2-O5$ 109.3 $O3-N2-O5$ 109.3 $O3-N2-O5$

Hydrogen-bond geometry (Å, °)

					_
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A	
C8—H8…O2 ⁱ	0.93	2.56	3.414 (5)	152	
C2—H2A····O4 ⁱⁱ	0.97	2.46	3.256 (5)	140	
O2—H2···O5 ⁱⁱⁱ	0.82	2.01	2.743 (4)	148	
N1—H1C···O5 ⁱⁱ	0.88	2.13	2.979 (4)	160	
N1—H1 C ···O4 ⁱⁱ	0.88	2.41	3.129 (4)	139	

N1—H1 B ····O1 ^{iv}	0.88	1.97	2.830 (4)	166	
N1—H1A····O4	0.88	2.39	3.101 (4)	138	
N1—H1A····O3	0.88	2.07	2.933 (4)	165	

Symmetry codes: (i) -x+1, y-1/2, -z+1/2; (ii) x+1, y, z; (iii) x+1, -y+1/2, z+1/2; (iv) -x+2, y+1/2, -z+1/2.