Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Piperazine-1,4-diium bis[tetrachloridoaurate(III)] dihydrate

Anna V. Polishchuk, Emilia T. Karaseva and Mikhail A. Pushilin*

Institute of Chemistry FEB RAS, 159 Prospekt Stoletiya, Vladivostok 690022, Russian Federation
Correspondence e-mail: pumalych@ich.dvo.ru

Received 30 September 2009; accepted 8 October 2009

Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.018 ; w R$ factor $=0.044 ;$ data-to-parameter ratio $=29.6$.

In the title compound, $\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\left[\mathrm{AuCl}_{4}\right]_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, the $\mathrm{Au}^{\text {III }}$ atom has a square-planar geometry. The piperazinium dication lies on an inversion centre and adopts a typical chair conformation. In the crystal, a combination of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$, $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds results in the formation of a three-dimensional network.

Related literature

For bond distances, see: Allen et al. (1987). For similar compounds, see: Kefi \& Nasr (2005); Sharutin et al. (2008); Sutherland \& Harrison (2009); Zhang et al. (2006).

Experimental

Crystal data

$\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\left[\mathrm{AuCl}_{4}\right]_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=801.72$
Monoclinic, $P 2_{1} / c$
$=896.5(2) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
$\mu=17.53 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
$0.33 \times 0.23 \times 0.08 \mathrm{~mm}$

Data collection
Bruker SMART CCD 1000 diffractometer
Absorption correction: gaussian (XPREP and SADABS; Bruker, 2003)
$T_{\text {min }}=0.043, T_{\text {max }}=0.251$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.018$
$w R\left(F^{2}\right)=0.044$
$S=1.09$
2630 reflections
89 parameters
2 restraints

6689 measured reflections 2630 independent reflections 2446 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.018$

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ},^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{O} 1^{\mathrm{i}}$	0.90	1.97	$2.815(3)$	155
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{O} 1^{\text {ii }}$	0.90	2.39	$2.960(3)$	121
$\mathrm{O} 1-\mathrm{H} 2 \cdots \mathrm{Cl} 1^{\text {iii }}$	$0.839(13)$	$2.57(2)$	$3.3035(19)$	$147(3)$
$\mathrm{O} 1-\mathrm{H} 2 \cdots \mathrm{Cl} 4^{\text {ii }}$	$0.839(13)$	$2.83(3)$	$3.445(2)$	$131(3)$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 4$	$0.822(14)$	$2.71(3)$	$3.382(2)$	$140(3)$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 3$	$0.822(14)$	$2.67(3)$	$3.268(2)$	$131(3)$
$\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{Cl} 1$	0.90	2.60	$3.373(2)$	144
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{Cl} 2$	0.90	2.81	$3.575(2)$	143

Symmetry codes: (i) $x, y-1, z$; (ii) $-x+1,-y+1,-z$; (iii) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$.

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2009).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2149).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (2003). XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Kefi, R. \& Nasr, C. B. (2005). Z. Kristallogr. New Cryst. Struct. 220, 241-242.
Sharutin, V. V., Senchurin, V. S., Fastovets, O. A., Pakusina, A. P. \& Sharutina, O. K. (2008). Russ. J. Coord. Chem. 34, 367-373.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sutherland, P. A. \& Harrison, W. T. A. (2009). Acta Cryst. E65, m565.
Westrip, S. P. (2009). publCIF. In preparation.
Zhang, X.-P., Yang, G. \& Ng, S. W. (2006). Acta Cryst. E62, m2018-m2020.

supporting information

Acta Cryst. (2009). E65, m1377 [https://doi.org/10.1107/S1600536809041063]

Piperazine-1,4-diium bis[tetrachloridoaurate(III)] dihydrate

Anna V. Polishchuk, Emilia T. Karaseva and Mikhail A. Pushilin

S1. Comment

The asymmetric unit of the title compound consists of a discrete $\left[\mathrm{AuCl}_{4}\right]^{-}$complex anion, one water molecule and onehalf of a diprotonated piperazinium dication (Fig. 1). The Au atom in the tetrachloridoaurate anion exhibits a squareplanar coordination. A similar geometry has been observed, for exemple, in tetraphenylantimony(V) tetrachloroaurate (Sharutin et al., 2008) and bipyridinium tetrachloroaurate (Zhang et al., 2006). The $\mathrm{Au}-\mathrm{Cl}$ bond lengths are in the range of 2.2802 (6) - 2.2842 (7) \AA. In the crystal structure, the anions are stacked into columns along the a axis, parallel to each other. The distances between anion planes are ca. 3.734 and $3.999 \AA$. The organic piperazinium dication lies at an inversion centre and adopts a typical chair geometry with normal valence bond lengths (Allen et al., 1987) and angles, as observed in the structures of piperazinediium tetrachloridozincate (Sutherland \& Harrison, 2009) and piperazinediium tetrachloridozincate monohydrate (Kefi \& Nasr, 2005).
The piperazinium dications and water molecules are linked by intermolecular bifurcated $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form chains proagagting along the [100] direction (Fig. 2). The water-piperaziniun chains and the anion stacks form a three-dimensional framework (Fig. 3) via bifurcated $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds (Table 1).

S2. Experimental

The chemicals used were of reagent grade. Ciprofloxacin hydrochloride ($37 \mathrm{mg}, 0.1 \mathrm{mmol}$) and gold(III) chloride (AuCl_{3} $30 \mathrm{mg}, 0.1 \mathrm{mmol}$) were dissolved in 10 ml of 32% of HCl . Yellow crystals of the title compound, suitable for X-ray analysis, were obtained by slow evaporation in air at rt, after a few days.

S3. Refinement

The water H -atoms were located from difference electron-density maps and were refined with distance restraints of $\mathrm{O}-\mathrm{H}$ $=0.85(2) \AA$ and $\operatorname{Uiso}(\mathrm{H})=1.5 \mathrm{Ueq}(\mathrm{O})$. All the other H -atoms were positioned geometrically and allowed to ride on their parent atoms: $\mathrm{N}-\mathrm{H}=0.90 \AA, \mathrm{C}-\mathrm{H}=0.97 \AA$ with $\operatorname{Uiso}(\mathrm{H})=1.2 \mathrm{Ueq}$ (parent N or C atom).

Figure 1
The asymmetric unit of the title compound, showing 50% displacement ellipsoids (arbitrary spheres for the H atoms).

Figure 2
Fragment of the water-piperazinium hydrogen bonded chain, with the hydrogen bonds indicated by dotted lines. Symmetry codes are the same as in Table 1.

Figure 3
A view along the a axis of the crystal packing of the title compound, with the hydrogen bonds shown as dotted lines. All the C-bound H atoms have been omitted for clarity. Symmetry codes are the same as in Table 1.

Piperazine-1,4-diium bis[tetrachloridoaurate(III)] dihydrate

Crystal data

$\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\left[\mathrm{AuCl}_{4}\right]_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=801.72$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=7.7327$ (11) \AA
$b=10.1114$ (15) \AA
$c=11.9024$ (18) \AA
$\beta=105.565$ (3) ${ }^{\circ}$
$V=896.5(2) \AA^{3}$
$Z=2$

Data collection

Bruker SMART CCD 1000
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 8.33 pixels mm^{-1}
ω scans
Absorption correction: gaussian
(XPREP and SADABS; Bruker, 2003)
$T_{\text {min }}=0.043, T_{\text {max }}=0.251$
$F(000)=728$
$D_{\mathrm{x}}=2.970 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1008 reflections
$\theta=3.4-30.6^{\circ}$
$\mu=17.53 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Prism, yellow
$0.33 \times 0.23 \times 0.08 \mathrm{~mm}$

6689 measured reflections
2630 independent reflections
2446 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.018$
$\theta_{\text {max }}=31.5^{\circ}, \theta_{\text {min }}=2.7^{\circ}$
$h=-10 \rightarrow 9$
$k=-13 \rightarrow 12$
$l=-14 \rightarrow 17$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.018$
$w R\left(F^{2}\right)=0.044$
$S=1.09$
2630 reflections
89 parameters
2 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

> Hydrogen site location: inferred from \quad neighbouring sites
> H atoms treated by a mixture of independent \quad and constrained refinement
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0203 P)^{2}+0.7643 P\right]$ \quad where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.002$
> $\Delta \rho_{\max }=1.36 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.75 \mathrm{e} \AA^{-3}$
> Extinction correction: $S H E L X L 97($ Sheldrick, $\quad 2008), \mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
> Extinction coefficient: $0.01512(17)$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} *^{\prime} / U_{\mathrm{eq}}$
Au1	$0.258077(10)$	$0.481141(8)$	$0.040268(7)$	$0.03248(2)$
C11	$0.22668(9)$	$0.31457(6)$	$0.16243(5)$	$0.04886(14)$
C12	$0.12348(9)$	$0.34990(6)$	$-0.11438(5)$	$0.04885(15)$
C13	$0.29217(10)$	$0.64504(6)$	$-0.08394(6)$	$0.05264(16)$
C14	$0.39054(10)$	$0.60981(7)$	$0.19756(6)$	$0.05297(16)$
O1	$0.5108(2)$	$0.88550(19)$	$0.07637(17)$	$0.0495(4)$
H1	$0.499(5)$	$0.8047(14)$	$0.075(3)$	0.074^{*}
H2	$0.546(5)$	$0.890(4)$	$0.1494(12)$	0.074^{*}
N1	$0.1859(2)$	$0.02747(18)$	$0.01336(18)$	$0.0360(4)$
H1A	0.1882	0.1163	0.0188	0.043^{*}
H1B	0.2985	-0.0004	0.0190	0.043^{*}
C2	$0.1246(3)$	$-0.0285(2)$	$0.1115(2)$	$0.0390(5)$
H2A	0.2018	0.0029	0.1849	0.047^{*}
H2B	0.1330	-0.1242	0.1106	0.047^{*}
C3	$-0.0679(3)$	$0.0117(2)$	$0.1018(2)$	$0.0384(5)$
H3A	-0.1087	-0.0305	0.1632	0.046^{*}
H3B	-0.0741	0.1067	0.1113	0.046^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Au1	$0.03239(3)$	$0.02880(4)$	$0.03751(4)$	$0.00020(3)$	$0.01157(3)$	$-0.00039(3)$
C11	$0.0685(3)$	$0.0368(3)$	$0.0414(3)$	$-0.0146(2)$	$0.0150(2)$	$0.0013(2)$

C12	$0.0623(3)$	$0.0419(3)$	$0.0398(3)$	$-0.0061(3)$	$0.0092(2)$	$-0.0053(2)$
C13	$0.0701(4)$	$0.0397(3)$	$0.0488(3)$	$-0.0048(3)$	$0.0172(3)$	$0.0087(2)$
C14	$0.0677(3)$	$0.0412(3)$	$0.0463(3)$	$-0.0155(3)$	$0.0088(3)$	$-0.0056(2)$
O1	$0.0402(7)$	$0.0474(9)$	$0.0594(10)$	$0.0011(7)$	$0.0107(7)$	$0.0196(8)$
N1	$0.0297(7)$	$0.0361(9)$	$0.0450(9)$	$-0.0024(6)$	$0.0151(7)$	$-0.0022(7)$
C2	$0.0357(9)$	$0.0425(12)$	$0.0386(11)$	$0.0013(8)$	$0.0096(8)$	$0.0047(8)$
C3	$0.0371(9)$	$0.0442(11)$	$0.0382(10)$	$-0.0045(8)$	$0.0176(8)$	$-0.0048(8)$

Geometric parameters (A, ${ }^{\circ}$)

Au1-Cl1	2.2802 (6)	N1-H1A	0.9000
Au1-Cl2	2.2813 (6)	N1-H1B	0.9000
$\mathrm{Au} 1-\mathrm{Cl} 3$	2.2827 (7)	C2-C3	1.517 (3)
Au1-Cl4	2.2842 (7)	C2-H2A	0.9700
$\mathrm{O} 1-\mathrm{H} 1$	0.822 (14)	C2-H2B	0.9700
$\mathrm{O} 1-\mathrm{H} 2$	0.839 (13)	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9700
N1-C3 ${ }^{\text {i }}$	1.482 (3)	C3-H3B	0.9700
N1-C2	1.486 (3)		
C11-Au1-Cl2	88.92 (3)	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	110.55 (18)
Cl1-Au1-Cl3	178.87 (3)	N1-C2-H2A	109.5
C12-Au1-Cl3	90.39 (3)	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.5
C11-Au1-Cl4	89.95 (3)	N1-C2-H2B	109.5
C12-Au1-Cl4	178.82 (2)	C3-C2-H2B	109.5
Cl3-Aul-Cl4	90.74 (3)	H2A-C2-H2B	108.1
$\mathrm{H} 1-\mathrm{O} 1-\mathrm{H} 2$	94 (3)	N1- ${ }^{\text {i }} 3-\mathrm{C} 2$	110.31 (19)
C3i-N1-C2	112.20 (17)	$\mathrm{N} 1{ }^{\text {i }}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.6
C3i-N1-H1A	109.2	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.6
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	109.2	$\mathrm{N} 1-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.6
C3i-N1-H1B	109.2	C2-C3-H3B	109.6
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	109.2	H3A-C3-H3B	108.1
$\mathrm{H} 1 \mathrm{~A}-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	107.9		

Symmetry code: (i) $-x,-y,-z$.

Hydrogen-bond geometry (A, o)

D-H $\cdots A$	D-H	$\mathrm{H} \cdots \mathrm{A}$	$D \cdots A$	D - $\mathrm{H} \cdots \mathrm{A}$
$\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{Ol}{ }^{\text {ii }}$	0.90	1.97	2.815 (3)	155
$\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{O} 1^{\text {iii }}$	0.90	2.39	2.960 (3)	121
$\mathrm{O} 1-\mathrm{H} 2 \cdots \mathrm{Cl1} 1^{\text {iv }}$	0.84 (1)	2.57 (2)	3.3035 (19)	147 (3)
$\mathrm{O} 1-\mathrm{H} 2 \cdots \mathrm{Cl} 4^{\text {iv }}$	0.84 (1)	2.83 (3)	3.445 (2)	131 (3)
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 4$	0.82 (1)	2.71 (3)	3.382 (2)	140 (3)
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 3$	0.82 (1)	2.67 (3)	3.268 (2)	131 (3)
$\mathrm{N} 1-\mathrm{H} 1 A^{\cdots}{ }^{\text {Cl1 }}$	0.90	2.60	3.373 (2)	144
$\mathrm{N} 1-\mathrm{H} 14 \cdots \mathrm{Cl} 2$	0.90	2.81	3.575 (2)	143

Symmetry codes: (ii) $x, y-1, z$; (iii) $-x+1,-y+1,-z$; (iv) $-x+1, y+1 / 2,-z+1 / 2$.

