metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Nitro­syltris(pyridine-2-thiol­ato-κ2N,S)molybdenum(II) dihydrate

aDepartment of Applied Science, Faculty of Science, Kochi University, Akebono-cho, Kochi 780-8520, Japan
*Correspondence e-mail: yonemura@kochi-u.ac.jp

(Received 12 October 2009; accepted 22 October 2009; online 28 October 2009)

In the title compound, [Mo(C5H4NS)3(NO)]·2H2O, the Mo atom is coordinated by a nitrosyl ligand and three monoanionic N,S-bidentate ligands in a distorted MoN4S3 penta­gonal-bipyramidal mol­ecular geometry. The pyridine N atom of one pyridine-2-thiol­ate (pyt) ligand is coordinated to the Mo atom in the trans position relative to the NO ligand [N(pyt)—Mo—N(NO) = 170.62 (19)°]. The compound has Cs symmetry, with a mirror plane that includes one pyt ring and the NO group. The S—Mo—N(NO) and N(pyt)—Mo—N(NO) angles [97.24 (12) and 91.87 (8)°, respectively] are large relative to the ideal angles of 90°. In the crystal, the mol­ecules pack in a zigzag arrangement. The cavities between the mol­ecules are occupied by disordered water mol­ecules of crystallization.

Related literature

For the synthesis and chemistry of similar nitrosyl, pyridine­thilato, or pyrimidine­thiol­ato derivative complexes, see: Halpenny & Mascharak (2009[Halpenny, G. M. & Mascharak, P. K. (2009). Inorg. Chem. 48, 1490-1497.]); Rose et al. (2007[Rose, M. J., Patra, A. K. & Mascharak, P. K. (2007). Inorg. Chem. 46, 2328-2338.]); Cini et al. (2003[Cini, R., Tamasi, G., Defazio, S., Corsini, M., Zanello, P., Messori, L., Marcon, G., Piccioli, F. & Orioli, P. (2003). Inorg. Chem. 42, 8038-8052.]); Maurya et al. (2006[Maurya, R. C., Pandey, A., Chaurasia, J. & Martin, H. (2006). J. Mol. Struct. 798, 89-101.]); Kunkely & Vogler (2003[Kunkely, H. & Vogler, A. (2003). Inorg. Chim. Acta, 346, 275-277.]); Ford et al. (1998[Ford, P. C., Bourassa, J., Mianda, K., Lee, B., Lorkovic, I., Boggs, S., Kudo, S. & Laverman, L. (1998). Coord. Chem. Rev. 171, 185-202.]); Proust et al. (1994[Proust, A., Gouzerh, P. & Robert, F. (1994). J. Chem. Soc. Dalton Trans. pp. 825-833.]); Ardon & Cohen (1993[Ardon, M. & Cohen, S. (1993). Inorg. Chem. 32, 3241-3243.]); Calderon et al. (1969[Calderon, J. L., Cotton, F. A. & Legzdins, P. (1969). J. Am. Chem. Soc. 91, 2528-2535.]); Yonemura et al. (2006[Yonemura, T., Hashimoto, T., Hasegawa, M., Ikenoue, T., Ama, T. & Kawaguchi, H. (2006). Inorg. Chem. Commun. 9, 183-186.], 2001[Yonemura, T., Nakata, J., Kadoda, M., Hasegawa, M., Okamoto, K., Ama, T., Kawaguchi, H. & Yasui, T. (2001). Inorg. Chem. Commun. 4, 661-663.]); Bucher et al. (2008[Bucher, J., Blacque, O., Schmalle, H. W. & Berke, H. (2008). Acta Cryst. C64, m87-m90.]).

[Scheme 1]

Experimental

Crystal data
  • [Mo(C5H4NS)3(NO)]·2H2O

  • Mr = 492.44

  • Orthorhombic, P n m a

  • a = 15.7519 (16) Å

  • b = 14.8889 (14) Å

  • c = 9.0535 (12) Å

  • V = 2123.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.93 mm−1

  • T = 296 K

  • 0.45 × 0.40 × 0.25 mm

Data collection
  • Rigaku AFC-7S diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.727, Tmax = 0.792

  • 3681 measured reflections

  • 2540 independent reflections

  • 2088 reflections with I > 2σ(I)

  • Rint = 0.023

  • 3 standard reflections every 150 reflections intensity decay: 1.3%

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.126

  • S = 1.13

  • 2540 reflections

  • 144 parameters

  • H-atom parameters constrained

  • Δρmax = 1.14 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Selected geometric parameters (Å, °)

Mo1—S1 2.5240 (12)
Mo1—S2 2.4815 (16)
Mo1—N1 2.218 (5)
Mo1—N2 2.228 (3)
Mo1—N3 1.777 (5)
S1—Mo1—S2 138.29 (3)
S1—Mo1—N1 90.40 (10)
S1—Mo1—N3 97.24 (12)
S2—Mo1—N2 80.58 (7)
S1i—Mo1—S2 138.29 (3)
N1—Mo1—N2 86.66 (8)
N1—Mo1—N3 170.62 (19)
N2—Mo1—N3 91.87 (8)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z].

Data collection: WinAFC (Rigaku/MSC, 2000[Rigaku/MSC (2000). WinAFC. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: WinAFC; data reduction: CrystalStructure (Rigaku/MSC, 2007[Rigaku/MSC (2007). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

In recent years, pyridinethiolate- or pyrimidinethiolate-type ligands and their complexes have been investigated as antimetabolite and antiviral agents, as well as for their unique photochemical properties (Halpenny & Mascharak, 2009; Rose et al., 2007; Cini et al., 2003). For example, attempts to regulate NO in vivo have prompted studies of NO scavengers and NO-releasing drugs. Although some photoinduced NO-releasing reactions of mononitrosyl complexes have been reported, relatively little is known about the analogous reactions of dinitrosyl complexes in this respect (Maurya et al., 2006; Kunkely & Vogler, 2003; Ford et al., 1998). We previously reported on the preparation, characterization and interesting photo-dimerization reactions of some dinitrosyl-molybdenum complexes containing thiolate ligands, which were accompanied by NO cleavage (Yonemura et al., 2001, 2006). This highlighted the need to further study the reactivities and properties of these dinitrosyl-molybdenum complexes. That communication described a novel reaction of dinitrosyl-molybdenum [Mo(bidentate-N,S)2(NO)2]-type complexes with PPh3 (Yonemura, et al., 2006). This reaction, which uses pyridine-2-thiolate (pyt) as a thiolate ligand, was shown to form [Mo(pyt)3(NO)], [{(ON)Mo(pyt)2}2(µ-OH)2], and Ph3PO. In this paper, we report on the structure of [Mo(pyt)3(NO)] Dihydrate.

In the title compound the molybdenum atom is coordinated to a nitrosyl ligand and three monoanionic N,S- bidentate ligands, producing a distorted MoN5S2 pentagonal bipyramidal molecular geometry (Fig. 1 and Table 1). The geometrical parameters are available in the archived CIF. This complex is derived from the elimination of one NO ligand from [Mo(pyt)2(NO)2] and the introduction of a third pyt ligand, giving rise to a Mo atom surrounded by three pyt ligands and one NO ligand. The complex adopts a seven-coordinate structure with a distorted pentagonal bipyramidal coordination geometry about the Mo atom. Both the N and S atoms of two pyt ligands and an S atom of the third pyt ligand occupy the equatorial positions of the complex. The remaining N-atom of the third pyt ligand occupies one of the axial sites. The NO ligand occupies the other axial site in its linear mode [Mo1—N3—O1 = 179.6 (4)°], indicating that the NO ligand is coordinated as NO+ (Proust et al., 1994; Ardon & Cohen, 1993; Calderon et al., 1969). Therefore, the oxidation state of the molybdenum atom in the title compound is formally +II; that is, the molybdenum atom is oxidized from 0 to +II.

The Mo—S distances are 2.5240 (12) and 2.4815 (16) Å, compared to 2.497 (3) and 2.477 (3) Å in complex [Mo(pymt)2(NO)2] (Yonemura et al., 2001), and 2.4870 (7) Å in [Mo(aet)2(NO)2] (Bucher et al., 2008). In this latter complex, the Mo—N2 distance ( 2.228 (3) Å), corresponding to the N trans to the NO ligand, is almost the same as the other Mo—N distance in the title compound (Mo1—N1 = 2.218 (5) Å). The Mo1—NO distance ( 1.777 (5) Å) in the title compound is significantly shorter than those in complex es [Mo(pymt)2(NO)2] (1.814 (8) and 1.84 (1) Å), and [Mo(aet)2(NO)2] (1.828 (2) and 1.837 (2) Å). However, the Mo1—NO distance is almost the same as that in complex [{(ON)Mo(pyt)2}2(µ-OH)2], that is 1.756 (2) Å (Yonemura et al., 2001). The S1—Mo1—N3(NO) and N1—Mo1—N3(NO) angles (97.24 (12) and 91.87 (8)°, respectively) are large compared to the corresponding angles (95.71 (6), 94.48 (7) and 86.36 (8), 88.12 (8)°, respectively) in [{(ON)Mo(pyt)2}2(µ-OH)2].

In the crystal the molecules pack in a zigzag arrangement (Fig. 2). The cavities between the molecules are occupied by disordered water molecules of crystallization.

Related literature top

For

the synthesis and chemistry of similar nitrosyl, pyridinethilato, or pyrimidinethiolato derivative complexes, see: Halpenny & Mascharak (2009); Rose et al. (2007); Cini et al. (2003); Maurya et al. (2006); Kunkely & Vogler (2003); Ford et al. (1998); Proust et al. (1994); Ardon & Cohen (1993); Calderon et al. (1969); Yonemura et al. (2006, 2001); Bucher et al. (2008).

Experimental top

A solution of [Mo(pyt)2(NO)2] (0.25 g, 0.65 mmol) in N,N-dimethylformamide (DMF) and PPh3 (0.37 g, 1.41 mmol) in tetrahydrofuran (THF) was stirred at rt for 4 days to produce an orange solution. Yellow precipitates of [{(ON)Mo(pyt)2}2(µ-OH)2] and [Mo(pyt)3(NO)] were obtained by allowing the reaction solution to stand in a refrigerator for a few days. The resulting orange-yellow crystals were collected by filtration. The filtrate was then poured into water, and the precipitate produced was collected by filtration and recrystallized from an acetone solution to give orange-yellow crystals of the title compound (23% yield). Anal. Calcd for [Mo(pyt)3(NO)] = C16H16MoN4O2S3: C 25.53, H 1.55, N 22.13%, Found: C 25.70, H 1.61, N 21.98%. IR [KBr; νmax,, cm-1]: 1644 (NO), 1582, 1551(CC, CN), 1447, 1420 (NC, CH), 1260 (CS). 13C NMR (acetone-d6): δ 176.5, 149.1, 148.2, 140.3, 140.1, 126.8, 126.5, 119.9, 118.7.

Refinement top

The water molecules of solvent of crystallization are disordered with occupancies of 0.5 each, and it was not possible to locate their H-atoms. The C-bound H-atom were included in calculated positions and treated as riding: C—H = 0.93 Å, with Uiso(H) = 1.2Ueq(C).

Structure description top

In recent years, pyridinethiolate- or pyrimidinethiolate-type ligands and their complexes have been investigated as antimetabolite and antiviral agents, as well as for their unique photochemical properties (Halpenny & Mascharak, 2009; Rose et al., 2007; Cini et al., 2003). For example, attempts to regulate NO in vivo have prompted studies of NO scavengers and NO-releasing drugs. Although some photoinduced NO-releasing reactions of mononitrosyl complexes have been reported, relatively little is known about the analogous reactions of dinitrosyl complexes in this respect (Maurya et al., 2006; Kunkely & Vogler, 2003; Ford et al., 1998). We previously reported on the preparation, characterization and interesting photo-dimerization reactions of some dinitrosyl-molybdenum complexes containing thiolate ligands, which were accompanied by NO cleavage (Yonemura et al., 2001, 2006). This highlighted the need to further study the reactivities and properties of these dinitrosyl-molybdenum complexes. That communication described a novel reaction of dinitrosyl-molybdenum [Mo(bidentate-N,S)2(NO)2]-type complexes with PPh3 (Yonemura, et al., 2006). This reaction, which uses pyridine-2-thiolate (pyt) as a thiolate ligand, was shown to form [Mo(pyt)3(NO)], [{(ON)Mo(pyt)2}2(µ-OH)2], and Ph3PO. In this paper, we report on the structure of [Mo(pyt)3(NO)] Dihydrate.

In the title compound the molybdenum atom is coordinated to a nitrosyl ligand and three monoanionic N,S- bidentate ligands, producing a distorted MoN5S2 pentagonal bipyramidal molecular geometry (Fig. 1 and Table 1). The geometrical parameters are available in the archived CIF. This complex is derived from the elimination of one NO ligand from [Mo(pyt)2(NO)2] and the introduction of a third pyt ligand, giving rise to a Mo atom surrounded by three pyt ligands and one NO ligand. The complex adopts a seven-coordinate structure with a distorted pentagonal bipyramidal coordination geometry about the Mo atom. Both the N and S atoms of two pyt ligands and an S atom of the third pyt ligand occupy the equatorial positions of the complex. The remaining N-atom of the third pyt ligand occupies one of the axial sites. The NO ligand occupies the other axial site in its linear mode [Mo1—N3—O1 = 179.6 (4)°], indicating that the NO ligand is coordinated as NO+ (Proust et al., 1994; Ardon & Cohen, 1993; Calderon et al., 1969). Therefore, the oxidation state of the molybdenum atom in the title compound is formally +II; that is, the molybdenum atom is oxidized from 0 to +II.

The Mo—S distances are 2.5240 (12) and 2.4815 (16) Å, compared to 2.497 (3) and 2.477 (3) Å in complex [Mo(pymt)2(NO)2] (Yonemura et al., 2001), and 2.4870 (7) Å in [Mo(aet)2(NO)2] (Bucher et al., 2008). In this latter complex, the Mo—N2 distance ( 2.228 (3) Å), corresponding to the N trans to the NO ligand, is almost the same as the other Mo—N distance in the title compound (Mo1—N1 = 2.218 (5) Å). The Mo1—NO distance ( 1.777 (5) Å) in the title compound is significantly shorter than those in complex es [Mo(pymt)2(NO)2] (1.814 (8) and 1.84 (1) Å), and [Mo(aet)2(NO)2] (1.828 (2) and 1.837 (2) Å). However, the Mo1—NO distance is almost the same as that in complex [{(ON)Mo(pyt)2}2(µ-OH)2], that is 1.756 (2) Å (Yonemura et al., 2001). The S1—Mo1—N3(NO) and N1—Mo1—N3(NO) angles (97.24 (12) and 91.87 (8)°, respectively) are large compared to the corresponding angles (95.71 (6), 94.48 (7) and 86.36 (8), 88.12 (8)°, respectively) in [{(ON)Mo(pyt)2}2(µ-OH)2].

In the crystal the molecules pack in a zigzag arrangement (Fig. 2). The cavities between the molecules are occupied by disordered water molecules of crystallization.

For

the synthesis and chemistry of similar nitrosyl, pyridinethilato, or pyrimidinethiolato derivative complexes, see: Halpenny & Mascharak (2009); Rose et al. (2007); Cini et al. (2003); Maurya et al. (2006); Kunkely & Vogler (2003); Ford et al. (1998); Proust et al. (1994); Ardon & Cohen (1993); Calderon et al. (1969); Yonemura et al. (2006, 2001); Bucher et al. (2008).

Computing details top

Data collection: WinAFC (Rigaku/MSC, 2000); cell refinement: WinAFC (Rigaku/MSC, 2000); data reduction: CrystalStructure (Rigaku/MSC, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2007).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, showing the atom-labelling scheme and 50% probability displacement ellipsoids. Atoms related by the mirror symmetry are marked by *; symmetry operation: x, -y+1/2, z.
[Figure 2] Fig. 2. Crystal packing diagram of the title compound viewed along the c axis (some H-atoms have been omitted for clarity).
Nitrosyltris(pyridine-2-thiolato-κ2N,S)molybdenum(II) dihydrate top
Crystal data top
[Mo(C5H4NS)3(NO)]·2H2OF(000) = 992.00
Mr = 492.44Dx = 1.540 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ac 2nCell parameters from 25 reflections
a = 15.7519 (16) Åθ = 15.4–17.4°
b = 14.8889 (14) ŵ = 0.93 mm1
c = 9.0535 (12) ÅT = 296 K
V = 2123.3 (4) Å3Prismatic, orange
Z = 40.45 × 0.40 × 0.25 mm
Data collection top
Rigaku AFC-7S
diffractometer
Rint = 0.023
ω–2θ scansθmax = 27.5°
Absorption correction: ψ scan
(North et al., 1968)
h = 020
Tmin = 0.727, Tmax = 0.792k = 1019
3681 measured reflectionsl = 116
2540 independent reflections3 standard reflections every 150 reflections
2088 reflections with F2 > 2σ(F2) intensity decay: 1.3%
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0621P)2 + 2.5132P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.126(Δ/σ)max = 0.002
S = 1.13Δρmax = 1.14 e Å3
2540 reflectionsΔρmin = 0.64 e Å3
144 parametersExtinction correction: SHELXL97 (Sheldrick, 2008)
0 restraintsExtinction coefficient: 0.0029 (5)
Crystal data top
[Mo(C5H4NS)3(NO)]·2H2OV = 2123.3 (4) Å3
Mr = 492.44Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 15.7519 (16) ŵ = 0.93 mm1
b = 14.8889 (14) ÅT = 296 K
c = 9.0535 (12) Å0.45 × 0.40 × 0.25 mm
Data collection top
Rigaku AFC-7S
diffractometer
2088 reflections with F2 > 2σ(F2)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.023
Tmin = 0.727, Tmax = 0.7923 standard reflections every 150 reflections
3681 measured reflections intensity decay: 1.3%
2540 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.13Δρmax = 1.14 e Å3
2540 reflectionsΔρmin = 0.64 e Å3
144 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mo10.17875 (3)0.250000.95698 (4)0.0359 (1)
S10.07755 (7)0.15176 (7)1.10056 (12)0.0512 (3)
S20.25067 (10)0.250000.71312 (17)0.0516 (4)
O10.3191 (3)0.250001.1749 (5)0.0667 (14)
N10.0907 (3)0.250000.7658 (5)0.0427 (12)
N20.1905 (2)0.1024 (2)0.9222 (3)0.0427 (9)
N30.2627 (3)0.250001.0881 (5)0.0423 (12)
C10.1292 (2)0.0662 (2)1.0080 (4)0.0420 (10)
C20.1159 (3)0.0257 (2)1.0145 (4)0.0520 (12)
C30.1680 (3)0.0801 (3)0.9319 (5)0.0627 (14)
C40.2315 (3)0.0437 (3)0.8467 (5)0.0653 (16)
C50.2415 (2)0.0478 (3)0.8434 (5)0.0560 (12)
C60.1452 (4)0.250000.6512 (6)0.0477 (14)
C70.0065 (4)0.250000.7415 (8)0.0570 (17)
C80.0257 (5)0.250000.5987 (9)0.077 (3)
C90.0308 (6)0.250000.4820 (8)0.080 (3)
C100.1160 (5)0.250000.5066 (7)0.066 (2)
O210.0333 (11)0.4696 (10)0.609 (2)0.258 (12)0.500
O220.0678 (7)0.5119 (9)0.5891 (12)0.128 (5)0.500
H10.073000.049801.073000.0630*
H20.160300.142100.933600.0750*
H30.267300.080700.792000.0780*
H40.284300.072600.785500.0670*
H50.030700.250000.821300.0690*
H60.083900.250000.582000.0920*
H70.010400.250000.385700.0960*
H80.154000.250000.428000.0790*
H90.011200.484600.542800.3170*0.500
H100.056900.482400.657300.3170*0.500
H110.028400.510900.602700.1900*0.500
H120.082400.494800.498300.1900*0.500
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.0365 (2)0.0382 (2)0.0330 (2)0.00000.0017 (2)0.0000
S10.0579 (5)0.0446 (5)0.0510 (5)0.0049 (4)0.0178 (4)0.0019 (4)
S20.0495 (7)0.0588 (8)0.0464 (7)0.00000.0145 (6)0.0000
O10.066 (2)0.074 (3)0.060 (2)0.00000.025 (2)0.0000
N10.045 (2)0.049 (2)0.034 (2)0.00000.0012 (18)0.0000
N20.0440 (16)0.0440 (17)0.0401 (15)0.0014 (13)0.0003 (12)0.0030 (13)
N30.044 (2)0.042 (2)0.041 (2)0.00000.0001 (19)0.0000
C10.0457 (19)0.0416 (18)0.0387 (17)0.0002 (15)0.0037 (15)0.0016 (14)
C20.063 (2)0.044 (2)0.049 (2)0.0051 (19)0.0008 (19)0.0026 (17)
C30.085 (3)0.039 (2)0.064 (2)0.004 (2)0.011 (2)0.0020 (19)
C40.072 (3)0.051 (2)0.073 (3)0.017 (2)0.007 (2)0.008 (2)
C50.054 (2)0.056 (2)0.058 (2)0.0076 (19)0.0063 (19)0.004 (2)
C60.057 (3)0.047 (2)0.039 (2)0.00000.005 (2)0.0000
C70.047 (3)0.068 (3)0.056 (3)0.00000.003 (2)0.0000
C80.070 (4)0.099 (6)0.061 (4)0.00000.023 (3)0.0000
C90.095 (6)0.103 (6)0.043 (3)0.00000.019 (3)0.0000
C100.084 (5)0.079 (4)0.034 (2)0.00000.006 (3)0.0000
O210.213 (18)0.132 (13)0.43 (3)0.100 (12)0.21 (2)0.171 (17)
O220.104 (7)0.164 (11)0.117 (7)0.009 (7)0.024 (6)0.001 (8)
Geometric parameters (Å, º) top
Mo1—S12.5240 (12)N2—C51.347 (5)
Mo1—S22.4815 (16)C1—C21.386 (4)
Mo1—N12.218 (5)C2—C31.374 (6)
Mo1—N22.228 (3)C3—C41.375 (7)
Mo1—N31.777 (5)C4—C51.372 (6)
Mo1—S1i2.5240 (12)C6—C101.388 (9)
Mo1—N2i2.228 (3)C7—C81.389 (11)
S1—C11.728 (3)C8—C91.381 (12)
S2—C61.753 (6)C9—C101.360 (12)
O1—N31.186 (7)C2—H10.9300
O21—O221.72 (2)C3—H20.9300
O21—H100.6000C4—H30.9300
O21—H90.7300C5—H40.9300
O22—H120.8900C7—H50.9300
O22—H110.6300C8—H60.9300
N1—C61.347 (7)C9—H70.9300
N1—C71.344 (8)C10—H80.9300
N2—C11.351 (4)
S1—Mo1—S2138.29 (3)Mo1—N3—O1179.6 (4)
S1—Mo1—N190.40 (10)N2—C1—C2121.8 (3)
S1—Mo1—N263.49 (8)S1—C1—N2108.7 (2)
S1—Mo1—N397.24 (12)S1—C1—C2129.5 (3)
S1—Mo1—S1i70.83 (4)C1—C2—C3118.0 (4)
S1—Mo1—N2i134.18 (8)C2—C3—C4120.5 (4)
S2—Mo1—N165.87 (13)C3—C4—C5119.2 (4)
S2—Mo1—N280.58 (7)N2—C5—C4121.3 (4)
S2—Mo1—N3104.75 (15)N1—C6—C10121.0 (6)
S1i—Mo1—S2138.29 (3)S2—C6—N1111.0 (4)
S2—Mo1—N2i80.58 (7)S2—C6—C10128.0 (5)
N1—Mo1—N286.66 (8)N1—C7—C8120.8 (6)
N1—Mo1—N3170.62 (19)C7—C8—C9118.5 (7)
S1i—Mo1—N190.40 (10)C8—C9—C10120.7 (7)
N1—Mo1—N2i86.66 (8)C6—C10—C9118.8 (6)
N2—Mo1—N391.87 (8)C1—C2—H1121.00
S1i—Mo1—N2134.18 (8)C3—C2—H1121.00
N2—Mo1—N2i161.13 (11)C2—C3—H2120.00
S1i—Mo1—N397.24 (12)C4—C3—H2120.00
N2i—Mo1—N391.87 (8)C5—C4—H3120.00
S1i—Mo1—N2i63.49 (8)C3—C4—H3120.00
Mo1—S1—C183.12 (11)N2—C5—H4119.00
Mo1—S2—C681.48 (19)C4—C5—H4119.00
H9—O21—H10142.00N1—C7—H5120.00
H11—O22—H12115.00C8—C7—H5120.00
Mo1—N1—C6101.7 (4)C7—C8—H6121.00
C6—N1—C7120.2 (5)C9—C8—H6121.00
Mo1—N1—C7138.1 (4)C8—C9—H7120.00
Mo1—N2—C5136.0 (3)C10—C9—H7120.00
C1—N2—C5119.3 (3)C9—C10—H8121.00
Mo1—N2—C1104.6 (2)C6—C10—H8121.00
S2—Mo1—S1—C132.54 (14)Mo1—S1—C1—N21.4 (2)
N1—Mo1—S1—C185.19 (14)Mo1—S1—C1—C2179.6 (4)
N2—Mo1—S1—C10.87 (14)Mo1—S2—C6—N10.00
N3—Mo1—S1—C189.34 (15)Mo1—S2—C6—C10180.00
S1i—Mo1—S1—C1175.48 (12)Mo1—N1—C6—S20.00
N2i—Mo1—S1—C1170.92 (16)Mo1—N1—C6—C10180.00
S1—Mo1—S2—C660.58 (6)C7—N1—C6—S2180.00
N1—Mo1—S2—C60.00C7—N1—C6—C100.00
N2—Mo1—S2—C690.55 (8)Mo1—N1—C7—C8180.00
N3—Mo1—S2—C6180.00C6—N1—C7—C80.00
S1—Mo1—N1—C6144.58 (2)Mo1—N2—C1—S11.6 (3)
S1—Mo1—N1—C735.42 (2)Mo1—N2—C1—C2179.3 (3)
S2—Mo1—N1—C60.00C5—N2—C1—S1177.5 (3)
S2—Mo1—N1—C7180.00C5—N2—C1—C21.6 (5)
N2—Mo1—N1—C681.17 (8)Mo1—N2—C5—C4179.9 (3)
N2—Mo1—N1—C798.83 (8)C1—N2—C5—C41.1 (6)
S1—Mo1—N2—C11.14 (19)S1—C1—C2—C3178.1 (3)
S1—Mo1—N2—C5177.8 (4)N2—C1—C2—C30.8 (6)
S2—Mo1—N2—C1157.1 (2)C1—C2—C3—C40.4 (6)
S2—Mo1—N2—C524.1 (3)C2—C3—C4—C50.9 (7)
N1—Mo1—N2—C191.0 (2)C3—C4—C5—N20.2 (7)
N1—Mo1—N2—C590.1 (4)S2—C6—C10—C9180.00
N3—Mo1—N2—C198.3 (3)N1—C6—C10—C90.00
N3—Mo1—N2—C580.6 (4)N1—C7—C8—C90.00
S1i—Mo1—N2—C13.7 (3)C7—C8—C9—C100.00
S1i—Mo1—N2—C5177.4 (3)C8—C9—C10—C60.00
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O21—H9···O220.731.371.72 (2)106
C5—H4···S20.932.773.237 (5)112

Experimental details

Crystal data
Chemical formula[Mo(C5H4NS)3(NO)]·2H2O
Mr492.44
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)296
a, b, c (Å)15.7519 (16), 14.8889 (14), 9.0535 (12)
V3)2123.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.93
Crystal size (mm)0.45 × 0.40 × 0.25
Data collection
DiffractometerRigaku AFC-7S
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.727, 0.792
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
3681, 2540, 2088
Rint0.023
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.126, 1.13
No. of reflections2540
No. of parameters144
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.14, 0.64

Computer programs: WinAFC (Rigaku/MSC, 2000), CrystalStructure (Rigaku/MSC, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Selected geometric parameters (Å, º) top
Mo1—S12.5240 (12)Mo1—N22.228 (3)
Mo1—S22.4815 (16)Mo1—N31.777 (5)
Mo1—N12.218 (5)
S1—Mo1—S2138.29 (3)S1i—Mo1—S2138.29 (3)
S1—Mo1—N190.40 (10)N1—Mo1—N286.66 (8)
S1—Mo1—N397.24 (12)N1—Mo1—N3170.62 (19)
S2—Mo1—N280.58 (7)N2—Mo1—N391.87 (8)
Symmetry code: (i) x, y+1/2, z.
 

Acknowledgements

This work was partially supported by Grants-in-Aid for Scientific Research C (No. 20550138) from the Japanese Society for the Promotion of Science (JSPS). The authors are grateful to Kochi University for financial support (The Kochi University President's Discretionary Grant 2009).

References

First citationArdon, M. & Cohen, S. (1993). Inorg. Chem. 32, 3241–3243.  CrossRef CAS Web of Science Google Scholar
First citationBucher, J., Blacque, O., Schmalle, H. W. & Berke, H. (2008). Acta Cryst. C64, m87–m90.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCalderon, J. L., Cotton, F. A. & Legzdins, P. (1969). J. Am. Chem. Soc. 91, 2528–2535.  CSD CrossRef CAS Web of Science Google Scholar
First citationCini, R., Tamasi, G., Defazio, S., Corsini, M., Zanello, P., Messori, L., Marcon, G., Piccioli, F. & Orioli, P. (2003). Inorg. Chem. 42, 8038–8052.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFord, P. C., Bourassa, J., Mianda, K., Lee, B., Lorkovic, I., Boggs, S., Kudo, S. & Laverman, L. (1998). Coord. Chem. Rev. 171, 185–202.  CrossRef CAS Google Scholar
First citationHalpenny, G. M. & Mascharak, P. K. (2009). Inorg. Chem. 48, 1490–1497.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKunkely, H. & Vogler, A. (2003). Inorg. Chim. Acta, 346, 275–277.  Web of Science CrossRef CAS Google Scholar
First citationMaurya, R. C., Pandey, A., Chaurasia, J. & Martin, H. (2006). J. Mol. Struct. 798, 89–101.  Web of Science CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationProust, A., Gouzerh, P. & Robert, F. (1994). J. Chem. Soc. Dalton Trans. pp. 825–833.  CSD CrossRef Web of Science Google Scholar
First citationRigaku/MSC (2000). WinAFC. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationRigaku/MSC (2007). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationRose, M. J., Patra, A. K. & Mascharak, P. K. (2007). Inorg. Chem. 46, 2328–2338.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYonemura, T., Hashimoto, T., Hasegawa, M., Ikenoue, T., Ama, T. & Kawaguchi, H. (2006). Inorg. Chem. Commun. 9, 183–186.  Web of Science CSD CrossRef CAS Google Scholar
First citationYonemura, T., Nakata, J., Kadoda, M., Hasegawa, M., Okamoto, K., Ama, T., Kawaguchi, H. & Yasui, T. (2001). Inorg. Chem. Commun. 4, 661–663.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds