organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro­benzo[h]quinoline-3-carbaldehyde

aChemistry Division, School of Science and Humanities, VIT University, Vellore 632 014, Tamil Nadu, India, bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 6 October 2009; accepted 6 October 2009; online 10 October 2009)

The benzo[h]quinolinyl fused-ring of the title compound, C14H8ClNO, is planar (r.m.s. deviation = 0.016 Å); the formyl group is slightly bent out of the plane [the C—C—C—O torsion angle is 10.7 (4)°].

Related literature

For a review of the synthesis of quinolines by the Vilsmeier–Haack reaction, see: Meth-Cohn (1993[Meth-Cohn, O. (1993). Heterocycles, 35, 539-557.]).

[Scheme 1]

Experimental

Crystal data
  • C14H8ClNO

  • Mr = 241.66

  • Monoclinic, P 21 /c

  • a = 3.9833 (2) Å

  • b = 12.4722 (6) Å

  • c = 21.4561 (13) Å

  • β = 90.687 (6)°

  • V = 1065.87 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 290 K

  • 0.20 × 0.15 × 0.15 mm

Data collection
  • Oxford Diffraction Excalibur diffractometer

  • Absorption correction: multi-scan (CrysAlis Pro; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlisPro. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.936, Tmax = 0.951

  • 12099 measured reflections

  • 1872 independent reflections

  • 935 reflections with I > 2˘I)

  • Rint = 0.093

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.087

  • S = 0.81

  • 1872 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: CrysAlis Pro (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlisPro. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For a review of the synthesis of quinolines by the Vilsmeier–Haack reaction, see: Meth-Cohn (1993).

Experimental top

A Vilsmeier-Haack adduct prepared from phosphorus oxytrichloride (6.5 ml, 70 mmol) and N,N-dimethylformamide (2.3 ml, 30 mmol) at 273 K was added to N-(1-naphthyl)acetamide (1.85 g, 10 mmol), and the mixture was heated at 353 K for 15 h. The mixture was then poured onto ice, and the white product was collected and dried. The compound was purified by recrystallization from a petroleum ether/ethyl acetate mixture.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2Ueq(C).

Structure description top

For a review of the synthesis of quinolines by the Vilsmeier–Haack reaction, see: Meth-Cohn (1993).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C14H8ClNO at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
2-Chlorobenzo[h]quinoline-3-carbaldehyde top
Crystal data top
C14H8ClNOF(000) = 496
Mr = 241.66Dx = 1.506 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1012 reflections
a = 3.9833 (2) Åθ = 1.9–20.4°
b = 12.4722 (6) ŵ = 0.34 mm1
c = 21.4561 (13) ÅT = 290 K
β = 90.687 (6)°Block, colorless
V = 1065.87 (10) Å30.20 × 0.15 × 0.15 mm
Z = 4
Data collection top
Oxford Diffraction Excalibur
diffractometer
1872 independent reflections
Radiation source: fine-focus sealed tube935 reflections with I > 2˘I)
Graphite monochromatorRint = 0.093
ω scansθmax = 25.0°, θmin = 3.3°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 44
Tmin = 0.936, Tmax = 0.951k = 1414
12099 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 0.81 w = 1/[σ2(Fo2) + (0.0379P)2]
where P = (Fo2 + 2Fc2)/3
1872 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C14H8ClNOV = 1065.87 (10) Å3
Mr = 241.66Z = 4
Monoclinic, P21/cMo Kα radiation
a = 3.9833 (2) ŵ = 0.34 mm1
b = 12.4722 (6) ÅT = 290 K
c = 21.4561 (13) Å0.20 × 0.15 × 0.15 mm
β = 90.687 (6)°
Data collection top
Oxford Diffraction Excalibur
diffractometer
1872 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
935 reflections with I > 2˘I)
Tmin = 0.936, Tmax = 0.951Rint = 0.093
12099 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 0.81Δρmax = 0.14 e Å3
1872 reflectionsΔρmin = 0.19 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.74845 (19)0.87817 (5)0.54210 (3)0.0598 (3)
O10.1454 (5)0.63739 (16)0.45218 (9)0.0658 (6)
N10.7413 (5)0.74695 (15)0.63554 (10)0.0385 (6)
C10.6418 (6)0.75706 (19)0.57774 (13)0.0390 (7)
C20.4576 (6)0.6809 (2)0.54353 (12)0.0380 (7)
C30.3790 (6)0.58737 (19)0.57384 (12)0.0399 (7)
H30.25570.53480.55310.048*
C40.4818 (6)0.57031 (19)0.63539 (12)0.0347 (7)
C50.4052 (6)0.4751 (2)0.66944 (13)0.0414 (7)
H50.28570.42010.65010.050*
C60.5043 (6)0.4643 (2)0.72937 (13)0.0431 (7)
H60.45040.40180.75060.052*
C70.6893 (6)0.5458 (2)0.76127 (12)0.0360 (7)
C80.7886 (6)0.5348 (2)0.82389 (13)0.0473 (8)
H80.73390.47250.84530.057*
C90.9636 (7)0.6135 (2)0.85384 (13)0.0513 (8)
H91.02570.60510.89550.062*
C101.0497 (6)0.7069 (2)0.82201 (13)0.0474 (7)
H101.16930.76060.84260.057*
C110.9598 (6)0.7202 (2)0.76084 (12)0.0388 (7)
H111.02190.78220.73990.047*
C120.7750 (6)0.64093 (19)0.72954 (12)0.0319 (6)
C130.6639 (6)0.65335 (19)0.66560 (12)0.0335 (7)
C140.3425 (7)0.6954 (2)0.47811 (14)0.0496 (8)
H140.42830.75300.45580.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0849 (6)0.0483 (5)0.0463 (5)0.0102 (4)0.0001 (4)0.0101 (4)
O10.0809 (16)0.0710 (15)0.0450 (14)0.0128 (12)0.0151 (12)0.0047 (12)
N10.0463 (15)0.0353 (14)0.0341 (15)0.0004 (10)0.0016 (11)0.0006 (11)
C10.0404 (17)0.0381 (16)0.0387 (18)0.0002 (13)0.0065 (14)0.0006 (14)
C20.0378 (17)0.0421 (17)0.0342 (18)0.0034 (14)0.0058 (14)0.0006 (14)
C30.0380 (16)0.0431 (18)0.0386 (18)0.0005 (13)0.0012 (14)0.0101 (14)
C40.0341 (16)0.0356 (16)0.0344 (18)0.0033 (13)0.0031 (13)0.0056 (14)
C50.0420 (17)0.0370 (17)0.0452 (19)0.0014 (13)0.0003 (15)0.0032 (15)
C60.0406 (17)0.0362 (16)0.053 (2)0.0025 (14)0.0051 (15)0.0069 (15)
C70.0339 (16)0.0377 (16)0.0367 (18)0.0071 (13)0.0059 (14)0.0009 (14)
C80.0514 (19)0.0481 (18)0.043 (2)0.0077 (15)0.0037 (15)0.0110 (15)
C90.059 (2)0.064 (2)0.0311 (17)0.0077 (17)0.0036 (15)0.0004 (17)
C100.0527 (19)0.0489 (18)0.040 (2)0.0048 (15)0.0053 (15)0.0048 (16)
C110.0417 (17)0.0360 (16)0.0385 (18)0.0054 (13)0.0002 (14)0.0013 (14)
C120.0281 (15)0.0329 (16)0.0349 (17)0.0069 (12)0.0017 (13)0.0020 (13)
C130.0314 (16)0.0347 (16)0.0347 (17)0.0045 (12)0.0057 (13)0.0003 (13)
C140.058 (2)0.053 (2)0.0383 (19)0.0027 (16)0.0012 (16)0.0024 (16)
Geometric parameters (Å, º) top
Cl1—C11.748 (3)C6—H60.9300
O1—C141.200 (3)C7—C81.403 (3)
N1—C11.303 (3)C7—C121.412 (3)
N1—C131.371 (3)C8—C91.361 (3)
C1—C21.402 (3)C8—H80.9300
C2—C31.374 (3)C9—C101.395 (3)
C2—C141.483 (3)C9—H90.9300
C3—C41.394 (3)C10—C111.366 (3)
C3—H30.9300C10—H100.9300
C4—C131.417 (3)C11—C121.399 (3)
C4—C51.429 (3)C11—H110.9300
C5—C61.347 (3)C12—C131.445 (3)
C5—H50.9300C14—H140.9300
C6—C71.426 (3)
C1—N1—C13117.6 (2)C9—C8—C7121.2 (3)
N1—C1—C2125.7 (2)C9—C8—H8119.4
N1—C1—Cl1115.3 (2)C7—C8—H8119.4
C2—C1—Cl1119.0 (2)C8—C9—C10119.9 (3)
C3—C2—C1116.6 (2)C8—C9—H9120.0
C3—C2—C14118.8 (3)C10—C9—H9120.0
C1—C2—C14124.5 (3)C11—C10—C9120.5 (3)
C2—C3—C4120.8 (2)C11—C10—H10119.7
C2—C3—H3119.6C9—C10—H10119.7
C4—C3—H3119.6C10—C11—C12120.4 (3)
C3—C4—C13117.7 (2)C10—C11—H11119.8
C3—C4—C5123.3 (3)C12—C11—H11119.8
C13—C4—C5119.0 (2)C11—C12—C7119.4 (2)
C6—C5—C4120.6 (3)C11—C12—C13122.2 (2)
C6—C5—H5119.7C7—C12—C13118.4 (2)
C4—C5—H5119.7N1—C13—C4121.6 (2)
C5—C6—C7122.1 (3)N1—C13—C12118.0 (2)
C5—C6—H6119.0C4—C13—C12120.4 (2)
C7—C6—H6119.0O1—C14—C2124.0 (3)
C8—C7—C12118.5 (2)O1—C14—H14118.0
C8—C7—C6121.9 (3)C2—C14—H14118.0
C12—C7—C6119.6 (2)
C13—N1—C1—C20.9 (4)C9—C10—C11—C121.1 (4)
C13—N1—C1—Cl1179.99 (16)C10—C11—C12—C71.6 (4)
N1—C1—C2—C30.6 (4)C10—C11—C12—C13177.6 (2)
Cl1—C1—C2—C3179.69 (17)C8—C7—C12—C111.0 (3)
N1—C1—C2—C14178.9 (2)C6—C7—C12—C11179.3 (2)
Cl1—C1—C2—C140.2 (3)C8—C7—C12—C13178.2 (2)
C1—C2—C3—C40.5 (3)C6—C7—C12—C131.4 (3)
C14—C2—C3—C4180.0 (2)C1—N1—C13—C40.1 (3)
C2—C3—C4—C131.1 (3)C1—N1—C13—C12179.6 (2)
C2—C3—C4—C5179.4 (2)C3—C4—C13—N10.8 (3)
C3—C4—C5—C6178.3 (2)C5—C4—C13—N1179.2 (2)
C13—C4—C5—C60.0 (4)C3—C4—C13—C12179.5 (2)
C4—C5—C6—C70.3 (4)C5—C4—C13—C121.1 (3)
C5—C6—C7—C8179.2 (2)C11—C12—C13—N10.7 (3)
C5—C6—C7—C120.4 (4)C7—C12—C13—N1178.5 (2)
C12—C7—C8—C90.0 (4)C11—C12—C13—C4179.0 (2)
C6—C7—C8—C9179.6 (2)C7—C12—C13—C41.8 (3)
C7—C8—C9—C100.6 (4)C3—C2—C14—O110.7 (4)
C8—C9—C10—C110.0 (4)C1—C2—C14—O1168.7 (3)

Experimental details

Crystal data
Chemical formulaC14H8ClNO
Mr241.66
Crystal system, space groupMonoclinic, P21/c
Temperature (K)290
a, b, c (Å)3.9833 (2), 12.4722 (6), 21.4561 (13)
β (°) 90.687 (6)
V3)1065.87 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.20 × 0.15 × 0.15
Data collection
DiffractometerOxford Diffraction Excalibur
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.936, 0.951
No. of measured, independent and
observed [I > 2˘I)] reflections
12099, 1872, 935
Rint0.093
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.087, 0.81
No. of reflections1872
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.19

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

 

Acknowledgements

We thank the Department of Science and Technology, India, for use of the diffraction facility at IISc under the IRHPA–DST program. FNK thanks the DST for Fast Track Proposal funding. We thank VIT University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationMeth-Cohn, O. (1993). Heterocycles, 35, 539–557.  CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlisPro. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds