organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Tris(1-naphthyl)arsine chloroform solvate

Omar bin Shawkataly,^a* Imthyaz Ahmed Khan,^a Chin Sing Yeap^b§ and Hoong-Kun Fun^b¶

^aChemical Sciences Programme, School of Distance Education, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: omarsa@usm.my

Received 8 October 2009; accepted 12 October 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.023; wR factor = 0.061; data-to-parameter ratio = 23.4.

In the title compound, $C_{30}H_{21}As \cdot CHCl_3$, the dihedral angles between the three naphthalene ring systems [r.m.s. deviations = 0.007, 0.009 and 0.020 Å] are 72.54 (4), 88.05 (4) and 83.36 (4)°. In the crystal, the molecules are stacked down the aaxis being consolidated by $C-H \cdot \cdot \pi$ and $\pi - \pi$ interactions [centroid to centroid distance = 3.7839(7) Å].

Related literature

For general background to tris(1-naphthyl)arsine, see: Cullen et al. (1995). For related structures, see: Kamepalli et al. (1996); Shawkataly et al. (2009). For the synthesis, see: Burfield et al. (1977, 1978); Burfield & Smithers (1978); Michaelis (1902). For description of the Cambridge Structural Database, see: Allen (2002). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

CHCl₃

Experimental

Crystal data

β

C ₃₀ H ₂₁ As·CHCl ₃	$\gamma = 75.434 \ (1)^{\circ}$
$M_r = 575.76$	V = 1277.72 (4) Å ³
Triclinic, P1	Z = 2
a = 9.1326 (2) Å	Mo $K\alpha$ radiation
b = 11.9473 (2) Å	$\mu = 1.66 \text{ mm}^{-1}$
c = 12.3971 (2) Å	$T = 100 { m K}$
$\alpha = 77.432 \ (1)^{\circ}$	$0.62 \times 0.23 \times 0.10 \text{ mm}$
$\beta = 87.455 \ (1)^{\circ}$	

37994 measured reflections 7382 independent reflections

 $R_{\rm int} = 0.027$

6791 reflections with $I > 2\sigma(I)$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS: Bruker, 2005) $T_{\min} = 0.427, T_{\max} = 0.849$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.023$	316 parameters
$wR(F^2) = 0.061$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.47 \text{ e } \text{\AA}^{-3}$
7382 reflections	$\Delta \rho_{\rm min} = -0.29 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} \hline C4-H4A\cdots Cg1^{i} \\ C14-H14A\cdots Cg2^{ii} \end{array}$	0.93	2.68	3.6013 (14)	169
	0.93	2.86	3.7421 (15)	160

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x - 1, y, z. Cg1 and Cg2 are centroids of the C25-C30 and C5-C10 benzene rings, respectively.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL: molecular graphics: SHELXTL: software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

The authors would like to thank the Malaysian Government and Universiti Sains Malaysia (USM) for the Research grant No. 1001/PJJAUH/811115. IAK is grateful to USM for a postdoctoral Fellowship and Gokhale Centenary College, Ankola, Karnataka, India for study leave. HKF thanks USM for the Research University Golden Goose grant No. 1001/ PFIZIK/811012. CSY thanks USM for the award of a USM Fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2554).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burfield, D. R., Gan, G.-H. & Smithers, R. H. (1978). J. Appl. Chem. Biotechnol. 28, 23-30.
- Burfield, D. R., Lee, K.-H. & Smithers, R. H. (1977). J. Org. Chem. 42, 3060-3065.

Burfield, D. R. & Smithers, R. H. (1978). J. Org. Chem. 43, 3966-3968.

Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.

Cullen, W. R., Rettig, S. J. & Tu, C. Z. (1995). Organometallics, 14, 1466–1470.

[‡] On secondment to: Multimedia University, Melaka Campus, Jalan Ayer Keroh Lama, 74750 Melaka, Malaysia.

[§] Thomson Reuters ResearcherID: A-5523-2009.

[¶] Thomson Reuters ResearcherID: A-3561-2009. Additional correspondence author, e-mail: hkfun@usm.com.

Kamepalli, S., Carmalt, C. J., Culp, R. D., Cowley, A. H. & Jones, R. A. (1996). *Inorg. Chem.* 35, 6179–6183.
Michaelis, A. (1902). *Justus Liebigs Ann. Chem.* 321, 242–248.
Shawkataly, O. bin, Khan, I. A., Goh, J. H. & Fun, H.-K. (2009). *Acta Cryst.* E65, o2591–o2592.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2009). E65, o2772-o2773 [https://doi.org/10.1107/S1600536809041646]

Tris(1-naphthyl)arsine chloroform solvate

Omar bin Shawkataly, Imthyaz Ahmed Khan, Chin Sing Yeap and Hoong-Kun Fun

S1. Comment

Tris(1-naphthyl)arsine has been used in the synthesis of osmium and ruthenium cluster derivatives (Cullen *et al.*, 1995). A search of the Cambridge Structural Database (Allen, 2002) revealed no structure containing this molecule. Among substituted naphthylarsines, only the structure of tris[8-(dimethylamino)-1-naphthyl]arsine (Kamepalli *et al.*, 1996) is known.

The asymmetric unit of the title compound comprises a molecule of tris(1-naphthyl)arsine and a solvent chloroform molecule (Fig. 1). The As–C bond lengths lie in the range 1.9595 (11) to 1.9635 (12) Å, and the C–As–C angles lie in the range 98.97 (5) to 100.92 (5) °. The values are comparable to those found in related structures (Kamepalli *et al.*, 1996; Shawkataly *et al.*, 2009). The dihedral angles between the three naphthalene ring systems (C1–C10/C11–C20, C1–C10/C21–C30 and C11–C20/C21–C30) are 72.54 (4), 88.05 (4) and 83.36 (4)°, respectively. In the crystal packing (Fig. 2), the molecules are stacked down the *a* axis being consolidated by C–H···*π* (Table 1) and π – π interactions [*Cg*1···*Cg*3ⁱⁱⁱ = 3.7839 (7) Å; *Cg*1 and *Cg*3 are centroids of benzene rings C25–C30 and C21–C25/C30, respectively; (iii) -*x*, 2 - *y*, 1 - *z*].

S2. Experimental

Solvents were dried by recommended literature routes (Burfield *et al.*, 1977, 1978; Burfield & Smithers, 1978). Tris(1-naphthyl)arsine was prepared from arsenic trichloride and 1-bromonaphthalene (Michaelis, 1902). Crystals were obtained by slow evaporation from its chloroform solution.

S3. Refinement

All hydrogen atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.98 Å and $U_{iso}(H) = 1.2 U_{eq}(C)$.

The molecular structure of the title compound with 50% probability ellipsoids for non-H atoms.

Figure 2

The crystal packing of the title compound, viewed down the *a* axis, showing the molecules stacked down the *a* axis.

Tris(1-naphthyl)arsine chloroform solvate

C₃₀H₂₁As·CHCl₃ $M_r = 575.76$ Triclinic, *P*1 Hall symbol: -P 1 a = 9.1326 (2) Å b = 11.9473 (2) Å c = 12.3971 (2) Å a = 77.432 (1)° $\beta = 87.455$ (1)° $\gamma = 75.434$ (1)° V = 1277.72 (4) Å³ Z = 2 F(000) = 584 $D_x = 1.497 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9912 reflections $\theta = 2.3-35.0^{\circ}$ $\mu = 1.66 \text{ mm}^{-1}$ T = 100 KNeedle, colourless $0.62 \times 0.23 \times 0.10 \text{ mm}$ Data collection

Bruker SMART APEXII CCD area-detector	37994 measured reflections
diffractometer	7382 independent reflections
Radiation source: fine-focus sealed tube	6791 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.027$
φ and ω scans	$\theta_{max} = 30.0^{\circ}, \theta_{min} = 2.2^{\circ}$
Absorption correction: multi-scan	$h = -12 \rightarrow 12$
(<i>SADABS</i> ; Bruker, 2005)	$k = -16 \rightarrow 16$
$T_{\min} = 0.427, T_{\max} = 0.849$	$l = -17 \rightarrow 17$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.023$	Hydrogen site location: inferred from
$wR(F^2) = 0.061$	neighbouring sites
S = 1.04	H-atom parameters constrained
7382 reflections	$w = 1/[\sigma^2(F_o^2) + (0.030P)^2 + 0.531P]$
316 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} = 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.47$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.29$ e Å ⁻³

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
As1	0.090367 (13)	0.707273 (10)	0.281681 (9)	0.01270 (4)	
C1	0.23298 (13)	0.55322 (10)	0.33306 (9)	0.0139 (2)	
C2	0.28065 (14)	0.51442 (11)	0.44200 (10)	0.0164 (2)	
H2A	0.2371	0.5585	0.4937	0.020*	
C3	0.39459 (15)	0.40882 (11)	0.47644 (10)	0.0188 (2)	
H3A	0.4246	0.3840	0.5503	0.023*	
C4	0.46095 (14)	0.34296 (11)	0.40176 (11)	0.0188 (2)	
H4A	0.5363	0.2740	0.4251	0.023*	
C5	0.41573 (14)	0.37905 (10)	0.28882 (10)	0.0163 (2)	
C6	0.48349 (15)	0.31226 (12)	0.20993 (11)	0.0214 (2)	
H6A	0.5581	0.2427	0.2327	0.026*	
C7	0.44079 (16)	0.34851 (13)	0.10090 (12)	0.0245 (3)	
H7A	0.4869	0.3041	0.0501	0.029*	
C8	0.32697 (16)	0.45316 (12)	0.06568 (11)	0.0221 (3)	

H8A	0.2985	0.4778	-0.0085	0.027*
C9	0.25769 (15)	0.51907 (11)	0.14008 (10)	0.0176 (2)
H9A	0.1815	0.5872	0.1157	0.021*
C10	0.30027 (13)	0.48509 (10)	0.25366 (9)	0.0143 (2)
C11	-0.09515 (14)	0.65816 (10)	0.26369 (9)	0.0147 (2)
C12	-0.09601 (15)	0.54044 (11)	0.27990 (10)	0.0181 (2)
H12A	-0.0091	0.4825	0.3063	0.022*
C13	-0.22715 (16)	0.50634 (12)	0.25697 (11)	0.0210(2)
H13A	-0.2258	0.4265	0.2690	0.025*
C14	-0.35565 (15)	0.59027 (12)	0.21725 (10)	0.0206 (2)
H14A	-0.4410	0.5670	0.2021	0.025*
C15	-0.36018 (14)	0.71242 (12)	0.19895 (10)	0.0174 (2)
C16	-0.49212 (15)	0.80103 (13)	0.15651 (11)	0.0225 (3)
H16A	-0.5780	0.7786	0.1411	0.027*
C17	-0.49483 (16)	0.91876 (13)	0.13799 (12)	0.0258 (3)
H17A	-0.5817	0.9756	0.1094	0.031*
C18	-0.36570 (16)	0.95368 (12)	0.16231 (12)	0.0238 (3)
H18A	-0.3679	1.0337	0.1499	0.029*
C19	-0.23685 (14)	0.87058 (11)	0.20412 (10)	0.0179 (2)
H19A	-0.1531	0.8952	0.2205	0.022*
C20	-0.22911 (14)	0.74750 (11)	0.22286 (9)	0.0150 (2)
C21	0.04874 (14)	0.75520 (10)	0.42365 (9)	0.0142 (2)
C22	-0.06416 (14)	0.72313 (11)	0.49122 (10)	0.0170 (2)
H22A	-0.1222	0.6782	0.4690	0.020*
C23	-0.09342 (15)	0.75733 (11)	0.59400 (10)	0.0193 (2)
H23A	-0.1703	0.7350	0.6386	0.023*
C24	-0.00874 (15)	0.82332 (11)	0.62790 (10)	0.0193 (2)
H24A	-0.0278	0.8446	0.6960	0.023*
C25	0.10744 (14)	0.85955 (10)	0.56059 (10)	0.0167 (2)
C26	0.19211 (15)	0.93203 (11)	0.59281 (11)	0.0202 (2)
H26A	0.1735	0.9537	0.6607	0.024*
C27	0.30057 (16)	0.97039 (12)	0.52556 (12)	0.0226 (3)
H27A	0.3535	1.0191	0.5473	0.027*
C28	0.33213 (15)	0.93604 (11)	0.42328 (11)	0.0211 (2)
H28A	0.4063	0.9618	0.3780	0.025*
C29	0.25383 (14)	0.86469 (11)	0.39033 (10)	0.0168 (2)
H29A	0.2772	0.8415	0.3234	0.020*
C30	0.13786 (13)	0.82569 (10)	0.45661 (10)	0.0143 (2)
C31	0.01969 (16)	0.16195 (12)	0.04382 (11)	0.0225 (3)
H31A	0.0208	0.1606	-0.0350	0.027*
Cl1	0.13525 (5)	0.25237 (4)	0.06542 (3)	0.03896 (10)
Cl2	-0.16874 (4)	0.21894 (3)	0.08181 (3)	0.03183 (8)
C13	0.08848 (4)	0.01550 (3)	0.11983 (3)	0.02454 (7)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
As1	0.01297 (6)	0.01246 (6)	0.01270 (6)	-0.00293 (4)	-0.00088 (4)	-0.00281 (4)

supporting information

C1	0.0133 (5)	0.0134 (5)	0.0151 (5)	-0.0032 (4)	-0.0005 (4)	-0.0029 (4)
C2	0.0167 (6)	0.0172 (5)	0.0148 (5)	-0.0027 (4)	-0.0009 (4)	-0.0038 (4)
C3	0.0190 (6)	0.0191 (6)	0.0164 (5)	-0.0035 (5)	-0.0036 (4)	-0.0003 (4)
C4	0.0158 (6)	0.0156 (5)	0.0222 (6)	-0.0008 (4)	-0.0023 (4)	-0.0013 (4)
C5	0.0148 (5)	0.0153 (5)	0.0192 (5)	-0.0043 (4)	0.0015 (4)	-0.0041 (4)
C6	0.0184 (6)	0.0192 (6)	0.0267 (6)	-0.0019 (5)	0.0031 (5)	-0.0087(5)
C7	0.0244 (7)	0.0264 (7)	0.0251 (6)	-0.0045 (5)	0.0056 (5)	-0.0135 (5)
C8	0.0254 (7)	0.0264 (6)	0.0164 (5)	-0.0071 (5)	0.0020 (5)	-0.0080(5)
С9	0.0192 (6)	0.0179 (5)	0.0154 (5)	-0.0037 (4)	-0.0004 (4)	-0.0038 (4)
C10	0.0133 (5)	0.0151 (5)	0.0151 (5)	-0.0051 (4)	0.0011 (4)	-0.0034 (4)
C11	0.0151 (5)	0.0167 (5)	0.0134 (5)	-0.0052 (4)	-0.0010 (4)	-0.0039 (4)
C12	0.0207 (6)	0.0164 (5)	0.0176 (5)	-0.0057 (4)	-0.0005 (4)	-0.0033 (4)
C13	0.0261 (7)	0.0210 (6)	0.0199 (6)	-0.0122 (5)	0.0022 (5)	-0.0060(5)
C14	0.0207 (6)	0.0287 (7)	0.0177 (5)	-0.0145 (5)	0.0018 (4)	-0.0069 (5)
C15	0.0156 (5)	0.0258 (6)	0.0120 (5)	-0.0069 (5)	0.0017 (4)	-0.0049 (4)
C16	0.0127 (6)	0.0369 (7)	0.0176 (6)	-0.0062 (5)	-0.0001 (4)	-0.0050 (5)
C17	0.0150 (6)	0.0330 (7)	0.0234 (6)	0.0006 (5)	-0.0005 (5)	-0.0010 (5)
C18	0.0190 (6)	0.0206 (6)	0.0271 (6)	0.0000 (5)	0.0016 (5)	-0.0012 (5)
C19	0.0147 (5)	0.0181 (6)	0.0206 (6)	-0.0033 (4)	0.0003 (4)	-0.0043 (4)
C20	0.0148 (5)	0.0186 (5)	0.0119 (5)	-0.0044 (4)	0.0006 (4)	-0.0034 (4)
C21	0.0156 (5)	0.0125 (5)	0.0143 (5)	-0.0025 (4)	-0.0009 (4)	-0.0033 (4)
C22	0.0182 (6)	0.0152 (5)	0.0180 (5)	-0.0051 (4)	0.0012 (4)	-0.0033 (4)
C23	0.0203 (6)	0.0185 (6)	0.0171 (5)	-0.0029 (5)	0.0041 (4)	-0.0026 (4)
C24	0.0230 (6)	0.0175 (6)	0.0152 (5)	0.0002 (5)	0.0004 (4)	-0.0047 (4)
C25	0.0189 (6)	0.0126 (5)	0.0165 (5)	0.0005 (4)	-0.0040 (4)	-0.0034 (4)
C26	0.0231 (6)	0.0161 (5)	0.0209 (6)	-0.0002 (5)	-0.0078 (5)	-0.0068(5)
C27	0.0231 (6)	0.0184 (6)	0.0280 (6)	-0.0054 (5)	-0.0097 (5)	-0.0059 (5)
C28	0.0190 (6)	0.0199 (6)	0.0250 (6)	-0.0077 (5)	-0.0046 (5)	-0.0016 (5)
C29	0.0166 (6)	0.0169 (5)	0.0172 (5)	-0.0047 (4)	-0.0017 (4)	-0.0031 (4)
C30	0.0150 (5)	0.0111 (5)	0.0156 (5)	-0.0011 (4)	-0.0032 (4)	-0.0024 (4)
C31	0.0244 (7)	0.0257 (6)	0.0185 (6)	-0.0106 (5)	0.0031 (5)	-0.0028 (5)
Cl1	0.0520 (3)	0.0475 (2)	0.03150 (18)	-0.0357 (2)	0.01156 (17)	-0.01343 (16)
Cl2	0.02568 (17)	0.02956 (17)	0.03121 (18)	0.00074 (13)	0.00267 (13)	0.00334 (14)
Cl3	0.02050 (15)	0.02695 (16)	0.02393 (15)	-0.00309 (12)	-0.00302 (11)	-0.00328 (12)

Geometric parameters (Å, °)

As1—C21	1.9595 (11)	C16—C17	1.369 (2)
As1—C1	1.9615 (12)	C16—H16A	0.9300
As1—C11	1.9635 (12)	C17—C18	1.411 (2)
C1—C2	1.3808 (16)	C17—H17A	0.9300
C1-C10	1.4326 (16)	C18—C19	1.3717 (18)
C2—C3	1.4147 (17)	C18—H18A	0.9300
C2—H2A	0.9300	C19—C20	1.4219 (17)
C3—C4	1.3678 (18)	C19—H19A	0.9300
С3—НЗА	0.9300	C21—C22	1.3762 (17)
C4—C5	1.4197 (17)	C21—C30	1.4362 (16)
C4—H4A	0.9300	C22—C23	1.4154 (17)

C5—C6	1,4191 (17)	C22—H22A	0.9300
C5—C10	1.4267 (17)	C23—C24	1.3696 (18)
C6—C7	1.3688 (19)	С23—Н23А	0.9300
C6—H6A	0.9300	C24—C25	1.4159 (18)
C7—C8	1 408 (2)	C24—H24A	0.9300
C7—H7A	0.9300	C_{25} C_{26}	14220(17)
C8—C9	1 3729 (17)	$C_{25} = C_{20}$	1 4286 (16)
C8—H8A	0.9300	$C_{26} = C_{27}$	1 369 (2)
C9-C10	1 4210 (16)	C26—H26A	0.9300
C9—H9A	0.9300	C_{27} C_{28}	1 4121 (19)
C_{11} C_{12}	1 3787 (16)	C_{27} H_{27}	0.9300
$C_{11} = C_{20}$	1 4336 (17)	C_{28} C_{29}	1.3745(17)
C_{12} C_{13}	1.4350(17) 1.4168(18)	C28_H28A	0.9300
C12—H12A	0.9300	$C_{20} = C_{20}$	1 4206 (17)
C_{12} C_{12} C_{14}	1 367 (2)	$C_{29} = C_{30}$	0.0300
C13 H13A	0.0300	C_{2} C_{3} C_{1}	1.7541(14)
C14 $C15$	1,4175,(18)	C_{31} C_{12}	1.7541(14) 1.7677(15)
C14 - C13	0.0200	$C_{21} = C_{12}$	1.7077(13) 1.7681(14)
C_{14} C_{15} C_{16}	1.4210(18)	C_{21} H_{21A}	0.0800
$C_{15} = C_{10}$	1.4219(18) 1.4262(17)	C31—II3IA	0.9800
015-020	1.4202 (17)		
C21—As1—C1	98.97 (5)	C15—C16—H16A	119.4
C_21 —As1—C11	99.78 (5)	C16—C17—C18	119.88 (13)
C1 - As1 - C11	100.92 (5)	С16—С17—Н17А	120.1
C_{2} $-C_{1}$ $-C_{10}$	119 28 (11)	C18—C17—H17A	120.1
C_2 — C_1 — A_{s1}	121 43 (9)	C19 - C18 - C17	120.56 (13)
C10-C1-As1	119 00 (8)	C19—C18—H18A	1197
C1 - C2 - C3	121.20(11)	C17—C18—H18A	119.7
C1 - C2 - H2A	119.4	C18 - C19 - C20	121 14 (12)
C3-C2-H2A	119.4	C18—C19—H19A	119.4
C4-C3-C2	120 41 (11)	C20—C19—H19A	119.4
C4—C3—H3A	119.8	C19 - C20 - C15	118 20 (11)
C^2 — C^3 — H^3A	119.8	C19 - C20 - C11	122 68 (11)
$C_2 = C_2 = C_2$	120 52 (11)	$C_{15} = C_{20} = C_{11}$	119 12 (11)
$C_3 - C_4 - H_4 A$	119 7	C^{22} C^{21} C^{30}	119.02 (11)
C5-C4-H4A	119.7	$C_{22} = C_{21} = C_{30}$	121 23 (9)
C6-C5-C4	121 43 (11)	C_{30} C_{21} A_{s1}	118 87 (9)
C6-C5-C10	119 22 (11)	C_{21} C_{22} C_{23}	121 10(11)
C4-C5-C10	119.22 (11)	$C_{21} = C_{22} = C_{23}$	119 5
C7 - C6 - C5	121.09(12)	C_{23} C_{22} H_{22A}	119.5
C7 - C6 - H6A	110 5	$C_{23} = C_{23} = C_{23}$	119.5 120.10(12)
C_{5} C_{6} H_{6A}	119.5	$C_{24} = C_{23} = C_{22}$	110.0
C_{6}	119.94 (12)	$C_{22} = C_{23} = H_{23} A$	119.9
C6-C7-H7A	120.0	C_{23} C_{24} C_{25} C	120 81 (11)
C8 - C7 - H7A	120.0	C_{23} C_{24} H_{24}	119.6
C9 - C8 - C7	120.0	$C_{25} = C_{24} = H_{24A}$	119.6
C9—C8—H8A	119.8	C_{24} C_{25} C_{26}	121 36 (11)
C7 - C8 - H8A	119.8	C_{24} C_{25} C_{20} C_{30}	119 58 (11)
C, CO 110/1	11/10	021 023 030	

C8—C9—C10	121.20 (12)	C26—C25—C30	119.04 (12)
С8—С9—Н9А	119.4	C27—C26—C25	121.12 (12)
С10—С9—Н9А	119.4	С27—С26—Н26А	119.4
C9—C10—C5	118.05 (11)	С25—С26—Н26А	119.4
C9—C10—C1	122.70 (11)	C26—C27—C28	120.01 (12)
C5—C10—C1	119.24 (10)	С26—С27—Н27А	120.0
C12—C11—C20	119.45 (11)	С28—С27—Н27А	120.0
C12—C11—As1	121.68 (9)	C29—C28—C27	120.34 (12)
C20—C11—As1	118.61 (8)	C29—C28—H28A	119.8
C11—C12—C13	121.08 (12)	C27—C28—H28A	119.8
C11—C12—H12A	119.5	C28—C29—C30	121.21 (12)
C13—C12—H12A	119.5	С28—С29—Н29А	119.4
C14—C13—C12	120.31 (12)	С30—С29—Н29А	119.4
C14—C13—H13A	119.8	C_{29} C_{30} C_{25}	118.25 (11)
C12—C13—H13A	119.8	C_{29} C_{30} C_{21}	123.25(11)
C_{13} C_{14} C_{15}	120.70 (12)	C_{25} C_{30} C_{21}	118.50 (11)
C13—C14—H14A	1197	$C_{11} - C_{31} - C_{12}$	110.57 (8)
C15— $C14$ — $H14A$	119.7	$C_{11} - C_{31} - C_{13}$	110.37(8)
C14-C15-C16	121 55 (12)	$C_{12}^{12} - C_{31}^{12} - C_{13}^{13}$	109.87(7)
C_{14} C_{15} C_{20}	11934(12)	C_{11} C_{31} H_{31A}	109.57 (7)
C16-C15-C20	119.11 (12)	C12-C31-H31A	108.5
C17 - C16 - C15	121 11 (12)	C_{13} C_{31} H_{31A}	108.5
C17 - C16 - H16A	119.4		100.5
	117.1		
C21—As1—C1—C2	-4.02 (11)	C16—C17—C18—C19	0.2 (2)
C11—As1—C1—C2	-105.88 (10)	C17—C18—C19—C20	0.7 (2)
C21—As1—C1—C10	-177.76 (9)	C18—C19—C20—C15	-1.16 (18)
C11—As1—C1—C10	80.38 (10)	C18—C19—C20—C11	178.32 (12)
C10—C1—C2—C3	0.04 (18)	C14—C15—C20—C19	-179.78 (11)
As1—C1—C2—C3	-173.68 (9)	C16—C15—C20—C19	0.66 (17)
C1—C2—C3—C4	0.41 (19)	C14—C15—C20—C11	0.72 (17)
C2—C3—C4—C5	-0.48 (19)	C16—C15—C20—C11	-178.84 (11)
C3—C4—C5—C6	179.76 (12)	C12—C11—C20—C19	179.98 (12)
C3-C4-C5-C10	0.11 (18)	As1—C11—C20—C19	-5.71(15)
C4—C5—C6—C7	-179.07 (13)	C12—C11—C20—C15	-0.54(17)
C10—C5—C6—C7	0.58 (19)	As1—C11—C20—C15	173.77 (8)
C5—C6—C7—C8	-0.5(2)	C1—As1—C21—C22	-87.58 (10)
C6-C7-C8-C9	-0.3(2)	C11—As1—C21—C22	15.24 (11)
C7—C8—C9—C10	1.1 (2)	C1 - As1 - C21 - C30	92.80 (9)
C8-C9-C10-C5	-1.03(18)	C11—As1—C21—C30	-164.39 (9)
C8-C9-C10-C1	178.47 (12)	C30—C21—C22—C23	-0.73(18)
C6-C5-C10-C9	0.19 (17)	As1—C21—C22—C23	179.65 (9)
C4—C5—C10—C9	179.85 (11)	C21—C22—C23—C24	-0.08(19)
C6-C5-C10-C1	-179.33(11)	C22—C23—C24—C25	0.82 (19)
C4—C5—C10—C1	0.33 (17)	C23—C24—C25—C26	177.45 (12)
C2-C1-C10-C9	-179.90 (11)	C23—C24—C25—C30	-0.73 (18)
As1-C1-C10-C9	-6.02 (15)	C24—C25—C26—C27	-177.59 (12)
C2-C1-C10-C5	-0.40 (17)	C30—C25—C26—C27	0.61 (18)
	× /		\ -/

$\begin{array}{c} As1 = C1 = C10 = C3 \\ C21 = As1 = C11 = C12 \\ C1 = As1 = C11 = C12 \\ C21 = As1 = C11 = C20 \\ C1 = As1 = C11 = C20 \\ C20 = C11 = C12 = C13 \\ As1 = C11 = C12 = C13 \\ C11 = C12 = C13 = C14 \\ C12 = C13 = C14 \\ C15 \end{array}$	-173.47(8) -105.15(10) -3.94(11) 80.67(9) -178.13(9) -0.08(18) -174.21(9) 0.53(19) -0.35(10)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -1.31 (19) \\ 0.4 (2) \\ 1.25 (19) \\ -1.91 (18) \\ 177.34 (11) \\ 179.21 (11) \\ 0.98 (17) \\ -0.08 (17) \\ -178 31 (11) \end{array}$
C1—As1—C11—C20	-178.13 (9)	C28—C29—C30—C21	177.34 (11)
C20-C11-C12-C13	-0.08 (18)	C24—C25—C30—C29	179.21 (11)
As1-C11-C12-C13	-174.21 (9)	C26—C25—C30—C29	0.98 (17)
C11-C12-C13-C14	0.53 (19)	C24—C25—C30—C21	-0.08 (17)
C12—C13—C14—C15	-0.35 (19)	C26—C25—C30—C21	-178.31 (11)
C13—C14—C15—C16	179.27 (12)	C22—C21—C30—C29	-178.45 (11)
C13—C14—C15—C20	-0.28 (18)	As1-C21-C30-C29	1.18 (15)
C14—C15—C16—C17	-179.29 (13)	C22—C21—C30—C25	0.80 (17)
C20 C15 C1C C17	0.26(19)	$A_{s1} - C_{21} - C_{30} - C_{25}$	-17957(8)
$C_{20} - C_{15} - C_{16} - C_{17}$	0.20 (1)		1/2.27 (0)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D····A	D—H···A
$C4$ — $H4A$ ··· $Cg1^i$	0.93	2.68	3.6013 (14)	169
C14—H14 A ····Cg2 ⁱⁱ	0.93	2.86	3.7421 (15)	160

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z.