organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(1-naphth­yl)arsine chloro­form solvate

aChemical Sciences Programme, School of Distance Education, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: omarsa@usm.my

(Received 8 October 2009; accepted 12 October 2009; online 17 October 2009)

In the title compound, C30H21As·CHCl3, the dihedral angles between the three naphthalene ring systems [r.m.s. deviations = 0.007, 0.009 and 0.020 Å] are 72.54 (4), 88.05 (4) and 83.36 (4)°. In the crystal, the mol­ecules are stacked down the a axis being consolidated by C—H⋯π and ππ inter­actions [centroid to centroid distance = 3.7839 (7) Å].

Related literature

For general background to tris­(1-naphth­yl)arsine, see: Cullen et al. (1995[Cullen, W. R., Rettig, S. J. & Tu, C. Z. (1995). Organometallics, 14, 1466-1470.]). For related structures, see: Kamepalli et al. (1996[Kamepalli, S., Carmalt, C. J., Culp, R. D., Cowley, A. H. & Jones, R. A. (1996). Inorg. Chem. 35, 6179-6183.]); Shawkataly et al. (2009[Shawkataly, O. bin, Khan, I. A., Goh, J. H. & Fun, H.-K. (2009). Acta Cryst. E65, o2591-o2592.]). For the synthesis, see: Burfield et al. (1977[Burfield, D. R., Lee, K.-H. & Smithers, R. H. (1977). J. Org. Chem. 42, 3060-3065.], 1978[Burfield, D. R., Gan, G.-H. & Smithers, R. H. (1978). J. Appl. Chem. Biotechnol. 28, 23-30.]); Burfield & Smithers (1978[Burfield, D. R. & Smithers, R. H. (1978). J. Org. Chem. 43, 3966-3968.]); Michaelis (1902[Michaelis, A. (1902). Justus Liebigs Ann. Chem. 321, 242-248.]). For description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C30H21As·CHCl3

  • Mr = 575.76

  • Triclinic, [P \overline 1]

  • a = 9.1326 (2) Å

  • b = 11.9473 (2) Å

  • c = 12.3971 (2) Å

  • α = 77.432 (1)°

  • β = 87.455 (1)°

  • γ = 75.434 (1)°

  • V = 1277.72 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.66 mm−1

  • T = 100 K

  • 0.62 × 0.23 × 0.10 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.427, Tmax = 0.849

  • 37994 measured reflections

  • 7382 independent reflections

  • 6791 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.061

  • S = 1.04

  • 7382 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4ACg1i 0.93 2.68 3.6013 (14) 169
C14—H14ACg2ii 0.93 2.86 3.7421 (15) 160
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z. Cg1 and Cg2 are centroids of the C25–C30 and C5–C10 benzene rings, respectively.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Tris(1-naphthyl)arsine has been used in the synthesis of osmium and ruthenium cluster derivatives (Cullen et al., 1995). A search of the Cambridge Structural Database (Allen, 2002) revealed no structure containing this molecule. Among substituted naphthylarsines, only the structure of tris[8-(dimethylamino)-1-naphthyl]arsine (Kamepalli et al., 1996) is known.

The asymmetric unit of the title compound comprises a molecule of tris(1-naphthyl)arsine and a solvent chloroform molecule (Fig. 1). The As–C bond lengths lie in the range 1.9595 (11) to 1.9635 (12) Å, and the C–As–C angles lie in the range 98.97 (5) to 100.92 (5) °. The values are comparable to those found in related structures (Kamepalli et al., 1996; Shawkataly et al., 2009). The dihedral angles between the three naphthalene ring systems (C1–C10/C11–C20, C1–C10/C21–C30 and C11–C20/C21–C30) are 72.54 (4), 88.05 (4) and 83.36 (4)°, respectively. In the crystal packing (Fig. 2), the molecules are stacked down the a axis being consolidated by C—H···π (Table 1) and ππ interactions [Cg1···Cg3iii = 3.7839 (7) Å; Cg1 and Cg3 are centroids of benzene rings C25–C30 and C21–C25/C30, respectively; (iii) -x, 2 - y, 1 - z].

Related literature top

For general background to tris(1-naphthyl)arsine, see: Cullen et al. (1995). For related structures, see: Kamepalli et al. (1996); Shawkataly et al. (2009). For the synthesis, see: Burfield et al. (1977, 1978); Burfield & Smithers (1978); Michaelis (1902). For description of the Cambridge Structural Database, see: Allen (2002). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). Cg1 and Cg2 are centroids of the C25–C30 and C5–C10 benzene rings, respectively.

Experimental top

Solvents were dried by recommended literature routes (Burfield et al., 1977, 1978; Burfield & Smithers, 1978). Tris(1-naphthyl)arsine was prepared from arsenic trichloride and 1-bromonaphthalene (Michaelis, 1902). Crystals were obtained by slow evaporation from its chloroform solution.

Refinement top

All hydrogen atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.98 Å and Uiso(H) = 1.2 Ueq(C).

Structure description top

Tris(1-naphthyl)arsine has been used in the synthesis of osmium and ruthenium cluster derivatives (Cullen et al., 1995). A search of the Cambridge Structural Database (Allen, 2002) revealed no structure containing this molecule. Among substituted naphthylarsines, only the structure of tris[8-(dimethylamino)-1-naphthyl]arsine (Kamepalli et al., 1996) is known.

The asymmetric unit of the title compound comprises a molecule of tris(1-naphthyl)arsine and a solvent chloroform molecule (Fig. 1). The As–C bond lengths lie in the range 1.9595 (11) to 1.9635 (12) Å, and the C–As–C angles lie in the range 98.97 (5) to 100.92 (5) °. The values are comparable to those found in related structures (Kamepalli et al., 1996; Shawkataly et al., 2009). The dihedral angles between the three naphthalene ring systems (C1–C10/C11–C20, C1–C10/C21–C30 and C11–C20/C21–C30) are 72.54 (4), 88.05 (4) and 83.36 (4)°, respectively. In the crystal packing (Fig. 2), the molecules are stacked down the a axis being consolidated by C—H···π (Table 1) and ππ interactions [Cg1···Cg3iii = 3.7839 (7) Å; Cg1 and Cg3 are centroids of benzene rings C25–C30 and C21–C25/C30, respectively; (iii) -x, 2 - y, 1 - z].

For general background to tris(1-naphthyl)arsine, see: Cullen et al. (1995). For related structures, see: Kamepalli et al. (1996); Shawkataly et al. (2009). For the synthesis, see: Burfield et al. (1977, 1978); Burfield & Smithers (1978); Michaelis (1902). For description of the Cambridge Structural Database, see: Allen (2002). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). Cg1 and Cg2 are centroids of the C25–C30 and C5–C10 benzene rings, respectively.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the a axis, showing the molecules stacked down the a axis.
Tris(1-naphthyl)arsine chloroform solvate top
Crystal data top
C30H21As·CHCl3Z = 2
Mr = 575.76F(000) = 584
Triclinic, P1Dx = 1.497 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.1326 (2) ÅCell parameters from 9912 reflections
b = 11.9473 (2) Åθ = 2.3–35.0°
c = 12.3971 (2) ŵ = 1.66 mm1
α = 77.432 (1)°T = 100 K
β = 87.455 (1)°Needle, colourless
γ = 75.434 (1)°0.62 × 0.23 × 0.10 mm
V = 1277.72 (4) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7382 independent reflections
Radiation source: fine-focus sealed tube6791 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 30.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1212
Tmin = 0.427, Tmax = 0.849k = 1616
37994 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.030P)2 + 0.531P]
where P = (Fo2 + 2Fc2)/3
7382 reflections(Δ/σ)max = 0.001
316 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C30H21As·CHCl3γ = 75.434 (1)°
Mr = 575.76V = 1277.72 (4) Å3
Triclinic, P1Z = 2
a = 9.1326 (2) ÅMo Kα radiation
b = 11.9473 (2) ŵ = 1.66 mm1
c = 12.3971 (2) ÅT = 100 K
α = 77.432 (1)°0.62 × 0.23 × 0.10 mm
β = 87.455 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7382 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
6791 reflections with I > 2σ(I)
Tmin = 0.427, Tmax = 0.849Rint = 0.027
37994 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.061H-atom parameters constrained
S = 1.04Δρmax = 0.47 e Å3
7382 reflectionsΔρmin = 0.29 e Å3
316 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
As10.090367 (13)0.707273 (10)0.281681 (9)0.01270 (4)
C10.23298 (13)0.55322 (10)0.33306 (9)0.0139 (2)
C20.28065 (14)0.51442 (11)0.44200 (10)0.0164 (2)
H2A0.23710.55850.49370.020*
C30.39459 (15)0.40882 (11)0.47644 (10)0.0188 (2)
H3A0.42460.38400.55030.023*
C40.46095 (14)0.34296 (11)0.40176 (11)0.0188 (2)
H4A0.53630.27400.42510.023*
C50.41573 (14)0.37905 (10)0.28882 (10)0.0163 (2)
C60.48349 (15)0.31226 (12)0.20993 (11)0.0214 (2)
H6A0.55810.24270.23270.026*
C70.44079 (16)0.34851 (13)0.10090 (12)0.0245 (3)
H7A0.48690.30410.05010.029*
C80.32697 (16)0.45316 (12)0.06568 (11)0.0221 (3)
H8A0.29850.47780.00850.027*
C90.25769 (15)0.51907 (11)0.14008 (10)0.0176 (2)
H9A0.18150.58720.11570.021*
C100.30027 (13)0.48509 (10)0.25366 (9)0.0143 (2)
C110.09515 (14)0.65816 (10)0.26369 (9)0.0147 (2)
C120.09601 (15)0.54044 (11)0.27990 (10)0.0181 (2)
H12A0.00910.48250.30630.022*
C130.22715 (16)0.50634 (12)0.25697 (11)0.0210 (2)
H13A0.22580.42650.26900.025*
C140.35565 (15)0.59027 (12)0.21725 (10)0.0206 (2)
H14A0.44100.56700.20210.025*
C150.36018 (14)0.71242 (12)0.19895 (10)0.0174 (2)
C160.49212 (15)0.80103 (13)0.15651 (11)0.0225 (3)
H16A0.57800.77860.14110.027*
C170.49483 (16)0.91876 (13)0.13799 (12)0.0258 (3)
H17A0.58170.97560.10940.031*
C180.36570 (16)0.95368 (12)0.16231 (12)0.0238 (3)
H18A0.36791.03370.14990.029*
C190.23685 (14)0.87058 (11)0.20412 (10)0.0179 (2)
H19A0.15310.89520.22050.022*
C200.22911 (14)0.74750 (11)0.22286 (9)0.0150 (2)
C210.04874 (14)0.75520 (10)0.42365 (9)0.0142 (2)
C220.06416 (14)0.72313 (11)0.49122 (10)0.0170 (2)
H22A0.12220.67820.46900.020*
C230.09342 (15)0.75733 (11)0.59400 (10)0.0193 (2)
H23A0.17030.73500.63860.023*
C240.00874 (15)0.82332 (11)0.62790 (10)0.0193 (2)
H24A0.02780.84460.69600.023*
C250.10744 (14)0.85955 (10)0.56059 (10)0.0167 (2)
C260.19211 (15)0.93203 (11)0.59281 (11)0.0202 (2)
H26A0.17350.95370.66070.024*
C270.30057 (16)0.97039 (12)0.52556 (12)0.0226 (3)
H27A0.35351.01910.54730.027*
C280.33213 (15)0.93604 (11)0.42328 (11)0.0211 (2)
H28A0.40630.96180.37800.025*
C290.25383 (14)0.86469 (11)0.39033 (10)0.0168 (2)
H29A0.27720.84150.32340.020*
C300.13786 (13)0.82569 (10)0.45661 (10)0.0143 (2)
C310.01969 (16)0.16195 (12)0.04382 (11)0.0225 (3)
H31A0.02080.16060.03500.027*
Cl10.13525 (5)0.25237 (4)0.06542 (3)0.03896 (10)
Cl20.16874 (4)0.21894 (3)0.08181 (3)0.03183 (8)
Cl30.08848 (4)0.01550 (3)0.11983 (3)0.02454 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
As10.01297 (6)0.01246 (6)0.01270 (6)0.00293 (4)0.00088 (4)0.00281 (4)
C10.0133 (5)0.0134 (5)0.0151 (5)0.0032 (4)0.0005 (4)0.0029 (4)
C20.0167 (6)0.0172 (5)0.0148 (5)0.0027 (4)0.0009 (4)0.0038 (4)
C30.0190 (6)0.0191 (6)0.0164 (5)0.0035 (5)0.0036 (4)0.0003 (4)
C40.0158 (6)0.0156 (5)0.0222 (6)0.0008 (4)0.0023 (4)0.0013 (4)
C50.0148 (5)0.0153 (5)0.0192 (5)0.0043 (4)0.0015 (4)0.0041 (4)
C60.0184 (6)0.0192 (6)0.0267 (6)0.0019 (5)0.0031 (5)0.0087 (5)
C70.0244 (7)0.0264 (7)0.0251 (6)0.0045 (5)0.0056 (5)0.0135 (5)
C80.0254 (7)0.0264 (6)0.0164 (5)0.0071 (5)0.0020 (5)0.0080 (5)
C90.0192 (6)0.0179 (5)0.0154 (5)0.0037 (4)0.0004 (4)0.0038 (4)
C100.0133 (5)0.0151 (5)0.0151 (5)0.0051 (4)0.0011 (4)0.0034 (4)
C110.0151 (5)0.0167 (5)0.0134 (5)0.0052 (4)0.0010 (4)0.0039 (4)
C120.0207 (6)0.0164 (5)0.0176 (5)0.0057 (4)0.0005 (4)0.0033 (4)
C130.0261 (7)0.0210 (6)0.0199 (6)0.0122 (5)0.0022 (5)0.0060 (5)
C140.0207 (6)0.0287 (7)0.0177 (5)0.0145 (5)0.0018 (4)0.0069 (5)
C150.0156 (5)0.0258 (6)0.0120 (5)0.0069 (5)0.0017 (4)0.0049 (4)
C160.0127 (6)0.0369 (7)0.0176 (6)0.0062 (5)0.0001 (4)0.0050 (5)
C170.0150 (6)0.0330 (7)0.0234 (6)0.0006 (5)0.0005 (5)0.0010 (5)
C180.0190 (6)0.0206 (6)0.0271 (6)0.0000 (5)0.0016 (5)0.0012 (5)
C190.0147 (5)0.0181 (6)0.0206 (6)0.0033 (4)0.0003 (4)0.0043 (4)
C200.0148 (5)0.0186 (5)0.0119 (5)0.0044 (4)0.0006 (4)0.0034 (4)
C210.0156 (5)0.0125 (5)0.0143 (5)0.0025 (4)0.0009 (4)0.0033 (4)
C220.0182 (6)0.0152 (5)0.0180 (5)0.0051 (4)0.0012 (4)0.0033 (4)
C230.0203 (6)0.0185 (6)0.0171 (5)0.0029 (5)0.0041 (4)0.0026 (4)
C240.0230 (6)0.0175 (6)0.0152 (5)0.0002 (5)0.0004 (4)0.0047 (4)
C250.0189 (6)0.0126 (5)0.0165 (5)0.0005 (4)0.0040 (4)0.0034 (4)
C260.0231 (6)0.0161 (5)0.0209 (6)0.0002 (5)0.0078 (5)0.0068 (5)
C270.0231 (6)0.0184 (6)0.0280 (6)0.0054 (5)0.0097 (5)0.0059 (5)
C280.0190 (6)0.0199 (6)0.0250 (6)0.0077 (5)0.0046 (5)0.0016 (5)
C290.0166 (6)0.0169 (5)0.0172 (5)0.0047 (4)0.0017 (4)0.0031 (4)
C300.0150 (5)0.0111 (5)0.0156 (5)0.0011 (4)0.0032 (4)0.0024 (4)
C310.0244 (7)0.0257 (6)0.0185 (6)0.0106 (5)0.0031 (5)0.0028 (5)
Cl10.0520 (3)0.0475 (2)0.03150 (18)0.0357 (2)0.01156 (17)0.01343 (16)
Cl20.02568 (17)0.02956 (17)0.03121 (18)0.00074 (13)0.00267 (13)0.00334 (14)
Cl30.02050 (15)0.02695 (16)0.02393 (15)0.00309 (12)0.00302 (11)0.00328 (12)
Geometric parameters (Å, º) top
As1—C211.9595 (11)C16—C171.369 (2)
As1—C11.9615 (12)C16—H16A0.9300
As1—C111.9635 (12)C17—C181.411 (2)
C1—C21.3808 (16)C17—H17A0.9300
C1—C101.4326 (16)C18—C191.3717 (18)
C2—C31.4147 (17)C18—H18A0.9300
C2—H2A0.9300C19—C201.4219 (17)
C3—C41.3678 (18)C19—H19A0.9300
C3—H3A0.9300C21—C221.3762 (17)
C4—C51.4197 (17)C21—C301.4362 (16)
C4—H4A0.9300C22—C231.4154 (17)
C5—C61.4191 (17)C22—H22A0.9300
C5—C101.4267 (17)C23—C241.3696 (18)
C6—C71.3688 (19)C23—H23A0.9300
C6—H6A0.9300C24—C251.4159 (18)
C7—C81.408 (2)C24—H24A0.9300
C7—H7A0.9300C25—C261.4220 (17)
C8—C91.3729 (17)C25—C301.4286 (16)
C8—H8A0.9300C26—C271.369 (2)
C9—C101.4210 (16)C26—H26A0.9300
C9—H9A0.9300C27—C281.4121 (19)
C11—C121.3787 (16)C27—H27A0.9300
C11—C201.4336 (17)C28—C291.3745 (17)
C12—C131.4168 (18)C28—H28A0.9300
C12—H12A0.9300C29—C301.4206 (17)
C13—C141.367 (2)C29—H29A0.9300
C13—H13A0.9300C31—Cl11.7541 (14)
C14—C151.4175 (18)C31—Cl21.7677 (15)
C14—H14A0.9300C31—Cl31.7681 (14)
C15—C161.4219 (18)C31—H31A0.9800
C15—C201.4262 (17)
C21—As1—C198.97 (5)C15—C16—H16A119.4
C21—As1—C1199.78 (5)C16—C17—C18119.88 (13)
C1—As1—C11100.92 (5)C16—C17—H17A120.1
C2—C1—C10119.28 (11)C18—C17—H17A120.1
C2—C1—As1121.43 (9)C19—C18—C17120.56 (13)
C10—C1—As1119.00 (8)C19—C18—H18A119.7
C1—C2—C3121.20 (11)C17—C18—H18A119.7
C1—C2—H2A119.4C18—C19—C20121.14 (12)
C3—C2—H2A119.4C18—C19—H19A119.4
C4—C3—C2120.41 (11)C20—C19—H19A119.4
C4—C3—H3A119.8C19—C20—C15118.20 (11)
C2—C3—H3A119.8C19—C20—C11122.68 (11)
C3—C4—C5120.52 (11)C15—C20—C11119.12 (11)
C3—C4—H4A119.7C22—C21—C30119.90 (11)
C5—C4—H4A119.7C22—C21—As1121.23 (9)
C6—C5—C4121.43 (11)C30—C21—As1118.87 (9)
C6—C5—C10119.22 (11)C21—C22—C23121.10 (11)
C4—C5—C10119.35 (11)C21—C22—H22A119.5
C7—C6—C5121.09 (12)C23—C22—H22A119.5
C7—C6—H6A119.5C24—C23—C22120.10 (12)
C5—C6—H6A119.5C24—C23—H23A119.9
C6—C7—C8119.94 (12)C22—C23—H23A119.9
C6—C7—H7A120.0C23—C24—C25120.81 (11)
C8—C7—H7A120.0C23—C24—H24A119.6
C9—C8—C7120.47 (12)C25—C24—H24A119.6
C9—C8—H8A119.8C24—C25—C26121.36 (11)
C7—C8—H8A119.8C24—C25—C30119.58 (11)
C8—C9—C10121.20 (12)C26—C25—C30119.04 (12)
C8—C9—H9A119.4C27—C26—C25121.12 (12)
C10—C9—H9A119.4C27—C26—H26A119.4
C9—C10—C5118.05 (11)C25—C26—H26A119.4
C9—C10—C1122.70 (11)C26—C27—C28120.01 (12)
C5—C10—C1119.24 (10)C26—C27—H27A120.0
C12—C11—C20119.45 (11)C28—C27—H27A120.0
C12—C11—As1121.68 (9)C29—C28—C27120.34 (12)
C20—C11—As1118.61 (8)C29—C28—H28A119.8
C11—C12—C13121.08 (12)C27—C28—H28A119.8
C11—C12—H12A119.5C28—C29—C30121.21 (12)
C13—C12—H12A119.5C28—C29—H29A119.4
C14—C13—C12120.31 (12)C30—C29—H29A119.4
C14—C13—H13A119.8C29—C30—C25118.25 (11)
C12—C13—H13A119.8C29—C30—C21123.25 (11)
C13—C14—C15120.70 (12)C25—C30—C21118.50 (11)
C13—C14—H14A119.7Cl1—C31—Cl2110.57 (8)
C15—C14—H14A119.7Cl1—C31—Cl3110.72 (8)
C14—C15—C16121.55 (12)Cl2—C31—Cl3109.87 (7)
C14—C15—C20119.34 (12)Cl1—C31—H31A108.5
C16—C15—C20119.11 (12)Cl2—C31—H31A108.5
C17—C16—C15121.11 (12)Cl3—C31—H31A108.5
C17—C16—H16A119.4
C21—As1—C1—C24.02 (11)C16—C17—C18—C190.2 (2)
C11—As1—C1—C2105.88 (10)C17—C18—C19—C200.7 (2)
C21—As1—C1—C10177.76 (9)C18—C19—C20—C151.16 (18)
C11—As1—C1—C1080.38 (10)C18—C19—C20—C11178.32 (12)
C10—C1—C2—C30.04 (18)C14—C15—C20—C19179.78 (11)
As1—C1—C2—C3173.68 (9)C16—C15—C20—C190.66 (17)
C1—C2—C3—C40.41 (19)C14—C15—C20—C110.72 (17)
C2—C3—C4—C50.48 (19)C16—C15—C20—C11178.84 (11)
C3—C4—C5—C6179.76 (12)C12—C11—C20—C19179.98 (12)
C3—C4—C5—C100.11 (18)As1—C11—C20—C195.71 (15)
C4—C5—C6—C7179.07 (13)C12—C11—C20—C150.54 (17)
C10—C5—C6—C70.58 (19)As1—C11—C20—C15173.77 (8)
C5—C6—C7—C80.5 (2)C1—As1—C21—C2287.58 (10)
C6—C7—C8—C90.3 (2)C11—As1—C21—C2215.24 (11)
C7—C8—C9—C101.1 (2)C1—As1—C21—C3092.80 (9)
C8—C9—C10—C51.03 (18)C11—As1—C21—C30164.39 (9)
C8—C9—C10—C1178.47 (12)C30—C21—C22—C230.73 (18)
C6—C5—C10—C90.19 (17)As1—C21—C22—C23179.65 (9)
C4—C5—C10—C9179.85 (11)C21—C22—C23—C240.08 (19)
C6—C5—C10—C1179.33 (11)C22—C23—C24—C250.82 (19)
C4—C5—C10—C10.33 (17)C23—C24—C25—C26177.45 (12)
C2—C1—C10—C9179.90 (11)C23—C24—C25—C300.73 (18)
As1—C1—C10—C96.02 (15)C24—C25—C26—C27177.59 (12)
C2—C1—C10—C50.40 (17)C30—C25—C26—C270.61 (18)
As1—C1—C10—C5173.47 (8)C25—C26—C27—C281.31 (19)
C21—As1—C11—C12105.15 (10)C26—C27—C28—C290.4 (2)
C1—As1—C11—C123.94 (11)C27—C28—C29—C301.25 (19)
C21—As1—C11—C2080.67 (9)C28—C29—C30—C251.91 (18)
C1—As1—C11—C20178.13 (9)C28—C29—C30—C21177.34 (11)
C20—C11—C12—C130.08 (18)C24—C25—C30—C29179.21 (11)
As1—C11—C12—C13174.21 (9)C26—C25—C30—C290.98 (17)
C11—C12—C13—C140.53 (19)C24—C25—C30—C210.08 (17)
C12—C13—C14—C150.35 (19)C26—C25—C30—C21178.31 (11)
C13—C14—C15—C16179.27 (12)C22—C21—C30—C29178.45 (11)
C13—C14—C15—C200.28 (18)As1—C21—C30—C291.18 (15)
C14—C15—C16—C17179.29 (13)C22—C21—C30—C250.80 (17)
C20—C15—C16—C170.26 (19)As1—C21—C30—C25179.57 (8)
C15—C16—C17—C180.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···Cg1i0.932.683.6013 (14)169
C14—H14A···Cg2ii0.932.863.7421 (15)160
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC30H21As·CHCl3
Mr575.76
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.1326 (2), 11.9473 (2), 12.3971 (2)
α, β, γ (°)77.432 (1), 87.455 (1), 75.434 (1)
V3)1277.72 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.66
Crystal size (mm)0.62 × 0.23 × 0.10
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.427, 0.849
No. of measured, independent and
observed [I > 2σ(I)] reflections
37994, 7382, 6791
Rint0.027
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.061, 1.04
No. of reflections7382
No. of parameters316
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.29

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···Cg1i0.93002.683.6013 (14)169
C14—H14A···Cg2ii0.93002.863.7421 (15)160
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z.
 

Footnotes

On secondment to: Multimedia University, Melaka Campus, Jalan Ayer Keroh Lama, 74750 Melaka, Malaysia.

§Thomson Reuters ResearcherID: A-5523-2009.

Thomson Reuters ResearcherID: A-3561-2009. Additional correspondence author, e-mail: hkfun@usm.com.

Acknowledgements

The authors would like to thank the Malaysian Government and Universiti Sains Malaysia (USM) for the Research grant No. 1001/PJJAUH/811115. IAK is grateful to USM for a postdoctoral Fellowship and Gokhale Centenary College, Ankola, Karnataka, India for study leave. HKF thanks USM for the Research University Golden Goose grant No. 1001/PFIZIK/811012. CSY thanks USM for the award of a USM Fellowship.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurfield, D. R., Gan, G.-H. & Smithers, R. H. (1978). J. Appl. Chem. Biotechnol. 28, 23–30.  CAS Google Scholar
First citationBurfield, D. R., Lee, K.-H. & Smithers, R. H. (1977). J. Org. Chem. 42, 3060–3065.  CrossRef CAS Web of Science Google Scholar
First citationBurfield, D. R. & Smithers, R. H. (1978). J. Org. Chem. 43, 3966–3968.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCullen, W. R., Rettig, S. J. & Tu, C. Z. (1995). Organometallics, 14, 1466–1470.  CSD CrossRef CAS Web of Science Google Scholar
First citationKamepalli, S., Carmalt, C. J., Culp, R. D., Cowley, A. H. & Jones, R. A. (1996). Inorg. Chem. 35, 6179–6183.  CSD CrossRef CAS Web of Science Google Scholar
First citationMichaelis, A. (1902). Justus Liebigs Ann. Chem. 321, 242–248.  CrossRef Google Scholar
First citationShawkataly, O. bin, Khan, I. A., Goh, J. H. & Fun, H.-K. (2009). Acta Cryst. E65, o2591–o2592.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds