metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2,2′-Bi­pyridine-κ2N,N′)di­bromido­palladium(II) di­chloro­methane solvate

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 24 September 2009; accepted 29 September 2009; online 3 October 2009)

In the title compound, [PdBr2(C10H8N2)]·CH2Cl2, the Pd2+ ion is four-coordinated in a slightly distorted square-planar environment by two N atoms of the chelating 2,2′-bipyridine ligand and two bromide ions. The compound displays intra­molecular C—H⋯Br hydrogen bonds and pairs of complex mol­ecules are assembled by inter­molecular C—H⋯Br hydrogen bonds. These pairs are connected by additional C—H⋯Br hydrogen bonds, forming a layer structure extending parallel to (011). Inter­molecular ππ inter­actions between the pyridine rings of the ligand are also present, the shortest centroid–centroid distance being 4.090 (9) Å.

Related literature

For the crystal structures of [PdX2(bipy)] (X = Cl or Br), see: Maekawa et al. (1991[Maekawa, M., Munakata, M., Kitagawa, S. & Nakamura, M. (1991). Anal. Sci. 7, 521-522.]); Smeets et al. (1997[Smeets, W. J. J., Spek, A. L., Hoare, J. L., Canty, A. J., Hovestad, N. & van Koten, G. (1997). Acta Cryst. C53, 1045-1047.]). For the crystal structure of [PdCl2(bipy)]·CH2Cl2 which is isotypic to the title compound, see: Vicente et al. (1997[Vicente, J., Abad, J. A., Rink, B. & Arellano, M. C. R. (1997). Private communication (refcode PYCXMN02). CCDC, Cambridge, England.]); Kim et al. (2009a[Kim, N.-H., Hwang, I.-C. & Ha, K. (2009a). Acta Cryst. E65, m615-m616.]). For related Pt(II, IV)-bipyridine complexes, see: Osborn & Rogers (1974[Osborn, R. S. & Rogers, D. (1974). J. Chem. Soc. Dalton Trans. pp. 1002-1004.]); Hambley (1986[Hambley, T. W. (1986). Acta Cryst. C42, 49-51.]); Sartori et al. (2005[Sartori, D. A., Hurst, S. K., Wood, N., Larsen, R. D. & Abbott, E. H. (2005). J. Chem. Crystallogr. 35, 995-998.]); Momeni et al. (2007[Momeni, B. Z., Hamzeh, S., Hosseini, S. S. & Rominger, F. (2007). Inorg. Chim. Acta, 360, 2661-2668.]); Kim et al. (2009b[Kim, N.-H., Hwang, I.-C. & Ha, K. (2009b). Acta Cryst. E65, m180.]).

[Scheme 1]

Experimental

Crystal data
  • [PdBr2(C10H8N2)]·CH2Cl2

  • Mr = 507.33

  • Triclinic, [P \overline 1]

  • a = 8.9323 (10) Å

  • b = 9.3035 (10) Å

  • c = 10.0113 (11) Å

  • α = 72.882 (2)°

  • β = 67.292 (2)°

  • γ = 80.995 (2)°

  • V = 732.60 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 7.07 mm−1

  • T = 200 K

  • 0.22 × 0.15 × 0.11 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.707, Tmax = 1.000

  • 5486 measured reflections

  • 3574 independent reflections

  • 2195 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.188

  • S = 1.14

  • 3574 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 2.13 e Å−3

  • Δρmin = −3.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Br2 0.95 2.69 3.313 (13) 124
C2—H2⋯Br2i 0.95 2.84 3.659 (16) 145
C10—H10⋯Br1 0.95 2.72 3.343 (14) 124
C11—H11A⋯Br2 0.99 2.92 3.693 (15) 135
C11—H11B⋯Br1ii 0.99 2.81 3.668 (16) 145
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The asymmetric unit of the title compound, [PdBr2(C10H8N2)].CH2Cl2, contains a neutral PdII complex and a solvent molecule (Fig. 1). The compound crystallizes in the triclinic space group P1, whereas the previously reported solvent-free complex [PdBr2(C10H8N2)] crystallizes in the monoclinic space group C2/c (Smeets et al., 1997).

In the title complex, the Pd2+ ion is four-coordinated in a slightly distorted square-planar environment by two N atoms of the 2,2'-bipyridine (bipy) ligand and two Br anions. The main contribution to the distortion is the tight N1—Pd1—N2 chelate angle (80.6 (5)°), which results in a non-linear trans arrangement (<N1—Pd1—Br1 = 175.7 (3)° and <N2—Pd1—Br2 = 175.7 (4)°). Each of the two Pd1—N and Pd1—Br bond lengths are almost equal, (Pd1—N: 2.042 (9) and 2.051 (11) Å; Pd1—Br 2.4182 (18) and 2.4044 (19) Å), and close to those reported for [PdBr2(C10H8N2)] (Smeets et al., 1997). The compound displays inter- and intramolecular C—H···Br hydrogen bonds (Table 1). Pairs of complex molecules are assembled by intermolecular hydrogen bonds, and the dichloromethane solvent molecules connect the pairs by intermolecular hydrogen bonds, thereby forming a layer structure extending parallel to (011) (Fig. 2). There may also be intermolecular π-π interactions between adjacent pyridine rings of the lignad (the symmetry operation for second plane is -x,-y,-z), with a shortest centroid-centroid distance of 4.090 (9) Å, and the planes are parallel and shifted for 1.758 Å.

For the crystal structures of related palladium(II) halogenides with bipyridine ligands, [PdX2(bipy)], where X = Cl or Br, see: Maekawa et al. (1991); Smeets et al. (1997). For [PdCl2(bipy)].CH2Cl2 that crystallizes isotypically with the title compound, see: Vicente et al. (1997); Kim et al. (2009a). For related Pt(II, IV)-bipyridine complexes, see: Osborn & Rogers (1974); Hambley (1986); Sartori et al. (2005); Momeni et al. (2007); Kim et al. (2009b).

Related literature top

For the crystal structures of [PdX2(bipy)] (X = Cl or Br), see: Maekawa et al. (1991); Smeets et al. (1997). For the crystal structure of [PdCl2(bipy)].CH2Cl2 which is isotypic to the title compound, see: Vicente et al. (1997); Kim et al. (2009a). For related Pt(II, IV)-bipyridine complexes, see: Osborn & Rogers (1974); Hambley (1986); Sartori et al. (2005); Momeni et al. (2007); Kim et al. (2009b).

Experimental top

To a solution of K2PdBr4 (0.100 g, 0.198 mmol) in EtOH (10 ml) was added 2,2'-bipyridine (0.031 g, 0.198 mmol), and refluxed for 4 h. The precipitate obtained was separated by filtration and washed with EtOH and water and dried under vacuum to give an orange powder (0.054 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH2Cl2 solution.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 (CH) or 0.99 (CH2) Å and Uiso(H) = 1.2Ueq(C)]. The highest peak and the deepest hole in the final Fourier map are 1.30 Å from atom Pd1 and 0.81 Å from the same atom.

Structure description top

The asymmetric unit of the title compound, [PdBr2(C10H8N2)].CH2Cl2, contains a neutral PdII complex and a solvent molecule (Fig. 1). The compound crystallizes in the triclinic space group P1, whereas the previously reported solvent-free complex [PdBr2(C10H8N2)] crystallizes in the monoclinic space group C2/c (Smeets et al., 1997).

In the title complex, the Pd2+ ion is four-coordinated in a slightly distorted square-planar environment by two N atoms of the 2,2'-bipyridine (bipy) ligand and two Br anions. The main contribution to the distortion is the tight N1—Pd1—N2 chelate angle (80.6 (5)°), which results in a non-linear trans arrangement (<N1—Pd1—Br1 = 175.7 (3)° and <N2—Pd1—Br2 = 175.7 (4)°). Each of the two Pd1—N and Pd1—Br bond lengths are almost equal, (Pd1—N: 2.042 (9) and 2.051 (11) Å; Pd1—Br 2.4182 (18) and 2.4044 (19) Å), and close to those reported for [PdBr2(C10H8N2)] (Smeets et al., 1997). The compound displays inter- and intramolecular C—H···Br hydrogen bonds (Table 1). Pairs of complex molecules are assembled by intermolecular hydrogen bonds, and the dichloromethane solvent molecules connect the pairs by intermolecular hydrogen bonds, thereby forming a layer structure extending parallel to (011) (Fig. 2). There may also be intermolecular π-π interactions between adjacent pyridine rings of the lignad (the symmetry operation for second plane is -x,-y,-z), with a shortest centroid-centroid distance of 4.090 (9) Å, and the planes are parallel and shifted for 1.758 Å.

For the crystal structures of related palladium(II) halogenides with bipyridine ligands, [PdX2(bipy)], where X = Cl or Br, see: Maekawa et al. (1991); Smeets et al. (1997). For [PdCl2(bipy)].CH2Cl2 that crystallizes isotypically with the title compound, see: Vicente et al. (1997); Kim et al. (2009a). For related Pt(II, IV)-bipyridine complexes, see: Osborn & Rogers (1974); Hambley (1986); Sartori et al. (2005); Momeni et al. (2007); Kim et al. (2009b).

For the crystal structures of [PdX2(bipy)] (X = Cl or Br), see: Maekawa et al. (1991); Smeets et al. (1997). For the crystal structure of [PdCl2(bipy)].CH2Cl2 which is isotypic to the title compound, see: Vicente et al. (1997); Kim et al. (2009a). For related Pt(II, IV)-bipyridine complexes, see: Osborn & Rogers (1974); Hambley (1986); Sartori et al. (2005); Momeni et al. (2007); Kim et al. (2009b).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, with displacement ellipsoids drawn at the 40% probability level for non-H atoms. H atoms are displayed as spheres of arbitrary radius.
[Figure 2] Fig. 2. Crystal packing of the title compound. Hydrogen-bonding interactions are drawn with dashed lines. Intramolecular C—H···Br hydrogen bonds are omitted.
(2,2'-Bipyridine-κ2N,N')dibromidopalladium(II) dichloromethane solvate top
Crystal data top
[PdBr2(C10H8N2)]·CH2Cl2Z = 2
Mr = 507.33F(000) = 480
Triclinic, P1Dx = 2.300 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9323 (10) ÅCell parameters from 1623 reflections
b = 9.3035 (10) Åθ = 2.3–26.7°
c = 10.0113 (11) ŵ = 7.07 mm1
α = 72.882 (2)°T = 200 K
β = 67.292 (2)°Block, dark orange
γ = 80.995 (2)°0.22 × 0.15 × 0.11 mm
V = 732.60 (14) Å3
Data collection top
Bruker SMART 1000 CCD
diffractometer
3574 independent reflections
Radiation source: fine-focus sealed tube2195 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
φ and ω scansθmax = 28.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1111
Tmin = 0.707, Tmax = 1.000k = 1212
5486 measured reflectionsl = 1310
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.188H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + 21.2252P]
where P = (Fo2 + 2Fc2)/3
3574 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 2.13 e Å3
0 restraintsΔρmin = 3.43 e Å3
Crystal data top
[PdBr2(C10H8N2)]·CH2Cl2γ = 80.995 (2)°
Mr = 507.33V = 732.60 (14) Å3
Triclinic, P1Z = 2
a = 8.9323 (10) ÅMo Kα radiation
b = 9.3035 (10) ŵ = 7.07 mm1
c = 10.0113 (11) ÅT = 200 K
α = 72.882 (2)°0.22 × 0.15 × 0.11 mm
β = 67.292 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
3574 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2195 reflections with I > 2σ(I)
Tmin = 0.707, Tmax = 1.000Rint = 0.038
5486 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.188H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + 21.2252P]
where P = (Fo2 + 2Fc2)/3
3574 reflectionsΔρmax = 2.13 e Å3
163 parametersΔρmin = 3.43 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.17533 (13)0.20690 (12)0.28502 (12)0.0321 (3)
Br10.1261 (2)0.47367 (16)0.19026 (18)0.0424 (4)
Br20.3633 (2)0.26600 (18)0.3779 (2)0.0491 (4)
N10.2025 (13)0.0210 (11)0.3616 (12)0.028 (2)
N20.0139 (13)0.1409 (13)0.2168 (14)0.036 (3)
C10.3048 (18)0.0927 (14)0.4310 (15)0.036 (3)
H10.37420.03630.44620.043*
C20.3107 (19)0.2513 (16)0.4819 (17)0.042 (4)
H20.38220.30210.53250.051*
C30.2123 (18)0.3299 (16)0.4572 (17)0.043 (4)
H30.21710.43690.48700.052*
C40.1059 (19)0.2536 (15)0.3888 (16)0.039 (3)
H40.03380.30900.37600.047*
C50.1007 (15)0.0985 (15)0.3378 (15)0.033 (3)
C60.0030 (16)0.0117 (16)0.2607 (16)0.036 (3)
C70.1125 (18)0.0734 (18)0.2308 (17)0.043 (4)
H70.12280.17930.25990.052*
C80.210 (2)0.0237 (19)0.1559 (18)0.050 (4)
H80.28880.01530.13610.060*
C90.188 (2)0.1730 (18)0.1129 (18)0.049 (4)
H90.25100.23960.06030.059*
C100.0763 (18)0.2292 (19)0.1449 (17)0.043 (4)
H100.06360.33480.11430.051*
C110.5407 (19)0.6259 (17)0.1286 (19)0.048 (4)
H11A0.44060.57430.20010.058*
H11B0.58750.57850.04370.058*
Cl10.4918 (5)0.8180 (5)0.0621 (5)0.0515 (10)
Cl20.6808 (6)0.6039 (5)0.2181 (6)0.0662 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0322 (6)0.0287 (5)0.0372 (6)0.0048 (4)0.0124 (5)0.0096 (4)
Br10.0503 (9)0.0281 (7)0.0507 (10)0.0036 (6)0.0195 (7)0.0104 (6)
Br20.0533 (10)0.0378 (8)0.0684 (12)0.0122 (7)0.0345 (9)0.0089 (8)
N10.032 (6)0.015 (5)0.033 (6)0.001 (4)0.017 (5)0.004 (4)
N20.022 (6)0.040 (7)0.053 (8)0.006 (5)0.013 (5)0.018 (6)
C10.051 (9)0.015 (6)0.037 (8)0.003 (6)0.018 (7)0.004 (5)
C20.047 (9)0.027 (7)0.052 (10)0.004 (6)0.024 (8)0.003 (6)
C30.045 (9)0.024 (7)0.042 (9)0.001 (6)0.002 (7)0.005 (6)
C40.055 (9)0.024 (7)0.036 (8)0.003 (6)0.021 (7)0.001 (6)
C50.020 (6)0.041 (8)0.040 (8)0.006 (6)0.001 (5)0.024 (6)
C60.027 (7)0.040 (8)0.041 (8)0.010 (6)0.009 (6)0.011 (6)
C70.041 (9)0.046 (9)0.043 (9)0.011 (7)0.016 (7)0.006 (7)
C80.053 (10)0.053 (10)0.055 (11)0.008 (8)0.035 (9)0.007 (8)
C90.051 (10)0.048 (9)0.054 (10)0.010 (8)0.034 (8)0.006 (8)
C100.045 (9)0.059 (10)0.045 (9)0.007 (7)0.037 (7)0.014 (7)
C110.041 (9)0.045 (9)0.055 (10)0.016 (7)0.004 (8)0.018 (8)
Cl10.055 (2)0.045 (2)0.055 (3)0.0045 (18)0.026 (2)0.0050 (18)
Cl20.069 (3)0.052 (3)0.091 (4)0.003 (2)0.052 (3)0.008 (2)
Geometric parameters (Å, º) top
Pd1—N12.042 (9)C4—H40.9500
Pd1—N22.051 (11)C5—C61.43 (2)
Pd1—Br22.4044 (19)C6—C71.371 (19)
Pd1—Br12.4182 (18)C7—C81.41 (2)
N1—C11.338 (17)C7—H70.9500
N1—C51.370 (15)C8—C91.35 (2)
N2—C101.317 (18)C8—H80.9500
N2—C61.371 (17)C9—C101.373 (19)
C1—C21.412 (17)C9—H90.9500
C1—H10.9500C10—H100.9500
C2—C31.36 (2)C11—Cl21.757 (17)
C2—H20.9500C11—Cl11.763 (16)
C3—C41.37 (2)C11—H11A0.9900
C3—H30.9500C11—H11B0.9900
C4—C51.382 (18)
N1—Pd1—N280.6 (5)N1—C5—C4117.9 (13)
N1—Pd1—Br295.3 (3)N1—C5—C6117.2 (12)
N2—Pd1—Br2175.7 (4)C4—C5—C6124.9 (12)
N1—Pd1—Br1175.7 (3)C7—C6—N2120.9 (14)
N2—Pd1—Br195.1 (3)C7—C6—C5123.7 (13)
Br2—Pd1—Br188.90 (6)N2—C6—C5115.4 (12)
C1—N1—C5121.3 (11)C6—C7—C8118.5 (15)
C1—N1—Pd1125.6 (9)C6—C7—H7120.7
C5—N1—Pd1113.0 (9)C8—C7—H7120.7
C10—N2—C6119.5 (12)C9—C8—C7118.9 (15)
C10—N2—Pd1126.8 (10)C9—C8—H8120.6
C6—N2—Pd1113.6 (10)C7—C8—H8120.6
N1—C1—C2120.6 (13)C8—C9—C10120.3 (15)
N1—C1—H1119.7C8—C9—H9119.8
C2—C1—H1119.7C10—C9—H9119.8
C3—C2—C1118.8 (14)N2—C10—C9121.9 (15)
C3—C2—H2120.6N2—C10—H10119.1
C1—C2—H2120.6C9—C10—H10119.1
C2—C3—C4119.4 (13)Cl2—C11—Cl1110.9 (8)
C2—C3—H3120.3Cl2—C11—H11A109.5
C4—C3—H3120.3Cl1—C11—H11A109.5
C3—C4—C5121.9 (14)Cl2—C11—H11B109.5
C3—C4—H4119.1Cl1—C11—H11B109.5
C5—C4—H4119.1H11A—C11—H11B108.0
N2—Pd1—N1—C1178.3 (12)C3—C4—C5—N12 (2)
Br2—Pd1—N1—C13.1 (11)C3—C4—C5—C6177.7 (14)
N2—Pd1—N1—C52.9 (9)C10—N2—C6—C70 (2)
Br2—Pd1—N1—C5175.6 (8)Pd1—N2—C6—C7176.6 (11)
N1—Pd1—N2—C10179.9 (13)C10—N2—C6—C5179.8 (13)
Br1—Pd1—N2—C100.6 (13)Pd1—N2—C6—C53.5 (15)
N1—Pd1—N2—C63.5 (9)N1—C5—C6—C7179.1 (13)
Br1—Pd1—N2—C6175.8 (9)C4—C5—C6—C71 (2)
C5—N1—C1—C20 (2)N1—C5—C6—N21.1 (18)
Pd1—N1—C1—C2178.7 (10)C4—C5—C6—N2178.6 (13)
N1—C1—C2—C31 (2)N2—C6—C7—C81 (2)
C1—C2—C3—C42 (2)C5—C6—C7—C8179.1 (14)
C2—C3—C4—C53 (2)C6—C7—C8—C92 (2)
C1—N1—C5—C40.4 (19)C7—C8—C9—C102 (3)
Pd1—N1—C5—C4178.4 (10)C6—N2—C10—C90 (2)
C1—N1—C5—C6179.2 (12)Pd1—N2—C10—C9175.8 (12)
Pd1—N1—C5—C62.0 (15)C8—C9—C10—N20 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Br20.952.693.313 (13)124
C2—H2···Br2i0.952.843.659 (16)145
C10—H10···Br10.952.723.343 (14)124
C11—H11A···Br20.992.923.693 (15)135
C11—H11B···Br1ii0.992.813.668 (16)145
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[PdBr2(C10H8N2)]·CH2Cl2
Mr507.33
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)8.9323 (10), 9.3035 (10), 10.0113 (11)
α, β, γ (°)72.882 (2), 67.292 (2), 80.995 (2)
V3)732.60 (14)
Z2
Radiation typeMo Kα
µ (mm1)7.07
Crystal size (mm)0.22 × 0.15 × 0.11
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.707, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5486, 3574, 2195
Rint0.038
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.188, 1.14
No. of reflections3574
No. of parameters163
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + 21.2252P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.13, 3.43

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Br20.952.693.313 (13)124.0
C2—H2···Br2i0.952.843.659 (16)144.7
C10—H10···Br10.952.723.343 (14)124.2
C11—H11A···Br20.992.923.693 (15)135.4
C11—H11B···Br1ii0.992.813.668 (16)144.7
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z.
 

Acknowledgements

This study was supported financially by the Special Research Program of Chonnam National University, 2009.

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHambley, T. W. (1986). Acta Cryst. C42, 49–51.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKim, N.-H., Hwang, I.-C. & Ha, K. (2009a). Acta Cryst. E65, m615–m616.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKim, N.-H., Hwang, I.-C. & Ha, K. (2009b). Acta Cryst. E65, m180.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMaekawa, M., Munakata, M., Kitagawa, S. & Nakamura, M. (1991). Anal. Sci. 7, 521–522.  CrossRef CAS Web of Science Google Scholar
First citationMomeni, B. Z., Hamzeh, S., Hosseini, S. S. & Rominger, F. (2007). Inorg. Chim. Acta, 360, 2661–2668.  Web of Science CSD CrossRef CAS Google Scholar
First citationOsborn, R. S. & Rogers, D. (1974). J. Chem. Soc. Dalton Trans. pp. 1002–1004.  CSD CrossRef Web of Science Google Scholar
First citationSartori, D. A., Hurst, S. K., Wood, N., Larsen, R. D. & Abbott, E. H. (2005). J. Chem. Crystallogr. 35, 995–998.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmeets, W. J. J., Spek, A. L., Hoare, J. L., Canty, A. J., Hovestad, N. & van Koten, G. (1997). Acta Cryst. C53, 1045–1047.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVicente, J., Abad, J. A., Rink, B. & Arellano, M. C. R. (1997). Private communication (refcode PYCXMN02). CCDC, Cambridge, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds