

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Di-u-hydroxido-bis[tris(1,1,1,5,5,5hexafluoroacetvlacetonato- $\kappa^2 O.O'$)hafnium(IV)] acetone solvate

I. Augustinus Viljoen,* Hendrik G. Visser, Andreas Roodt and Maryke Steyn

Department of Chemistry, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa

Correspondence e-mail: ViljoenJA.sci@ufs.ac.za

Received 6 October 2009; accepted 12 October 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.010 Å; disorder in main residue; R factor = 0.041; wR factor = 0.119; data-to-parameter ratio = 17.1.

The binuclear title compound, $[Hf_2(C_5HF_6O_2)_6(OH)_2]$. C_3H_6O , contains an Hf^{IV} atom which is eight coordinated and surrounded by three chelating β -diketonato 1,1,1,5,5,5hexafluoroacetylacetonate (hfaa) ligands and two bridging OH groups situated on a twofold rotation axis. The HfO₈ coordination polyhedron shows a slightly distorted Archimedean square anti-prismatic coordination with average Hf-O, C-O, C-C_{Me} distances of 2.19 (2), 1.26 (2) and 1.49 (2) Å, respectively, and an O-Hf-O bite angle of $75.3 (5)^{\circ}$. Weak O-H···O hydrogen bonding interactions are observed between one of the bridging hydroxy groups and the disordered solvent molecule.

Related literature

A monoclinic structure of the solvent-free title compound was first investigated by Zherikova et al. (2006a). For more hafnium and zirconium complexes containing β -diketonato ligands, see: Viljoen et al. (2008); Calderazzo et al. (1998); Zherikova et al. (2005, 2006b); Steyn et al. (2008).

V = 5168.1 (6) Å³

Mo $K\alpha$ radiation

 $0.26 \times 0.21 \times 0.02 \text{ mm}$

24620 measured reflections

6381 independent reflections

5035 reflections with $I > 2\sigma(I)$

atoms treated by a mixture of

independent and constrained

 $\mu = 4.21 \text{ mm}^-$

T = 100 K

 $R_{\rm int} = 0.050$

Z = 4

Experimental

Crystal data

 $[Hf_2(C_5HF_6O_2)_6(OH)_2]\cdot C_3H_6O$ $M_r = 1691.42$ Monoclinic, C2/c a = 22.1290 (14) Åb = 12.4100 (8) Å c = 19.5010 (11) Å $\beta = 105.197 (2)^{\circ}$

Data collection

Bruker X8 APEXII 4K Kappa CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2004) $T_{\min} = 0.360, \ T_{\max} = 0.919$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.041$	H atoms treated by a
$wR(F^2) = 0.119$	independent and c
S = 1.03	refinement
6381 reflections	$\Delta \rho_{\rm max} = 2.07 \text{ e } \text{\AA}^{-3}$
373 parameters	$\Delta \rho_{\rm min} = -1.49 \text{ e } \text{\AA}^{-3}$
5 restraints	

Table 1

Selected geometric parameters (Å, °).

Hf-O1	2.258 (4)	Hf-O5	2.238 (4)
Hf-O2	2.147 (4)	Hf-O6	2.137 (4)
Hf-O3	2.209 (4)	Hf-O7	2.113 (3)
Hf-O4	2.150 (4)	Hf-O8	2.096 (3)
O2-Hf-O1	75.83 (14)	Hf-O7-Hf ⁱ	112.5 (3)
O4-Hf-O3	74.36 (16)	$Hf^{i}-O8-Hf$	113.9 (3)
O6-Hf-O5	75.77 (14)		

Symmetry code: (i) $-x + 1, y, -z + \frac{1}{2}$.

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O7−H7···O01	0.81 (3)	1.98 (3)	2.783 (10)	170.0 (4)

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus; program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Financial assistance from the Advanced Metals Initiative (AMI) and the Department of Science and Technology (DST) of South Africa, as well as the New Metals Development Network (NMDN) and the South African Nuclear Energy Corporation Limited (Necsa) is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2265).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Brandenburg, K. & Putz, H. (2005). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Calderazzo, F., Englert, U., Maichle-Mossmer, C., Marchetti, F., Pampaloni, G., Petroni, D., Pinzino, C., Strahle, J. & Tripepi, G. (1998). *Inorg. Chim. Acta*, **270**, 177–188.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Steyn, M., Roodt, A. & Steyl, G. (2008). Acta Cryst. E64, m827.
- Viljoen, J. A., Muller, A. & Roodt, A. (2008). Acta Cryst., E64, m838–m839. Zherikova, K. V., Morozova, N. B., Baidina, I. A., Alekseev, V. I. & Igumenov,
- I. K. (2006*a*). J. Struct. Chem. **47**, 82–86. Zherikova, K. V., Morozova, N. B., Baidina, I. A., Peresypkina, E. V. & Igumenov, I. K. (2006*b*). J. Struct. Chem. **47**, 570–574.
- Zherikova, K. V., Morozova, N. B., Kurateva, N. V., Baidina, I. A., Stabnikov, P. A. & Igumenov, I. K. (2005). J. Struct. Chem. 46, 1039–1046.

supporting information

Acta Cryst. (2009). E65, m1367-m1368 [https://doi.org/10.1107/S1600536809041658]

Di- μ -hydroxido-bis[tris(1,1,1,5,5,5-hexafluoroacetylacetonato- $\kappa^2 O, O'$)hafnium(IV)] acetone solvate

J. Augustinus Viljoen, Hendrik G. Visser, Andreas Roodt and Maryke Steyn

S1. Comment

This study was done as part of ongoing research into the reactions of O,O'- and O,N-bidentate ligands with hafnium(IV) and zirconium(IV). If hafnium and zirconium show differences in their chelating behaviour, either by reaction rates, solubilities, coordination modes, equilibrium behaviour, *etc.*, it could possibly be exploited as a novel separation technique for the two metals. A wide range of volatile tetrakis-diketonato metal complexes have been prepared by Zherikova *et al.* (2005, 2006*a*,*b*) to be used for the preparation of hafnium dioxide films and oxide coatings.

Colourless crystals of the title compound crystallize in the monoclinic crystal system (C2/c, Z=4) (Figure 1) with four acetone solvent molecules in the unit cell. The monoclinic structure of the solvent-free compound earlier reported by Zherikova et al. (2006a) cannot be superimposed with the title compound due to differences in metal coordination. Hexafluoroacetylacetonato hafnium(IV) is one of very few complexes which is not isostructural to its zirconium counterpart. Literature revealed that $Zr(hfaa)_4$ has a monomeric structure with a slightly distorted antiprismatic coordination polyhedron about the zirconium atom. The metal complex of the title compound consists of a Hf^{IV} atom which is eightcoordinated and surrounded by three hfaa ligands and two bridging OH-groups thereby adopting a slightly distorted Archimedean anti-prismatic coordination geometry (Figure 2). The dimer skeleton exhibits a flat diamond-like structure with Hf—O7, Hf—O8 and Hf—Hfdistances of 2.113 (7), 2.091 (7) and 3.5130 (7) Å, respectively, and a bite angle of 66.6 (4)°. The hexafluoroacetylacetonato ligands form three six-membered metallocycles with average Hf—O, C—O, C -C_{Me} distances of 2.19 (2) Å, 1.256 (15) Å and 1.485 (16) Å respectively, and an O-Hf-O bite angle of 75.3 (5)° (Table 1). In the title structure the dimer units are connected by Van der Waals interactions between different F atoms (Figure 3) to produce a three dimensional network, where the average F...F distances are 2.9 (2) Å. Lastly, weak hydrogen bonding interactions are observed between one of the bridging hydroxy groups (O7-H7) and the solvent molecule (Table 2). The opposing hydroxy group (O8-H8) does not show any hydrogen interactions, probably due to packing effects.

For more hafnium and zirconium complexes containing β -diketonato ligands, see Viljoen *et al.* (2008), Calderazzo *et al.* (1998), Zherikova *et al.* (2005, 2006b) and Steyn *et al.* (2008).

S2. Experimental

Chemicals were purchased from Sigma and Aldrich and used as received. Hexafluoroacetylacetone (450 μL , 3.3 mmol) was added drop-wise to a suspension of HfCl₄ (241 mg, 0.75 mmol) in toluene (10 ml). The dissolution turned into a slightly white solution after 20 min. After refluxing for *ca*. 12 h, the crude product was filtered and evaporated *via* vacuum. Colourless crystals were obtained after re-crystallization in acetone at 253 K. The compound crystallized out as a colourless substance. (Yield: 408 mg, 43%) Spectroscopy data: ¹H NMR (acetone-*d*₆): δ = 6.59 (s, H),7.29 (s, H); IR (ATR): *v*(CO)= 1553 cm⁻¹.

S3. Refinement

The aromatic, methine, and methyl H atoms were placed in geometrically idealized positions (C—H = 0.93–0.98) and constrained to ride on their parent atoms with $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic and methine, and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl protons. Torsion angles for methyl protons were refined from electron density. The highest residual electron density lies within 0.84 Å from F1B. Two of the CF₃ groups are disordered over two positions each, and the anisotropic displacement parameters for these disordered groups were refined using similarity restraints. The acetone solvent molecule is disordered over two equal positions. The symmetry-related acetone is generated by the symmetry operator 1 - *x*, *y*, 1/2 - *z*, resulting in one full-occupancy disordered solvent.

Figure 1

Representation of the title compound (I), showing the numbering scheme and displacement ellipsoids (50% probability). Only one orientation of the disordered parts of the structure ($-CF_3$ and solvate) is displayed; hydrogen atoms are omitted for clarity.

Figure 2

Slightly distorted Archimedean antiprism coordination polyhedron surrounding the central hafnium atom (displacement ellipsoids at the 50% probability level).

Figure 3

Packing of molecules in the crystal structure, illustrating how the dimer units are connected by Van der Waals interactions to form a three dimensional network (hydrogen atoms and F…F interactions omitted for clarity).

Di- μ -hydroxido-bis[tris(1,1,1,5,5,5-hexafluoroacetylacetonato- $\kappa^2 O, O'$)hafnium(IV)] acetone solvate

F(000) = 3200 $D_x = 2.174 \text{ Mg m}^{-3}$

 $\theta = 3.1-28.1^{\circ}$ $\mu = 4.21 \text{ mm}^{-1}$ T = 100 KPlate, colourless $0.26 \times 0.21 \times 0.02 \text{ mm}$

Mo *Ka* radiation, $\lambda = 0.71069$ Å Cell parameters from 8999 reflections

Crystal data

$[Hf_2(C_5HF_6O_2)_6(OH)_2] \cdot C_3H_6O$
$M_r = 1691.42$
Monoclinic, $C2/c$
Hall symbol: -C 2yc
a = 22.1290 (14) Å
b = 12.4100 (8) Å
c = 19.5010 (11) Å
$\beta = 105.197 \ (2)^{\circ}$
V = 5168.1 (6) Å ³
Z = 4

Data collection

Bruker X8 APEXII 4K Kappa CCD	24620 measured reflections
diffractometer	6381 independent reflections
Radiation source: fine-focus sealed tube	5035 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.050$
ω - and φ -scans	$\theta_{\rm max} = 28.3^{\circ}, \theta_{\rm min} = 1.9^{\circ}$
Absorption correction: multi-scan	$h = -25 \rightarrow 29$
(SADABS; Bruker, 2004)	$k = -16 \rightarrow 15$
$T_{\min} = 0.360, \ T_{\max} = 0.919$	$l = -25 \rightarrow 15$
Definement	

Refinement

Refinement on F^2	H atoms treated by a mixture of independent
Least-squares matrix: full	and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.041$	$w = 1/[\sigma^2(F_o^2) + (0.0606P)^2 + 32.7892P]$
$wR(F^2) = 0.119$	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
S = 1.03	$(\Delta/\sigma)_{\rm max} = 0.001$
6381 reflections	$\Delta ho_{ m max} = 2.07 \ { m e} \ { m \AA}^{-3}$
373 parameters	$\Delta \rho_{\rm min} = -1.49 \text{ e} \text{ Å}^{-3}$
5 restraints	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Hf	0.419608 (10)	0.227714 (18)	0.207046 (12)	0.02116 (9)	
C1	0.3711 (5)	-0.0844 (7)	0.0809 (6)	0.0721 (14)	
C2	0.3592 (3)	0.0258 (4)	0.1079 (3)	0.0270 (12)	
C3	0.2981 (3)	0.0645 (5)	0.0884 (3)	0.0327 (13)	
H1	0.2669	0.0246	0.0577	0.039*	
C4	0.2838 (3)	0.1603 (5)	0.1140 (3)	0.0268 (12)	

C5	0.2168 (3)	0.2039 (5)	0.0939 (4)	0.0377 (16)	
C6	0.3336 (4)	-0.0077 (8)	0.3312 (5)	0.0638 (11)	
C7	0.3517 (3)	0.1044 (5)	0.3105 (4)	0.0356 (14)	
C8	0.3298 (3)	0.1955 (6)	0.3383 (4)	0.0386 (15)	
H2	0.2994	0.19	0.3633	0.046*	
C9	0.3545 (3)	0.2930 (5)	0.3274 (3)	0.0326 (14)	
C10	0.3404 (3)	0.3945 (6)	0.3660 (4)	0.0438 (17)	
C11	0.3635 (3)	0.5603 (5)	0.1098 (3)	0.0298 (13)	
C12	0.3980 (3)	0.4503 (5)	0.1192 (3)	0.0261 (12)	
C13	0.4324 (3)	0.4228 (5)	0.0712 (3)	0.0297 (12)	
Н3	0.4415	0.4745	0.0409	0.036*	
C14	0.4526 (3)	0.3192 (5)	0.0693 (3)	0.0271 (12)	
C15	0.4830 (3)	0.2826 (5)	0.0116 (3)	0.0346 (15)	
01	0.40552 (18)	0.0693 (3)	0.1480 (2)	0.0287 (9)	
O2	0.32118 (18)	0.2240 (3)	0.1555 (2)	0.0256 (8)	
O3	0.38704 (18)	0.1031 (3)	0.2699 (2)	0.0321 (9)	
O4	0.39107 (18)	0.3134 (3)	0.2892 (2)	0.0270 (8)	
05	0.38857 (18)	0.3933 (3)	0.1676 (2)	0.0266 (8)	
O6	0.4472 (2)	0.2418 (3)	0.1103 (2)	0.0283 (9)	
07	0.5	0.3223 (4)	0.25	0.0250 (11)	
08	0.5	0.1356 (5)	0.25	0.0271 (12)	
F1A	0.3226 (8)	-0.1422 (12)	0.0495 (9)	0.0721 (14)	0.375 (6)
F2A	0.3984 (7)	-0.0611 (10)	0.0202 (8)	0.0721 (14)	0.375 (6)
F3A	0.4211 (8)	-0.1344 (12)	0.1156 (9)	0.0721 (14)	0.375 (6)
F1B	0.3629 (4)	-0.1582 (6)	0.1313 (5)	0.0721 (14)	0.625 (6)
F2B	0.3347 (5)	-0.1112 (7)	0.0202 (5)	0.0721 (14)	0.625 (6)
F3B	0.4280 (5)	-0.1047 (7)	0.0806 (5)	0.0721 (14)	0.625 (6)
F4	0.17688 (18)	0.1341 (4)	0.0530 (3)	0.0613 (13)	
F5	0.19641 (18)	0.2225 (3)	0.1501 (3)	0.0489 (11)	
F6	0.2136 (2)	0.2953 (4)	0.0574 (2)	0.0541 (12)	
F7A	0.3759 (4)	-0.0493 (8)	0.3801 (6)	0.0638 (11)	0.667 (12)
F8A	0.3265 (4)	-0.0786 (7)	0.2726 (5)	0.0638 (11)	0.667 (12)
F9A	0.2780 (4)	-0.0118 (7)	0.3431 (6)	0.0638 (11)	0.667 (12)
F7B	0.3875 (8)	-0.0651 (16)	0.3596 (11)	0.0638 (11)	0.333 (12)
F8B	0.3023 (8)	-0.0593 (14)	0.2764 (10)	0.0638 (11)	0.333 (12)
F9B	0.2993 (8)	-0.0006 (14)	0.3789 (12)	0.0638 (11)	0.333 (12)
F10	0.3100 (2)	0.4661 (4)	0.3203 (2)	0.0553 (12)	
F11	0.3059 (3)	0.3715 (5)	0.4103 (3)	0.0885 (19)	
F12	0.3928 (2)	0.4404 (4)	0.4033 (2)	0.0654 (14)	
F13	0.30844 (18)	0.5497 (3)	0.0616 (2)	0.0451 (10)	
F14	0.3532 (2)	0.5951 (3)	0.1687 (2)	0.0456 (10)	
F15	0.3962 (2)	0.6343 (3)	0.0856 (3)	0.0619 (13)	
F16	0.4473 (2)	0.2113 (4)	-0.0304 (2)	0.0474 (11)	
F17	0.53881 (19)	0.2378 (4)	0.0391 (2)	0.0482 (11)	
F18	0.4919 (2)	0.3644 (4)	-0.0295 (2)	0.0534 (11)	
H8	0.5	0.0703 (17)	0.25	0.064*	
H7	0.5	0.388 (2)	0.25	0.064*	
C02	0.5	0.6393 (9)	0.25	0.061 (2)	
				× /	

supporting information

O01	0.5047 (7)	0.5448 (7)	0.2346 (6)	0.061 (2)	0.5	
C01	0.4627 (7)	0.6837 (13)	0.2974 (8)	0.061 (2)	0.5	
H01A	0.4339	0.7369	0.272	0.091*	0.5	
H01B	0.4904	0.7162	0.3384	0.091*	0.5	
H01C	0.4398	0.6264	0.3122	0.091*	0.5	
C03	0.5346 (8)	0.7260 (12)	0.2166 (9)	0.061 (2)	0.5	
H03A	0.5757	0.7005	0.2174	0.091*	0.5	
H03B	0.538	0.7915	0.2435	0.091*	0.5	
H03C	0.5114	0.7393	0.1684	0.091*	0.5	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Hf	0.02293 (13)	0.01426 (14)	0.02648 (14)	0.00092 (8)	0.00681 (9)	-0.00103 (9)
C1	0.085 (3)	0.037 (2)	0.088 (4)	0.018 (2)	0.013 (2)	-0.027 (2)
C2	0.033 (3)	0.011 (3)	0.037 (3)	0.001 (2)	0.010 (2)	-0.002 (2)
C3	0.029 (3)	0.025 (3)	0.038 (3)	0.000 (2)	-0.002 (2)	-0.006 (3)
C4	0.027 (3)	0.023 (3)	0.027 (3)	0.004 (2)	0.003 (2)	0.001 (2)
C5	0.026 (3)	0.025 (3)	0.054 (4)	0.001 (2)	-0.001 (3)	-0.009 (3)
C6	0.047 (2)	0.056 (2)	0.091 (3)	-0.0059 (17)	0.0231 (18)	0.031 (2)
C7	0.030 (3)	0.033 (4)	0.044 (4)	-0.003 (3)	0.009 (3)	0.011 (3)
C8	0.036 (3)	0.039 (4)	0.049 (4)	0.004 (3)	0.025 (3)	0.009 (3)
C9	0.032 (3)	0.036 (4)	0.028 (3)	0.009 (3)	0.005 (2)	0.002 (3)
C10	0.052 (4)	0.049 (5)	0.036 (4)	0.018 (3)	0.021 (3)	0.005 (3)
C11	0.034 (3)	0.015 (3)	0.037 (3)	0.003 (2)	0.002 (3)	-0.001 (2)
C12	0.025 (3)	0.020 (3)	0.030 (3)	0.002 (2)	0.003 (2)	0.000(2)
C13	0.038 (3)	0.026 (3)	0.025 (3)	0.002 (2)	0.008 (2)	0.002 (2)
C14	0.026 (3)	0.029 (3)	0.025 (3)	-0.004 (2)	0.005 (2)	-0.002 (2)
C15	0.036 (3)	0.043 (4)	0.025 (3)	-0.002(3)	0.010 (3)	-0.007 (3)
01	0.026 (2)	0.017 (2)	0.042 (2)	-0.0005 (16)	0.0075 (17)	-0.0068 (18)
O2	0.024 (2)	0.018 (2)	0.033 (2)	0.0006 (15)	0.0045 (16)	-0.0056 (16)
O3	0.030 (2)	0.026 (2)	0.041 (2)	0.0005 (17)	0.0111 (18)	0.0059 (19)
O4	0.032 (2)	0.024 (2)	0.026 (2)	0.0018 (17)	0.0102 (16)	0.0019 (17)
05	0.033 (2)	0.017 (2)	0.028 (2)	0.0008 (16)	0.0064 (16)	-0.0004 (16)
O6	0.035 (2)	0.020 (2)	0.030 (2)	0.0032 (17)	0.0087 (18)	-0.0037 (17)
O7	0.028 (3)	0.013 (3)	0.032 (3)	0	0.005 (2)	0
08	0.026 (3)	0.015 (3)	0.036 (3)	0	0.001 (2)	0
F1A	0.085 (3)	0.037 (2)	0.088 (4)	0.018 (2)	0.013 (2)	-0.027 (2)
F2A	0.085 (3)	0.037 (2)	0.088 (4)	0.018 (2)	0.013 (2)	-0.027 (2)
F3A	0.085 (3)	0.037 (2)	0.088 (4)	0.018 (2)	0.013 (2)	-0.027 (2)
F1B	0.085 (3)	0.037 (2)	0.088 (4)	0.018 (2)	0.013 (2)	-0.027 (2)
F2B	0.085 (3)	0.037 (2)	0.088 (4)	0.018 (2)	0.013 (2)	-0.027 (2)
F3B	0.085 (3)	0.037 (2)	0.088 (4)	0.018 (2)	0.013 (2)	-0.027 (2)
F4	0.036 (2)	0.042 (3)	0.090 (3)	0.0088 (19)	-0.012 (2)	-0.025 (2)
F5	0.029 (2)	0.049 (3)	0.070 (3)	0.0060 (17)	0.015 (2)	-0.006 (2)
F6	0.054 (3)	0.040 (3)	0.062 (3)	0.022 (2)	0.005 (2)	0.011 (2)
F7A	0.047 (2)	0.056 (2)	0.091 (3)	-0.0059 (17)	0.0231 (18)	0.031 (2)
F8A	0.047 (2)	0.056 (2)	0.091 (3)	-0.0059 (17)	0.0231 (18)	0.031 (2)

supporting information

F9A	0.047 (2)	0.056 (2)	0.091 (3)	-0.0059 (17)	0.0231 (18)	0.031 (2)
F7B	0.047 (2)	0.056 (2)	0.091 (3)	-0.0059 (17)	0.0231 (18)	0.031 (2)
F8B	0.047 (2)	0.056 (2)	0.091 (3)	-0.0059 (17)	0.0231 (18)	0.031 (2)
F9B	0.047 (2)	0.056 (2)	0.091 (3)	-0.0059 (17)	0.0231 (18)	0.031 (2)
F10	0.066 (3)	0.052 (3)	0.043 (2)	0.035 (2)	0.007 (2)	-0.003 (2)
F11	0.132 (5)	0.073 (4)	0.094 (4)	0.014 (4)	0.089 (4)	-0.001 (3)
F12	0.067 (3)	0.070 (3)	0.049 (3)	0.018 (3)	-0.003 (2)	-0.029 (2)
F13	0.044 (2)	0.040 (2)	0.043 (2)	0.0144 (18)	-0.0051 (17)	-0.0022 (18)
F14	0.061 (2)	0.032 (2)	0.040 (2)	0.0174 (19)	0.0061 (18)	-0.0043 (18)
F15	0.060 (3)	0.028 (2)	0.107 (4)	0.006 (2)	0.039 (3)	0.019 (2)
F16	0.053 (2)	0.056 (3)	0.033 (2)	-0.014 (2)	0.0104 (18)	-0.0254 (19)
F17	0.038 (2)	0.065 (3)	0.043 (2)	0.0105 (19)	0.0137 (18)	-0.015 (2)
F18	0.073 (3)	0.054 (3)	0.045 (2)	-0.008(2)	0.034 (2)	-0.001 (2)
C02	0.069 (4)	0.032 (3)	0.061 (5)	0	-0.019 (4)	0
O01	0.069 (4)	0.032 (3)	0.061 (5)	0	-0.019 (4)	0
C01	0.069 (4)	0.032 (3)	0.061 (5)	0	-0.019 (4)	0
C03	0.069 (4)	0.032 (3)	0.061 (5)	0	-0.019 (4)	0

Geometric parameters (Å, °)

Hf—O1	2.258 (4)	C8—C9	1.368 (9)
Hf—O2	2.147 (4)	C8—H2	0.93
Hf—O3	2.209 (4)	C9—O4	1.262 (7)
Hf—O4	2.150 (4)	C9—C10	1.540 (9)
Hf—O5	2.238 (4)	C10—F10	1.312 (8)
Hf—O6	2.137 (4)	C10—F12	1.323 (9)
Hf—O7	2.113 (3)	C10—F11	1.325 (8)
Hf—O8	2.096 (3)	C11—F14	1.302 (7)
C1—F3B	1.286 (13)	C11—F15	1.329 (7)
C1—F2B	1.288 (13)	C11—F13	1.337 (7)
C1—F3A	1.294 (18)	C11—C12	1.551 (8)
C1—F1A	1.302 (19)	C12—O5	1.239 (7)
C1—F1B	1.389 (14)	C12—C13	1.395 (8)
C1—F2A	1.491 (18)	C13—C14	1.365 (9)
C1—C2	1.514 (10)	С13—Н3	0.93
C2—O1	1.238 (7)	C14—O6	1.275 (7)
C2—C3	1.389 (8)	C14—C15	1.523 (8)
C3—C4	1.358 (8)	C15—F16	1.318 (7)
С3—Н1	0.93	C15—F17	1.332 (8)
C4—O2	1.269 (7)	C15—F18	1.339 (8)
C4—C5	1.531 (8)	O7—Hf ⁱ	2.113 (3)
C5—F5	1.309 (9)	O7—H7	0.81 (3)
C5—F6	1.331 (8)	O8—Hf ⁱ	2.096 (3)
C5—F4	1.340 (7)	O8—H8	0.81 (2)
C6—F7A	1.258 (12)	C02—O01	1.221 (14)
C6—F8B	1.28 (2)	C02—C01	1.496 (14)
C6—F9A	1.311 (11)	С02—С03	1.558 (15)
C6—F9B	1.348 (19)	C01—H01A	0.96

C6—F7B	1.38 (2)	C01—H01B	0.96
C6—F8A	1.419 (14)	C01—H01C	0.96
C6—C7	1.532 (10)	С03—Н03А	0.96
С7—О3	1.249 (7)	С03—Н03В	0.96
C7—C8	1.394 (10)	С03—Н03С	0.96
O2—Hf—O1	75.83 (14)	F9B—C6—F8A	129.3 (11)
O4—Hf—O3	74.36 (16)	F7B—C6—F8A	84.5 (11)
O6—Hf—O5	75.77 (14)	F7A—C6—C7	112.2 (8)
O8—Hf—O7	66.82 (18)	F8B—C6—C7	110.8 (10)
O8—Hf—O6	89.34 (11)	F9A—C6—C7	113.9 (8)
O7—Hf—O6	84.20 (11)	F9B—C6—C7	110.9 (11)
O8—Hf—O2	145.72 (16)	F7B—C6—C7	108.5 (9)
O7—Hf—O2	147.46 (15)	F8A—C6—C7	109.4 (7)
O6—Hf—O2	94.45 (16)	O3—C7—C8	126.6 (6)
O8—Hf—O4	110.88 (12)	O3—C7—C6	114.0 (7)
O7—Hf—O4	79.11 (12)	C8—C7—C6	119.4 (6)
O6—Hf—O4	145.55 (15)	C9—C8—C7	117.6 (6)
O2—Hf—O4	84.23 (15)	С9—С8—Н2	121.2
O8—Hf—O3	76.26 (14)	С7—С8—Н2	121.2
O7—Hf—O3	122.16 (13)	O4—C9—C8	127.9 (6)
O6—Hf—O3	139.27 (16)	O4—C9—C10	111.6 (6)
O2—Hf—O3	78.85 (15)	C8—C9—C10	120.5 (6)
O8—Hf—O5	142.20 (16)	F10-C10-F12	107.5 (7)
O7—Hf—O5	77.11 (16)	F10-C10-F11	107.9 (6)
O2—Hf—O5	71.11 (14)	F12—C10—F11	107.8 (6)
O4—Hf—O5	71.25 (15)	F10-C10-C9	110.8 (5)
O3—Hf—O5	135.93 (14)	F12—C10—C9	111.2 (5)
O8—Hf—O1	73.62 (15)	F11—C10—C9	111.5 (6)
O7—Hf—O1	132.48 (14)	F14—C11—F15	108.8 (5)
O6—Hf—O1	69.78 (15)	F14—C11—F13	108.3 (5)
O4—Hf—O1	141.43 (15)	F15—C11—F13	107.4 (5)
O3—Hf—O1	69.63 (15)	F14—C11—C12	112.5 (5)
O5—Hf—O1	129.42 (15)	F15—C11—C12	110.7 (5)
F3B—C1—F2B	108.8 (9)	F13—C11—C12	109.0 (5)
F2B—C1—F3A	126.8 (10)	O5—C12—C13	127.0 (5)
F3B—C1—F1A	125.3 (10)	O5—C12—C11	114.6 (5)
F3A—C1—F1A	118.0 (12)	C13—C12—C11	118.3 (5)
F3B—C1—F1B	100.6 (9)	C14—C13—C12	119.3 (6)
F2B—C1—F1B	108.3 (10)	С14—С13—Н3	120.4
F3A—C1—F1B	64.3 (10)	С12—С13—Н3	120.4
F1A—C1—F1B	74.1 (11)	O6—C14—C13	127.4 (5)
F3B—C1—F2A	55.5 (8)	O6—C14—C15	111.8 (5)
F2B—C1—F2A	66.8 (9)	C13—C14—C15	120.8 (6)
F3A—C1—F2A	92.2 (12)	F16—C15—F17	108.1 (5)
F1A—C1—F2A	100.9 (11)	F16—C15—F18	107.2 (5)
F1B—C1—F2A	147.5 (9)	F17—C15—F18	106.9 (5)
F3B—C1—C2	116.0 (9)	F16—C15—C14	110.6 (5)

F2B—C1—C2	115.4 (8)	F17—C15—C14	111.6 (5)
F3A—C1—C2	117.0 (10)	F18—C15—C14	112.2 (5)
F1A—C1—C2	117.6 (10)	C2—O1—Hf	133.0 (4)
F1B—C1—C2	106.4 (8)	C4—O2—Hf	136.3 (4)
F2A—C1—C2	104.2 (9)	C7—O3—Hf	133.8 (4)
O1—C2—C3	127.4 (5)	C9—O4—Hf	134.4 (4)
O1—C2—C1	115.0 (6)	C12—O5—Hf	133.5 (4)
C3—C2—C1	117.5 (6)	C14—O6—Hf	135.3 (4)
C4—C3—C2	120.4 (5)	Hf—O7—Hf ⁱ	112.5 (3)
C4—C3—H1	119.8	Hf—O7—H7	123.75 (12)
С2—С3—Н1	119.8	Hf ⁱ —O7—H7	123.75 (12)
O2—C4—C3	127.1 (5)	Hf ⁱ —O8—Hf	113.9 (3)
O2—C4—C5	111.6 (5)	Hf ⁱ —O8—H8	123.07 (13)
C3—C4—C5	121.2 (5)	Hf—O8—H8	123.07 (13)
F5—C5—F6	108.4 (5)	O01—C02—C01	127.0 (10)
F5—C5—F4	107.1 (6)	O01—C02—C03	118.5 (9)
F6—C5—F4	107.3 (6)	C01—C02—C03	114.5 (13)
F5—C5—C4	111.8 (6)	C02—C01—H01A	109.5
F6—C5—C4	110.5 (5)	С02—С01—Н01В	109.5
F4—C5—C4	111.5 (5)	H01A—C01—H01B	109.5
F7A—C6—F8B	123.9 (13)	C02—C01—H01C	109.5
F7A—C6—F9A	113.4 (8)	H01A—C01—H01C	109.5
F8B—C6—F9A	78.5 (9)	H01B-C01-H01C	109.5
F7A—C6—F9B	86.9 (10)	С02—С03—Н03А	109.5
F8B—C6—F9B	109.2 (11)	С02—С03—Н03В	109.5
F8B—C6—F7B	107.4 (13)	H03A—C03—H03B	109.5
F9A—C6—F7B	131.6 (10)	С02—С03—Н03С	109.5
F9B—C6—F7B	110.0 (11)	H03A—C03—H03C	109.5
F7A—C6—F8A	105.0 (9)	H03B—C03—H03C	109.5
F9A—C6—F8A	101.9 (8)		

Symmetry code: (i) -x+1, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
O7—H7…O01	0.81 (3)	1.98 (3)	2.783 (10)	170 (1)