

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# *N'*-(3-Phenylallylidene)nicotinohydrazide monohydrate

## R. Archana,<sup>a</sup> N. Saradhadevi,<sup>b</sup> A. Manimekalai,<sup>b</sup> A. Thiruvalluvar<sup>a</sup>\* and R. J. Butcher<sup>c</sup>

<sup>a</sup>PG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamil Nadu, India, <sup>b</sup>Department of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamilnadu, India, and <sup>c</sup>Department of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA.

Correspondence e-mail: athiru@vsnl.net

Received 15 October 2009; accepted 19 October 2009

Key indicators: single-crystal X-ray study; T = 110 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.043; wR factor = 0.125; data-to-parameter ratio = 14.2.

In the title compound,  $C_{15}H_{13}N_3O \cdot H_2O$ , the dihedral angle between the pyridine and phenyl rings is 35.45 (7)°. Intermolecular O-H···O, O-H···N, N-H···O and C-H···O hydrogen bonds are found in the crystal structure. In addition, C-H··· $\pi$  interactions involving the pyridine and phenyl rings are also found.

### **Related literature**

For a related crystal structure and its chemical and biological applications, see: Archana *et al.* (2009).



### **Experimental**

Crystal data  $C_{15}H_{13}N_3O \cdot H_2O$   $M_r = 269.30$ Monoclinic,  $P2_1/c$  a = 9.8456 (3) Å b = 9.1288 (3) Å c = 15.5389 (5) Å

 $\beta = 95.938 \ (3)^{\circ}$ 

 $V = 1389.12 (8) Å^{3}$ Z = 4 Cu K\alpha radiation  $\mu = 0.72 \text{ mm}^{-1}$ T = 110 K 0.48 \times 0.45 \times 0.24 mm 6007 measured reflections

 $R_{\rm int} = 0.022$ 

2742 independent reflections

2346 reflections with  $I > 2\sigma(I)$ 

### Data collection

Oxford Diffraction Xcalibur, Ruby, Gemini diffractometer Absorption correction: multi-scan (CrysAlisPro; Oxford

Diffraction, 2009)  $T_{\min} = 0.704, T_{\max} = 1.000$ 

### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.043$ | H atoms treated by a mixture of                            |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.125$               | independent and constrained                                |
| S = 1.05                        | refinement                                                 |
| 2742 reflections                | $\Delta \rho_{\rm max} = 0.29 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 193 parameters                  | $\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$ |

## Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                                                                                                                                                       | D-H                                                    | $H \cdots A$                                                   | $D \cdots A$                                                            | $D - \mathbf{H} \cdot \cdot \cdot A$                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------|
| $01W - H1W \cdots 07^{i}$<br>$01W - H1W \cdots N9^{i}$<br>$01W - H2W \cdots N1^{ii}$<br>$N8 - H8 \cdots 01W$<br>$C2 - H2 \cdots 07^{iii}$<br>$C2 - H2 \cdots 07^{iii}$ | 0.86 (3)<br>0.86 (3)<br>0.88 (3)<br>0.914 (18)<br>0.95 | 2.52 (3)<br>2.16 (3)<br>2.05 (3)<br>1.944 (18)<br>2.33<br>2.54 | 3.1550 (14)<br>2.9655 (15)<br>2.9222 (15)<br>2.8486 (15)<br>3.2253 (17) | 131.9 (19)<br>157 (2)<br>176 (2)<br>170.3 (17)<br>157 |
| $C4 - H4 \cdots O1W$ $C10 - H10 \cdots O7^{i}$ $C22 - H22 \cdots Cg1^{iv}$ $C5 - H5 \cdots Cg2^{v}$                                                                    | 0.95<br>0.95<br>0.95<br>0.95                           | 2.54<br>2.57<br>2.94<br>2.54                                   | 3.2392 (16)<br>3.1507 (17)<br>3.7742 (16)<br>3.4342 (15)                | 130<br>120<br>148<br>157                              |
| 05 115 052                                                                                                                                                             | 0.95                                                   | 2.01                                                           | 5.1512 (15)                                                             | 157                                                   |

Symmetry codes: (i) -x + 1,  $y - \frac{1}{2}$ ,  $-z + \frac{1}{2}$ ; (ii) x,  $-y + \frac{1}{2}$ ,  $z + \frac{1}{2}$ ; (iii) -x + 1, -y + 1, -z; (iv) -x + 1,  $y + \frac{1}{2}$ ,  $-z + \frac{1}{2}$ ; (v) x - 1,  $-y + \frac{1}{2}$ ,  $z - \frac{1}{2}$ . *Cg*1 and *Cg*2 are the centroids of the N1–C6 and C21–C26 rings, respectively.

Data collection: *CrysAlisPro* (Oxford Diffraction, 2009); cell refinement: *CrysAlisPro*; data reduction: *CrysAlisPro*; program(s) used to solve structure: *SIR2002* (Burla *et al.*, 2003); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *PLATON* (Spek, 2009).

RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2355).

### References

- Archana, R., Manimekalai, A., Saradhadevi, N., Thiruvalluvar, A. & Butcher, R. J. (2009). *Acta Cryst.* E**65**, o1659.
- Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Oxford Diffraction (2009). CrysAlisPro. Oxford Diffraction Ltd, Abingdon, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

## supporting information

## Acta Cryst. (2009). E65, o2833 [https://doi.org/10.1107/S1600536809043001]

## N'-(3-Phenylallylidene)nicotinohydrazide monohydrate

## R. Archana, N. Saradhadevi, A. Manimekalai, A. Thiruvalluvar and R. J. Butcher

## S1. Comment

As part of our research, we have synthesized the title compound and report its crystal structure here. Archana *et al.* (2009) have reported a related crystal structure, N'-(2-methyl-3-phenylallylidene) nicotinohydrazide monohydrate.

The molecular structure of the asymmetric unit is shown in Fig. 1. The dihedral angle between the pyridine ring and the phenyl ring is 35.45 (7)°. Intermolecular O—H···O, O—H···N, N—H···O and C—H···O hydrogen bonds are found in the crystal structure. Furthermore, a C22—H22··· $\pi$  interaction involving the pyridine (N1—C6) ring and a C5—H5··· $\pi$  interaction involving the phenyl (C21—C26) ring are also found.

## **S2. Experimental**

Sodium hydroxide (0.4 g, 0.01 mol) in a stoppered conical flask was kept in an ice-cold environment. Ethanol (40 ml) was added to dissolve it and the mixture was stirred continuously using a magnetic stirrer. An equimolar quantity of nicotinic hydrazide (1.371 g, 0.01 mol) and cinnamaldehyde (1.32 g, 0.01 mol) was added to this mixture. The stirring was continued for 5 h in ice-cold conditions. The mixture was kept overnight in a refrigerator. The mixture was then allowed to stand for four days under normal conditions. A yellow solid was obtained. This was filtered, washed and recrystallized from ethanol. Yield 2.3 g, 46.80%.

## **S3. Refinement**

H8 attached to N8, and H1W and H2W attached to O1W were located in a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95 Å.  $U_{iso}(H) = 1.2U_{eq}(C)$ .



## Figure 1

The molecular structure of the asymmetric unit, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.



## Figure 2

The packing of the title compound, viewed down the *a* axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.

N'-(3-Phenylallylidene)nicotinohydrazide monohydrate

Crystal data

C<sub>15</sub>H<sub>13</sub>N<sub>3</sub>O·H<sub>2</sub>O  $M_r = 269.30$ Monoclinic,  $P2_1/c$ Hall symbol: -P 2ybc a = 9.8456 (3) Å b = 9.1288 (3) Å c = 15.5389 (5) Å  $\beta = 95.938$  (3)° V = 1389.12 (8) Å<sup>3</sup> Z = 4 F(000) = 568  $D_x = 1.288 \text{ Mg m}^{-3}$ Melting point: 463 K Cu *Ka* radiation,  $\lambda = 1.54184 \text{ Å}$ Cell parameters from 3706 reflections  $\theta = 4.5-74.0^{\circ}$   $\mu = 0.72 \text{ mm}^{-1}$  T = 110 KPlate, colourless  $0.48 \times 0.45 \times 0.24 \text{ mm}$  Data collection

| Oxford Diffraction Xcalibur, Ruby, Gemini<br>diffractometer<br>Radiation source: Enhance (Cu) X-ray Source<br>Graphite monochromator<br>Detector resolution: 10.5081 pixels mm <sup>-1</sup><br>$\omega$ scans<br>Absorption correction: multi-scan<br>( <i>CrysAlis PRO</i> ; Oxford Diffraction, 2009)<br>$T_{\min} = 0.704, T_{\max} = 1.000$ | 6007 measured reflections<br>2742 independent reflections<br>2346 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.022$<br>$\theta_{max} = 74.6^{\circ}, \theta_{min} = 4.5^{\circ}$<br>$h = -12 \rightarrow 12$<br>$k = -10 \rightarrow 9$<br>$l = -13 \rightarrow 18$                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Refinement                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Refinement on $F^2$<br>Least-squares matrix: full<br>$R[F^2 > 2\sigma(F^2)] = 0.043$<br>$wR(F^2) = 0.125$<br>S = 1.05<br>2742 reflections<br>193 parameters<br>0 restraints<br>Primary atom site location: structure-invariant<br>direct methods                                                                                                 | Secondary atom site location: difference Fourier<br>map<br>Hydrogen site location: inferred from<br>neighbouring sites<br>H atoms treated by a mixture of independent<br>and constrained refinement<br>$w = 1/[\sigma^2(F_o^2) + (0.0821P)^2 + 0.2609P]$<br>where $P = (F_o^2 + 2F_c^2)/3$<br>$(\Delta/\sigma)_{max} = 0.001$<br>$\Delta\rho_{max} = 0.29$ e Å <sup>-3</sup><br>$\Lambda \rho_{mix} = -0.21$ e Å <sup>-3</sup> |

## Special details

**Geometry**. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2\sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x            | у            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|--------------|--------------|--------------|-----------------------------|--|
| 07  | 0.47479 (10) | 0.51591 (11) | 0.11459 (6)  | 0.0278 (3)                  |  |
| N1  | 0.16249 (12) | 0.38852 (13) | -0.06770 (7) | 0.0251 (3)                  |  |
| N8  | 0.40129 (11) | 0.37087 (13) | 0.21906 (7)  | 0.0229 (3)                  |  |
| N9  | 0.50761 (11) | 0.41751 (13) | 0.27801 (7)  | 0.0239 (3)                  |  |
| C2  | 0.26809 (14) | 0.41542 (15) | -0.00816 (8) | 0.0234 (4)                  |  |
| C3  | 0.26600 (13) | 0.38761 (14) | 0.08017 (8)  | 0.0213 (3)                  |  |
| C4  | 0.14754 (14) | 0.32800 (15) | 0.10770 (8)  | 0.0245 (4)                  |  |
| C5  | 0.03714 (14) | 0.30162 (16) | 0.04673 (9)  | 0.0266 (4)                  |  |
| C6  | 0.04847 (14) | 0.33422 (15) | -0.03908 (9) | 0.0249 (4)                  |  |
| C7  | 0.39013 (13) | 0.43067 (15) | 0.13894 (8)  | 0.0214 (3)                  |  |
| C10 | 0.51203 (13) | 0.35650 (15) | 0.35280 (9)  | 0.0244 (4)                  |  |
| C11 | 0.61459 (14) | 0.39886 (15) | 0.42168 (9)  | 0.0253 (4)                  |  |
| C12 | 0.61879 (13) | 0.33520 (16) | 0.49986 (8)  | 0.0252 (4)                  |  |
| C21 | 0.71252 (14) | 0.36867 (15) | 0.57704 (8)  | 0.0241 (4)                  |  |
| C22 | 0.79857 (16) | 0.49073 (16) | 0.58318 (9)  | 0.0308 (4)                  |  |
| C23 | 0.89016 (17) | 0.51244 (18) | 0.65604 (10) | 0.0366 (5)                  |  |
|     |              |              |              |                             |  |

## supporting information

| C24 | 0.89795 (15) | 0.41399 (17) | 0.72450 (9) | 0.0319 (4) |
|-----|--------------|--------------|-------------|------------|
| C25 | 0.80997 (15) | 0.29477 (17) | 0.72029 (9) | 0.0306 (4) |
| C26 | 0.71789 (14) | 0.27272 (17) | 0.64743 (9) | 0.0273 (4) |
| O1W | 0.26480 (10) | 0.11005 (11) | 0.26235 (6) | 0.0266 (3) |
| H2  | 0.34889      | 0.45566      | -0.02707    | 0.0281*    |
| H4  | 0.14252      | 0.30588      | 0.16702     | 0.0294*    |
| Н5  | -0.04511     | 0.26171      | 0.06373     | 0.0320*    |
| H6  | -0.02844     | 0.31734      | -0.08004    | 0.0299*    |
| H8  | 0.3493 (18)  | 0.294 (2)    | 0.2342 (11) | 0.035 (5)* |
| H10 | 0.44733      | 0.28292      | 0.36291     | 0.0293*    |
| H11 | 0.67948      | 0.47225      | 0.41157     | 0.0304*    |
| H12 | 0.55372      | 0.26002      | 0.50588     | 0.0302*    |
| H22 | 0.79430      | 0.55943      | 0.53706     | 0.0369*    |
| H23 | 0.94833      | 0.59572      | 0.65915     | 0.0440*    |
| H24 | 0.96260      | 0.42804      | 0.77357     | 0.0383*    |
| H25 | 0.81272      | 0.22804      | 0.76735     | 0.0366*    |
| H26 | 0.65768      | 0.19119      | 0.64543     | 0.0328*    |
| H1W | 0.335 (3)    | 0.054 (3)    | 0.2663 (14) | 0.057 (6)* |
| H2W | 0.232 (3)    | 0.106 (3)    | 0.3128 (16) | 0.070 (7)* |
|     |              |              |             |            |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$    | $U^{13}$    | $U^{23}$    |
|-----|------------|------------|------------|-------------|-------------|-------------|
| 07  | 0.0289 (5) | 0.0327 (5) | 0.0219 (5) | -0.0068 (4) | 0.0028 (4)  | 0.0027 (4)  |
| N1  | 0.0305 (6) | 0.0268 (6) | 0.0179 (5) | 0.0013 (5)  | 0.0022 (4)  | -0.0001 (4) |
| N8  | 0.0222 (5) | 0.0268 (6) | 0.0192 (6) | -0.0023 (4) | -0.0006 (4) | 0.0013 (4)  |
| N9  | 0.0247 (5) | 0.0273 (6) | 0.0191 (5) | -0.0010 (4) | -0.0004(4)  | -0.0012 (4) |
| C2  | 0.0267 (6) | 0.0245 (7) | 0.0194 (6) | 0.0002 (5)  | 0.0046 (5)  | 0.0002 (5)  |
| C3  | 0.0246 (6) | 0.0204 (6) | 0.0189 (6) | 0.0021 (5)  | 0.0023 (5)  | 0.0008 (5)  |
| C4  | 0.0263 (7) | 0.0281 (7) | 0.0194 (6) | 0.0018 (5)  | 0.0032 (5)  | 0.0042 (5)  |
| C5  | 0.0245 (6) | 0.0295 (7) | 0.0259 (7) | -0.0008(5)  | 0.0029 (5)  | 0.0033 (5)  |
| C6  | 0.0263 (6) | 0.0242 (7) | 0.0235 (7) | 0.0020 (5)  | -0.0007(5)  | -0.0009(5)  |
| C7  | 0.0231 (6) | 0.0233 (6) | 0.0182 (6) | 0.0019 (5)  | 0.0036 (5)  | -0.0004 (5) |
| C10 | 0.0249 (6) | 0.0262 (7) | 0.0219 (7) | 0.0004 (5)  | 0.0014 (5)  | 0.0000 (5)  |
| C11 | 0.0267 (7) | 0.0260 (7) | 0.0230 (7) | -0.0003 (5) | 0.0013 (5)  | -0.0019 (5) |
| C12 | 0.0241 (6) | 0.0274 (7) | 0.0236 (7) | -0.0002 (5) | 0.0008 (5)  | -0.0009 (5) |
| C21 | 0.0251 (6) | 0.0268 (7) | 0.0203 (6) | 0.0040 (5)  | 0.0023 (5)  | -0.0016 (5) |
| C22 | 0.0424 (8) | 0.0250 (7) | 0.0233 (7) | -0.0025 (6) | -0.0042 (6) | 0.0028 (5)  |
| C23 | 0.0461 (9) | 0.0304 (8) | 0.0310 (8) | -0.0089 (7) | -0.0074 (7) | -0.0004 (6) |
| C24 | 0.0352 (8) | 0.0385 (8) | 0.0202 (7) | 0.0001 (6)  | -0.0053 (6) | -0.0034 (6) |
| C25 | 0.0338 (7) | 0.0383 (8) | 0.0194 (6) | 0.0016 (6)  | 0.0021 (5)  | 0.0044 (5)  |
| C26 | 0.0263 (6) | 0.0332 (7) | 0.0229 (7) | -0.0011 (5) | 0.0044 (5)  | 0.0011 (5)  |
| O1W | 0.0283 (5) | 0.0294 (5) | 0.0220 (5) | 0.0024 (4)  | 0.0023 (4)  | 0.0048 (4)  |
|     |            |            |            |             |             |             |

Geometric parameters (Å, °)

| O7—C7   | 1.2283 (16) | C21—C26 | 1.3980 (19) |
|---------|-------------|---------|-------------|
| O1W—H1W | 0.86 (3)    | C22—C23 | 1.387 (2)   |

## supporting information

| O1W—H2W                 | 0.88 (3)                  | C23—C24                 | 1.389 (2)              |
|-------------------------|---------------------------|-------------------------|------------------------|
| N1—C2                   | 1.3410 (17)               | C24—C25                 | 1.388 (2)              |
| N1—C6                   | 1.3443 (18)               | C25—C26                 | 1.390 (2)              |
| N8—N9                   | 1.3848 (15)               | С2—Н2                   | 0.9500                 |
| N8—C7                   | 1.3534 (17)               | C4—H4                   | 0.9500                 |
| N9—C10                  | 1.2854 (18)               | С5—Н5                   | 0.9500                 |
| N8—H8                   | 0.914 (18)                | С6—Н6                   | 0.9500                 |
| C2—C3                   | 1.3981 (18)               | C10—H10                 | 0.9500                 |
| C3—C4                   | 1.3938 (19)               | C11—H11                 | 0.9500                 |
| С3—С7                   | 1.5004 (18)               | C12—H12                 | 0.9500                 |
| C4—C5                   | 1.3871 (19)               | С22—Н22                 | 0.9500                 |
| C5—C6                   | 1.382 (2)                 | С23—Н23                 | 0.9500                 |
| C10—C11                 | 1.4461 (19)               | C24—H24                 | 0.9500                 |
| C11—C12                 | 1.3435 (19)               | С25—Н25                 | 0.9500                 |
| C12—C21                 | 1.4678 (18)               | C26—H26                 | 0.9500                 |
| C21—C22                 | 1.397 (2)                 |                         |                        |
|                         |                           |                         |                        |
| O1W…N1 <sup>i</sup>     | 2.9222 (15)               | C22…H11                 | 2.8000                 |
| O1W…O7 <sup>ii</sup>    | 3.1550 (14)               | C23…H5 <sup>ix</sup>    | 2.9900                 |
| 01W…N9 <sup>ii</sup>    | 2.9655 (15)               | C24····H5 <sup>ix</sup> | 3.0700                 |
| 01W…C4                  | 3,2392 (16)               | C25····H5 <sup>ix</sup> | 2.9900                 |
| 01W…N8                  | 2.8486 (15)               | C26H5 <sup>ix</sup>     | 2.8000                 |
| 07···C10 <sup>iii</sup> | 3,1507 (17)               | H1W…N9 <sup>ii</sup>    | 2.16(3)                |
| 07N9                    | 2 6814 (14)               | H1W···H8                | 2.26(3)                |
| $07 \cdots C2^{iv}$     | 32253(17)                 | $H1W\cdots O7^{ii}$     | 2.20(3)                |
| 0701W <sup>iii</sup>    | 3 1550 (14)               | H1W···C10 <sup>ii</sup> | 3.09(3)                |
| 01W…H10                 | 2,7500                    | H2···O7                 | 2,4700                 |
| 01W…H8                  | 1.944 (18)                | H2···O <sup>7iv</sup>   | 2.3300                 |
| 01W····H4               | 2 5400                    | $H^2W^{}N^{1i}$         | 2.05(3)                |
| 07···H2                 | 2,4700                    | $H2W\cdots C2^{i}$      | 2.03(3)                |
| 07H10 <sup>iii</sup>    | 2 5700                    | H2W…H8                  | 2.76(2)<br>2 46(3)     |
| 07···H12 <sup>iii</sup> | 2,9100                    | H4…O1W                  | 2.5400                 |
| O7···H2 <sup>iv</sup>   | 2 3300                    | H4N8                    | 2.6600                 |
| 07H26 <sup>v</sup>      | 2.6200                    | H4H8                    | 2 1900                 |
| 07H1W <sup>iii</sup>    | 2.5200                    | H5C21×                  | 2.1900                 |
| N1…O1W <sup>v</sup>     | 2.92(3)<br>2.9222(15)     | H5C22 <sup>x</sup>      | 2.0900                 |
| N8…O1W                  | 2.9222 (15)               | H5C23 <sup>x</sup>      | 2.0000                 |
| N9O1W <sup>iii</sup>    | 2.0400 (15)               | H5C24 <sup>x</sup>      | 3.0700                 |
| N907                    | 2.9033(13)<br>2 6814 (14) | H5C25 <sup>x</sup>      | 2 9900                 |
| N1H2W <sup>v</sup>      | 2.0014(14)<br>2.05(3)     | H5C26 <sup>x</sup>      | 2.9900                 |
| N8H26v                  | 2.03 (5)                  | H5 C20                  | 2.0000                 |
| N8H4                    | 2.9500                    | H6H23 <sup>ii</sup>     | 2.4800                 |
|                         | 2.0000                    | H0 H25                  | 2.3400                 |
| N0H26v                  | 2.10(3)                   |                         | 2.20 (3)<br>1 044 (19) |
| $C_{2} \cdots O_{iv}$   | 2.0400                    |                         | 2.661(17)              |
| C2 07                   | 3.2233(17)<br>3.2302(16)  | H8H10                   | 2.00+(17)<br>2.1300    |
| $C_{4} = C_{1} w$       | 3.2392 (10)               | H8H2W                   | 2.1300                 |
|                         | 3.370(2)                  | 110 <sup>…</sup> П2 W   | ∠.40 (3)<br>2 1000     |
| 0.50                    | 3.429 (2)                 | по…п4                   | 2.1900                 |

| C6…C22 <sup>ii</sup>     | 3.575 (2)   | H10····O7 <sup>ii</sup>  | 2.5700      |
|--------------------------|-------------|--------------------------|-------------|
| C6…C6 <sup>vii</sup>     | 3.4332 (19) | H10····O1W               | 2.7500      |
| C6…C23 <sup>ii</sup>     | 3.539 (2)   | H10…H8                   | 2.1300      |
| C6···C5 <sup>vii</sup>   | 3.429 (2)   | H10…H12                  | 2.3700      |
| C10…C22 <sup>vi</sup>    | 3.594 (2)   | H11…H22                  | 2.2900      |
| C10…O7 <sup>ii</sup>     | 3.1507 (17) | H11…C22                  | 2.8000      |
| C10…C21 <sup>vi</sup>    | 3.5874 (19) | H12…H10                  | 2.3700      |
| C21C10 <sup>vi</sup>     | 3.5874 (19) | H12…H26                  | 2.3800      |
| C22…C10 <sup>vi</sup>    | 3.594 (2)   | H12····O7 <sup>ii</sup>  | 2.9100      |
| C22···C6 <sup>iii</sup>  | 3.575 (2)   | H22…C11                  | 2.8000      |
| C23····C6 <sup>iii</sup> | 3.539 (2)   | H22…H11                  | 2.2900      |
| $C24C4^{vi}$             | 3.576 (2)   | H22····C6 <sup>iii</sup> | 2.9500      |
| C2···H2W <sup>v</sup>    | 2.78 (2)    | H23····C6 <sup>iii</sup> | 2.8700      |
| C4…H8                    | 2.664 (17)  | H23····H6 <sup>iii</sup> | 2.5400      |
| C6…H23 <sup>ii</sup>     | 2.8700      | H24····C6 <sup>xi</sup>  | 3.0700      |
| C6…H22 <sup>ii</sup>     | 2.9500      | H24····H6 <sup>xi</sup>  | 2.4800      |
| C6···H24 <sup>viii</sup> | 3.0700      | H26…H12                  | 2.3800      |
| C7…H26 <sup>v</sup>      | 2.8500      | H26····O7 <sup>i</sup>   | 2.6200      |
| C10…H1W <sup>iii</sup>   | 3.09 (3)    | H26…N8 <sup>i</sup>      | 2.9300      |
| C11…H22                  | 2.8000      | H26…N9 <sup>i</sup>      | 2.8400      |
| C21…H5 <sup>ix</sup>     | 2.6900      | H26····C7 <sup>i</sup>   | 2.8500      |
| C22····H5 <sup>ix</sup>  | 2.8000      |                          |             |
| H1W—O1W—H2W              | 106 (2)     | C21—C26—C25              | 121.01 (14) |
| C2—N1—C6                 | 116.98 (11) | N1—C2—H2                 | 118.00      |
| N9—N8—C7                 | 117.93 (11) | C3—C2—H2                 | 118.00      |
| N8—N9—C10                | 114.67 (11) | C5—C4—H4                 | 121.00      |
| C7—N8—H8                 | 123.5 (11)  | C3—C4—H4                 | 121.00      |
| N9—N8—H8                 | 118.1 (11)  | C4—C5—H5                 | 120.00      |
| N1—C2—C3                 | 123.71 (12) | C6—C5—H5                 | 120.00      |
| C2—C3—C7                 | 117.14 (11) | С5—С6—Н6                 | 118.00      |
| C4—C3—C7                 | 124.77 (11) | N1—C6—H6                 | 118.00      |
| C2—C3—C4                 | 118.03 (12) | N9—C10—H10               | 120.00      |
| C3—C4—C5                 | 118.66 (12) | C11—C10—H10              | 120.00      |
| C4—C5—C6                 | 119.07 (13) | C12—C11—H11              | 120.00      |
| N1—C6—C5                 | 123.52 (13) | C10-C11-H11              | 120.00      |
| N8—C7—C3                 | 115.96 (11) | C11—C12—H12              | 116.00      |
| O7—C7—C3                 | 120.96 (11) | C21—C12—H12              | 116.00      |
| O7—C7—N8                 | 123.08 (12) | C23—C22—H22              | 120.00      |
| N9—C10—C11               | 120.60 (12) | C21—C22—H22              | 120.00      |
| C10-C11-C12              | 120.49 (13) | C22—C23—H23              | 120.00      |
| C11—C12—C21              | 127.36 (13) | C24—C23—H23              | 120.00      |
| C12—C21—C22              | 123.19 (12) | C25—C24—H24              | 120.00      |
| C12—C21—C26              | 118.59 (12) | C23—C24—H24              | 120.00      |
| C22—C21—C26              | 118.21 (12) | C24—C25—H25              | 120.00      |
| C21—C22—C23              | 120.55 (13) | C26—C25—H25              | 120.00      |
| C22—C23—C24              | 120.84 (15) | C21—C26—H26              | 119.00      |
| C23—C24—C25              | 119.11 (14) | C25—C26—H26              | 119.00      |

| C24—C25—C26   | 120.21 (13)  |                 |              |
|---------------|--------------|-----------------|--------------|
| C6—N1—C2—C3   | 1.2 (2)      | C3—C4—C5—C6     | 0.4 (2)      |
| C2—N1—C6—C5   | -2.0 (2)     | C4—C5—C6—N1     | 1.2 (2)      |
| C7—N8—N9—C10  | 179.89 (12)  | N9-C10-C11-C12  | 179.83 (13)  |
| N9—N8—C7—O7   | 5.25 (19)    | C10-C11-C12-C21 | -177.76 (13) |
| N9—N8—C7—C3   | -174.34 (11) | C11—C12—C21—C22 | 10.7 (2)     |
| N8—N9—C10—C11 | -177.62 (12) | C11—C12—C21—C26 | -168.23 (14) |
| N1-C2-C3-C4   | 0.3 (2)      | C12—C21—C22—C23 | -176.56 (14) |
| N1—C2—C3—C7   | -177.10 (12) | C26—C21—C22—C23 | 2.4 (2)      |
| C2—C3—C4—C5   | -1.10 (19)   | C12—C21—C26—C25 | 176.51 (13)  |
| C7—C3—C4—C5   | 176.05 (13)  | C22—C21—C26—C25 | -2.5 (2)     |
| C2—C3—C7—O7   | 16.54 (19)   | C21—C22—C23—C24 | -0.3 (2)     |
| C2—C3—C7—N8   | -163.87 (12) | C22—C23—C24—C25 | -1.7 (2)     |
| C4—C3—C7—O7   | -160.64 (13) | C23—C24—C25—C26 | 1.6 (2)      |
| C4—C3—C7—N8   | 18.96 (19)   | C24—C25—C26—C21 | 0.5 (2)      |

Symmetry codes: (i) x, -y+1/2, z+1/2; (ii) -x+1, y-1/2, -z+1/2; (iii) -x+1, y+1/2, -z+1/2; (iv) -x+1, -y+1, -z; (v) x, -y+1/2, z-1/2; (vi) -x+1, -y+1, -z; (vii) x-1, y, z-1/2; (vi) -x+1, -y+1/2, z-1/2; (vii) x-1, y+1/2, z-1/2; (vii) x+1, -y+1/2, z-1/2; (vii) x+1, y, z+1.

Hydrogen-bond geometry (Å, °)

| D—H···A                                      | <i>D</i> —Н | H···A      | $D \cdots A$ | <i>D</i> —H… <i>A</i> |
|----------------------------------------------|-------------|------------|--------------|-----------------------|
| O1 <i>W</i> —H1 <i>W</i> ···O7 <sup>ii</sup> | 0.86 (3)    | 2.52 (3)   | 3.1550 (14)  | 131.9 (19)            |
| O1W—H1 $W$ ···N9 <sup>ii</sup>               | 0.86 (3)    | 2.16 (3)   | 2.9655 (15)  | 157 (2)               |
| $O1W - H2W \cdot N1^{i}$                     | 0.88 (3)    | 2.05 (3)   | 2.9222 (15)  | 176 (2)               |
| N8—H8…O1 <i>W</i>                            | 0.914 (18)  | 1.944 (18) | 2.8486 (15)  | 170.3 (17)            |
| C2—H2····O7 <sup>iv</sup>                    | 0.95        | 2.33       | 3.2253 (17)  | 157                   |
| C4—H4…O1 <i>W</i>                            | 0.95        | 2.54       | 3.2392 (16)  | 130                   |
| C10—H10…O7 <sup>ii</sup>                     | 0.95        | 2.57       | 3.1507 (17)  | 120                   |
| C22—H22···Cg1 <sup>iii</sup>                 | 0.95        | 2.94       | 3.7742 (16)  | 148                   |
| $C5$ — $H5$ ··· $Cg2^x$                      | 0.95        | 2.54       | 3.4342 (15)  | 157                   |

Symmetry codes: (i) x, -y+1/2, z+1/2; (ii) -x+1, y-1/2, -z+1/2; (iii) -x+1, y+1/2, -z+1/2; (iv) -x+1, -y+1, -z; (x) x-1, -y+1/2, z-1/2.