organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(tetramethylammonium) oxalate monohydrate

Yun-Xia Yang,^a Qi Li^a and Seik Weng Ng^{b*}

^aCollege of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 25 September 2009; accepted 26 September 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.053; wR factor = 0.164; data-to-parameter ratio = 13.8.

In the crystal structure of the title hydrated salt, $2C_4H_{12}N^+$.- $C_2O_4^{2-}$ ·H₂O, the two independent cations, the anion and the water molecule all lie on special positions of *m* site symmetry. In both cations, the mirror plane passes through the nitrogen atom and two methyl groups; in the anion, the mirror plane passes through two carbon and two oxygen atoms. The anions and water molecules interact by $O-H \cdots O$ hydrogen bonding, forming a chain running along the b axis.

Related literature

For the crystal structure of tetramethylammonium hydrogen oxalate, see: Mascal et al. (2000).

Experimental

Crystal data $2C_4H_{12}N^+ \cdot C_2O_4^{2-} \cdot H_2O$

 $M_r = 254.33$

Orthorhombic, Pnma a = 24.614 (4) Å b = 6.738 (1) Åc = 8.633 (2) Å V = 1431.8 (4) Å³

Data collection

Bruker APEX2 diffractometer Absorption correction: none 3915 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.164$ S = 1.011367 reflections 99 parameters

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O1 <i>W</i> −H1···O3	0.95 (3)	1.82 (3)	2.764 (2)	171 (3)

Z = 4

Mo $K\alpha$ radiation

 $0.50 \times 0.10 \times 0.10$ mm

1367 independent reflections

1043 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

 $\mu = 0.09 \text{ mm}^{-1}$

T = 293 K

 $R_{\rm int} = 0.024$

refinement

 $\Delta \rho_{\rm max} = 0.25 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

We thank Beijing Normal University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2618).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Mascal, M., Marjo, C. E. & Blake, A. J. (2000). Chem. Commun. pp. 1591-1592. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. Westrip, S. P. (2009). publCIF. In preparation.

supporting information

Acta Cryst. (2009). E65, o2602 [https://doi.org/10.1107/S1600536809039099]

Bis(tetramethylammonium) oxalate monohydrate

Yun-Xia Yang, Qi Li and Seik Weng Ng

S1. Experimental

Oxalic acid (0.126 g, 1 mmol) was dissolved in a water-ethanol (1:2 ν/ν) mixture and a 25% solution of tetramethylammonium hydroxide was added to neutralize the acid. Colorless block crystals were separated after several weeks.

S2. Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.96 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.5U(C). The water H-atom was freely refined.

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of $2[(CH_3)_4N](C_2O_4)H_2O$ at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Bis(tetramethylammonium) oxalate monohydrate

Crystal data	
$2C_4H_{12}N^+ \cdot C_2O_4{}^{2-} \cdot H_2O$	<i>b</i> = 6.738 (1) Å
$M_r = 254.33$	<i>c</i> = 8.633 (2) Å
Orthorhombic, Pnma	$V = 1431.8 (4) Å^3$
Hall symbol: -P 2ac 2n	Z = 4
a = 24.614 (4) Å	F(000) = 560

 $D_x = 1.180 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1201 reflections $\theta = 2.5-25.0^{\circ}$

Data collection

Bruker APEX2	1043 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.024$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.5^{\circ}$
Graphite monochromator	$h = -29 \rightarrow 11$
φ and ω scans	$k = -8 \rightarrow 8$
3915 measured reflections	$l = -10 \rightarrow 8$
1367 independent reflections	

 $\mu = 0.09 \text{ mm}^{-1}$

Block, colorless

 $0.50 \times 0.10 \times 0.10 \text{ mm}$

T = 293 K

Refinement

5	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.053$	H atoms treated by a mixture of independent
$wR(F^2) = 0.164$	and constrained refinement
S = 1.01	$w = 1/[\sigma^2(F_o^2) + (0.0847P)^2 + 0.5757P]$
1367 reflections	where $P = (F_o^2 + 2F_c^2)/3$
99 parameters	$(\Delta/\sigma)_{\rm max} = 0.001$
0 restraints	$\Delta ho_{ m max} = 0.25 \ { m e} \ { m \AA}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$
direct methods	Extinction correction: SHELXL97 (Sheldrick,
Secondary atom site location: difference Fourier	2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
map	Extinction coefficient: 0.022 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
01	0.29989 (10)	0.7500	0.4672 (3)	0.0944 (10)	
O2	0.38001 (14)	0.7500	0.3510 (3)	0.1103 (12)	
03	0.38835 (9)	0.5888 (4)	0.6773 (3)	0.1216 (10)	
O1W	0.40771 (12)	0.2500	0.8491 (3)	0.0790 (8)	
H1	0.3983 (11)	0.358 (4)	0.784 (3)	0.098 (9)*	
N1	0.04672 (8)	0.7500	0.7763 (3)	0.0442 (6)	
N2	0.27226 (8)	0.7500	1.0044 (2)	0.0372 (6)	
C1	0.02478 (11)	0.5681 (4)	0.7022 (3)	0.0864 (9)	
H1A	-0.0141	0.5665	0.7121	0.130*	
H1B	0.0397	0.4531	0.7522	0.130*	
H1C	0.0345	0.5669	0.5945	0.130*	
C2	0.10673 (11)	0.7500	0.7595 (5)	0.0679 (10)	
H2A	0.1218	0.8579	0.8181	0.102*	0.50
H2B	0.1161	0.7654	0.6522	0.102*	0.50
H2C	0.1211	0.6267	0.7974	0.102*	0.50
C3	0.03268 (14)	0.7500	0.9431 (3)	0.0652 (9)	
H3A	-0.0060	0.7379	0.9548	0.098*	0.50
H3B	0.0447	0.8719	0.9894	0.098*	0.50
H3C	0.0502	0.6402	0.9932	0.098*	0.50
C4	0.30685 (10)	0.5697 (3)	1.0196 (3)	0.0620(7)	

H4A	0.3247	0.5708	1.1185	0.093*		
H4B	0.3336	0.5689	0.9387	0.093*		
H4C	0.2846	0.4533	1.0113	0.093*		
C5	0.22984 (12)	0.7500	1.1282 (3)	0.0522 (8)		
H5A	0.2459	0.7116	1.2249	0.078*	0.50	
H5B	0.2016	0.6577	1.1014	0.078*	0.50	
H5C	0.2147	0.8807	1.1377	0.078*	0.50	
C6	0.24524 (12)	0.7500	0.8504 (3)	0.0548 (8)		
H6A	0.2219	0.8636	0.8423	0.082*	0.50	
H6B	0.2241	0.6311	0.8391	0.082*	0.50	
H6C	0.2723	0.7554	0.7704	0.082*	0.5	
C7	0.35047 (12)	0.7500	0.4666 (3)	0.0486 (7)		
C8	0.37795 (10)	0.7500	0.6197 (3)	0.0479 (7)		

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0651 (17)	0.124 (3)	0.0938 (19)	0.000	-0.0318 (14)	0.000
02	0.134 (3)	0.146 (3)	0.0503 (15)	0.000	0.0259 (16)	0.000
O3	0.1149 (17)	0.126 (2)	0.1237 (18)	0.0185 (14)	-0.0231 (13)	0.0734 (15)
O1W	0.113 (2)	0.0643 (16)	0.0591 (15)	0.000	-0.0145 (14)	0.000
N1	0.0386 (12)	0.0467 (13)	0.0473 (13)	0.000	0.0020 (9)	0.000
N2	0.0416 (11)	0.0366 (11)	0.0334 (11)	0.000	-0.0011 (9)	0.000
C1	0.0809 (17)	0.093 (2)	0.0849 (17)	-0.0298 (16)	0.0007 (14)	-0.0317 (15)
C2	0.0404 (15)	0.060(2)	0.103 (3)	0.000	0.0112 (16)	0.000
C3	0.069 (2)	0.078 (2)	0.0486 (17)	0.000	0.0046 (15)	0.000
C4	0.0677 (13)	0.0551 (14)	0.0631 (13)	0.0215 (11)	-0.0031 (10)	0.0016 (11)
C5	0.0562 (17)	0.0583 (18)	0.0419 (15)	0.000	0.0097 (12)	0.000
C6	0.0586 (17)	0.071 (2)	0.0352 (14)	0.000	-0.0093 (12)	0.000
C7	0.0614 (18)	0.0383 (15)	0.0461 (15)	0.000	-0.0003 (13)	0.000
C8	0.0356 (14)	0.0592 (18)	0.0489 (15)	0.000	0.0053 (11)	0.000

Geometric parameters (Å, °)

01—C7	1.245 (4)	C2—H2B	0.9600
O2—C7	1.235 (4)	C2—H2C	0.9600
O3—C8	1.222 (2)	С3—НЗА	0.9600
O1W—H1	0.95 (3)	C3—H3B	0.9600
N1—C3	1.481 (3)	C3—H3C	0.9600
N1—C2	1.484 (3)	C4—H4A	0.9600
N1-C1	1.484 (3)	C4—H4B	0.9600
N1-C1 ⁱ	1.484 (3)	C4—H4C	0.9600
N2—C6	1.487 (3)	C5—H5A	0.9600
N2—C4	1.489 (2)	C5—H5B	0.9600
N2-C4 ⁱ	1.489 (2)	C5—H5C	0.9600
N2—C5	1.494 (3)	C6—H6A	0.9600
C1—H1A	0.9600	C6—H6B	0.9600
C1—H1B	0.9600	С6—Н6С	0.9600

supporting information

C1—H1C	0.9600	С7—С8	1.484 (4)
C2—H2A	0.9600	C8—O3 ⁱ	1.222 (2)
C3—N1—C2	109.1 (3)	N1—C3—H3C	109.5
C3—N1—C1	109.52 (16)	НЗА—СЗ—НЗС	109.5
C2—N1—C1	108.66 (17)	НЗВ—СЗ—НЗС	109.5
$C3-N1-C1^{i}$	109.52 (16)	N2—C4—H4A	109.5
$C2$ — $N1$ — $C1^{i}$	108.66 (17)	N2—C4—H4B	109.5
$C1$ — $N1$ — $C1^i$	111.3 (3)	H4A—C4—H4B	109.5
C6—N2—C4	109.54 (13)	N2—C4—H4C	109.5
$C6-N2-C4^{i}$	109.54 (13)	H4A—C4—H4C	109.5
$C4$ — $N2$ — $C4^{i}$	109.3 (2)	H4B—C4—H4C	109.5
C6—N2—C5	109.1 (2)	N2—C5—H5A	109.5
C4—N2—C5	109.68 (14)	N2—C5—H5B	109.5
$C4^{i}$ —N2—C5	109.68 (14)	H5A—C5—H5B	109.5
N1—C1—H1A	109.5	N2—C5—H5C	109.5
N1—C1—H1B	109.5	H5A—C5—H5C	109.5
H1A—C1—H1B	109.5	H5B—C5—H5C	109.5
N1—C1—H1C	109.5	N2—C6—H6A	109.5
H1A—C1—H1C	109.5	N2—C6—H6B	109.5
H1B—C1—H1C	109.5	H6A—C6—H6B	109.5
N1—C2—H2A	109.5	N2—C6—H6C	109.5
N1—C2—H2B	109.5	H6A—C6—H6C	109.5
H2A—C2—H2B	109.5	H6B—C6—H6C	109.5
N1—C2—H2C	109.5	O2—C7—O1	126.3 (3)
H2A—C2—H2C	109.5	O2—C7—C8	116.8 (3)
H2B—C2—H2C	109.5	O1—C7—C8	116.9 (3)
N1—C3—H3A	109.5	O3 ⁱ —C8—O3	125.5 (3)
N1—C3—H3B	109.5	O3 ⁱ —C8—C7	117.26 (17)
НЗА—СЗ—НЗВ	109.5	O3—C8—C7	117.26 (17)
O2—C7—C8—O3 ⁱ	89.9 (2)	O2—C7—C8—O3	-89.9 (2)
O1C7C8O3 ⁱ	-90.1 (2)	O1—C7—C8—O3	90.1 (2)

Symmetry code: (i) x, -y+3/2, z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
01 <i>W</i> —H1···O3	0.95 (3)	1.82 (3)	2.764 (2)	171 (3)