organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-{Bis[meth­yl(phen­yl)amino]phosphor­yl}-2,2,2-tri­chloro­acetamide

aDepartment of Chemistry, Kyiv National Taras Shevchenko University, Volodymyrska str. 64, 01033 Kyiv, Ukraine, and bSTC "Institute for Single Crystals", National Academy of Science of Ukraine, Lenina ave. 60, 61001, Khar'kov, Ukraine
*Correspondence e-mail: znovkat@yahoo.com

(Received 28 September 2009; accepted 15 October 2009; online 23 October 2009)

In the asymmetric unit of the crystal structure of the title compound, C16H17Cl3N3O2P, there are two crystallograph­ically independent mol­ecules, which form dimers via N—H⋯O hydrogen bonding between the N—H group and the P=O group. In the mol­ecular structure, the phosphoryl group is anti to the carbonyl group. The two benzene rings are oriented at dihedral angles of 54.3 (2) and 49.7 (2)° in the two independent mol­ecules.

Related literature

For background to the chemistry of phospho­rus-containing systems, see: Helm et al. (1999[Helm, M., Katz, T., Imioczyk, R., Hands, R. & Norman, A. (1999). Inorg. Chem. 38, 3167-3172.]); Katti et al. (1991[Katti, K., Pinkerton, A. & Cavell, R. (1991). Inorg. Chem. 30, 2631-2633.]). For the biological and pharmacological properties of carbacyl­amido­phosphate derivatives, see: Jaroslav & Swetdloff (1985[Jaroslav, K. & Swetdloff, F. (1985). US Patent 4 517 003.]). For structural and conformational studies of related mol­ecules, see: Gholivand et al. (2008a[Gholivand, K., Alizadehgan, A., Mojahed, F. & Soleimani, P. (2008a). Polyhedron, 27, 1639-1649.],b[Gholivand, K., Vedova, C., Erben, M., Mahzouni, H., Shariatinia, Z. & Amiri, S. (2008b). J. Mol. Struct. 874, 178-186.]); Gubina et al. (1999[Gubina, K., Ovchynnikov, V., Amirkhanov, V., Sliva, T., Skopenko, V., Głowiak, T. & Kozłowski, H. (1999). Z. Naturforsch. Teil B, 54, 1357-1359.]); Rebrova et al. (1982[Rebrova, O., Biyushkin, V., Malinovski, T., Ovrucki, V., Procenko, L., Dneprova, T. & Mazus, M. (1982). Dokl. Akad. Nauk USSR, 324, 103-108.]). For the coordination properties of carbacyl­amido­phosphates, see: Oczko et al. (2003[Oczko, G., Legendziewicz, J., Trush, V. & Amirkhanov, V. (2003). New J. Chem. 27, 948-956.]); Amirkhanov et al. (1997[Amirkhanov, V., Sieler, J., Trush, V., Ovchynnikov, V. & Domasevitch, K. (1997). Z. Naturforsch. Teil B, 52, 1194-1198.]); Trush et al. (2003[Trush, E., Amirkhanov, V., Ovchynnikov, V., Świątek-Kozłowska, J., Lanikina, K. & Domasevitch, K. (2003). Polyhedron, 22, 1221-1229.]); Gubina et al. (2002[Gubina, K., Ovchynnikov, V., Świątek-Kozłowska, J., Amirkhanov, V., Sliva, T. & Domasevitch, K. (2002). Polyhedron, 21, 963-967.]). For details of the synthesis, see Kirsanov & Derkach (1956[Kirsanov, A. & Derkach, G. (1956). Zh. Obshch. Khim. 26, 2009-2014.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17Cl3N3O2P

  • Mr = 420.65

  • Monoclinic, P 21 /n

  • a = 12.8226 (10) Å

  • b = 19.5161 (15) Å

  • c = 15.1132 (12) Å

  • β = 93.345 (6)°

  • V = 3775.6 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 293 K

  • 0.40 × 0.20 × 0.05 mm

Data collection
  • Oxford Diffraction Xcalibur3 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.800, Tmax = 0.971

  • 37663 measured reflections

  • 8168 independent reflections

  • 6768 reflections with I > 2σ(I)

  • Rint = 0.086

Refinement
  • R[F2 > 2σ(F2)] = 0.094

  • wR(F2) = 0.174

  • S = 1.16

  • 8168 reflections

  • 451 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11B⋯O21 0.86 1.91 2.741 (5) 161
N21—H21B⋯O11 0.86 1.93 2.752 (5) 159

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The intensive development of the chemistry of the phosphorus containing systems during the last decades has given rise to synthesis of many compounds bonded by phosphorus and nitrogen atoms (Helm et al., 1999; Katti et al., 1991). Carbacylamidophosphates, which have CONHPO in molecular core unit, have attracted attention because of their using in pharmacology, as insecticides, pesticides and ureas inhibitor (Jaroslav et al., 1985). These types of compounds are used as ligands, particularly for lanthanides (Oczko et al., 2003), actinides (Amirkhanov et al., 1997) and 3d-metals (Trush et al. , 2003; Gubina et al., 2002). Thus to date the syntheses and structures of carbacylamidophosphate compounds have been of increased interest (Gholivand et al., 2008a). This paper is devoted to the crystal structure of N-{bis[methyl(phenyl)amino]phosphoryl}-2,2,2-trichloroacetamide (HL).

The title compound contains two crystallographically independent molecules in the asymmetric unit of the unit cell, which aggregate into the non-centrosymmetric dimers (HL)2 formed by the hydrogen bonds of N—H···OP (Figs. 1 and 2, Table 1). In the crystal structure of the HL the phosphoryl and carbonyl groups are in an anti-position to each other as in the most of the carbacylamidophosphates (Gubina et al., 1999). The bond distances P(1)O(11) and P(2)O(21) are typical for compounds with amide substituents close to phosphorus atoms (1.465–1.482 Å) (Rebrova et al., 1982). The values of CO and C—N bonds lie in the ranges 1.193 (8) Å, 1.207 (8) Å and 1.365 (9) Å, 1.362 (8) Å, respectively and close to the corresponding values of the carbacylamidophosphates (Gholivand et al., 2008b). The P(1)—N(11) (1.684 (5) Å) and P(2)—N(21) (1.692 (5) Å) distances of HL are longer on average by 0.05 Å than P—N bond distances between amide substituents and phosphorus atoms (P(1)—N(12), P(1)—N(13), P(2)—N(22), P(2)—N(23)) which fall in the range 1.634 (4)–1.649 (4) Å.

The phosphorus atoms of HL have distorted tetrahedral configuration where the values of O—P—N angles have the highest deviation from the 109.28°. Inspection of the O(11)—P(1)—N(11) and O(21)—P(2)—N(21) angles indicates that these angles are less than tetrahedral one (105.9 (2)° and 105.4 (2)°, respectively), while others O—P—N angles indicate higher values (111.2 (2)°-119.0 (2)°), that may be explained by the repulsion of amide substituents and PO group.

Related literature top

For background to the chemistry of the phosphorus-containing systems, see: Helm et al. (1999); Katti et al. (1991). For the biological and pharmacological properties of carbacylamidophosphate derivatives, see: Jaroslav & Swetdloff (1985). For structural and conformational studies of related molecules, see: Gholivand et al. (2008a,b); Gubina et al. (1999); Rebrova et al. (1982). For the coordination properties of carbacylamidophosphates, see: Oczko et al. (2003); Amirkhanov et al. (1997); Trush et al. (2003); Gubina et al. (2002). For details of the synthesis, see Kirsanov & Derkach (1956).

Experimental top

The dichloranhydride of trichloroacetylamidophosphoric acid was prepared according to the method reported by Kirsanov (Kirsanov et al., 1956).

The dioxane solution (100 ml) of methylaniline (21.4 g, 0.2 mol) and triethylamine (20.2 g, 0.2 mol) was placed in a three-neck round-bottomed flask and cooled by ice to 268 K. Then the dioxane solution (400 ml) of dichloranhydride of trichloroacetylamidophosphoric acid (27.9 g, 0.1 mol) was added dropwise under vigorous stirring. The temperature was not allowed to rise above 278 K. The stirring was continued for 1 h. The formed precipitate of N(C2H5)3HCl was filtered off and the filtrate evaporated. The oily precipitate of N-{bis[methyl(phenyl)amino]phosphoryl}-2,2,2-trichloroacetamide was isolated and recrystallized from the 2-propanol as white crystalline powder. The colourless crystals of the HL were obtained by slow evaporation of the mother liquor, washed with cool 2-propanol (10 ml) and finally dried in air (yield 85%).

Refinement top

All H atoms were placed at calculated positions and treated as riding on their parent atoms [C—H = 0.93 and 0.96 Å, and Uiso(H) = 1.2 and 1.5Ueq(C), N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N)].

Structure description top

The intensive development of the chemistry of the phosphorus containing systems during the last decades has given rise to synthesis of many compounds bonded by phosphorus and nitrogen atoms (Helm et al., 1999; Katti et al., 1991). Carbacylamidophosphates, which have CONHPO in molecular core unit, have attracted attention because of their using in pharmacology, as insecticides, pesticides and ureas inhibitor (Jaroslav et al., 1985). These types of compounds are used as ligands, particularly for lanthanides (Oczko et al., 2003), actinides (Amirkhanov et al., 1997) and 3d-metals (Trush et al. , 2003; Gubina et al., 2002). Thus to date the syntheses and structures of carbacylamidophosphate compounds have been of increased interest (Gholivand et al., 2008a). This paper is devoted to the crystal structure of N-{bis[methyl(phenyl)amino]phosphoryl}-2,2,2-trichloroacetamide (HL).

The title compound contains two crystallographically independent molecules in the asymmetric unit of the unit cell, which aggregate into the non-centrosymmetric dimers (HL)2 formed by the hydrogen bonds of N—H···OP (Figs. 1 and 2, Table 1). In the crystal structure of the HL the phosphoryl and carbonyl groups are in an anti-position to each other as in the most of the carbacylamidophosphates (Gubina et al., 1999). The bond distances P(1)O(11) and P(2)O(21) are typical for compounds with amide substituents close to phosphorus atoms (1.465–1.482 Å) (Rebrova et al., 1982). The values of CO and C—N bonds lie in the ranges 1.193 (8) Å, 1.207 (8) Å and 1.365 (9) Å, 1.362 (8) Å, respectively and close to the corresponding values of the carbacylamidophosphates (Gholivand et al., 2008b). The P(1)—N(11) (1.684 (5) Å) and P(2)—N(21) (1.692 (5) Å) distances of HL are longer on average by 0.05 Å than P—N bond distances between amide substituents and phosphorus atoms (P(1)—N(12), P(1)—N(13), P(2)—N(22), P(2)—N(23)) which fall in the range 1.634 (4)–1.649 (4) Å.

The phosphorus atoms of HL have distorted tetrahedral configuration where the values of O—P—N angles have the highest deviation from the 109.28°. Inspection of the O(11)—P(1)—N(11) and O(21)—P(2)—N(21) angles indicates that these angles are less than tetrahedral one (105.9 (2)° and 105.4 (2)°, respectively), while others O—P—N angles indicate higher values (111.2 (2)°-119.0 (2)°), that may be explained by the repulsion of amide substituents and PO group.

For background to the chemistry of the phosphorus-containing systems, see: Helm et al. (1999); Katti et al. (1991). For the biological and pharmacological properties of carbacylamidophosphate derivatives, see: Jaroslav & Swetdloff (1985). For structural and conformational studies of related molecules, see: Gholivand et al. (2008a,b); Gubina et al. (1999); Rebrova et al. (1982). For the coordination properties of carbacylamidophosphates, see: Oczko et al. (2003); Amirkhanov et al. (1997); Trush et al. (2003); Gubina et al. (2002). For details of the synthesis, see Kirsanov & Derkach (1956).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of hydrogen bonding between the two independent molecules in the unit cell of the title compound with atom numbering scheme. Displacement ellipsoids are shown at 50% probability level. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity.
[Figure 2] Fig. 2. A projection of packing diagram of the title compound along the y-direction.
N-{Bis[methyl(phenyl)amino]phosphoryl}-2,2,2-trichloroacetamide top
Crystal data top
C16H17Cl3N3O2PF(000) = 1728
Mr = 420.65Dx = 1.480 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 51957 reflections
a = 12.8226 (10) Åθ = 2.6–32.2°
b = 19.5161 (15) ŵ = 0.59 mm1
c = 15.1132 (12) ÅT = 293 K
β = 93.345 (6)°Plate, colourless
V = 3775.6 (5) Å30.40 × 0.20 × 0.05 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur3
diffractometer
8168 independent reflections
Radiation source: Enhance (Mo) X-ray Source6768 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.086
Detector resolution: 16.1827 pixels mm-1θmax = 27.5°, θmin = 2.6°
ω scansh = 1616
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 2525
Tmin = 0.800, Tmax = 0.971l = 1919
37663 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.094Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.0501P)2 + 9.3908P]
where P = (Fo2 + 2Fc2)/3
8168 reflections(Δ/σ)max = 0.002
451 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
C16H17Cl3N3O2PV = 3775.6 (5) Å3
Mr = 420.65Z = 8
Monoclinic, P21/nMo Kα radiation
a = 12.8226 (10) ŵ = 0.59 mm1
b = 19.5161 (15) ÅT = 293 K
c = 15.1132 (12) Å0.40 × 0.20 × 0.05 mm
β = 93.345 (6)°
Data collection top
Oxford Diffraction Xcalibur3
diffractometer
8168 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
6768 reflections with I > 2σ(I)
Tmin = 0.800, Tmax = 0.971Rint = 0.086
37663 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0940 restraints
wR(F2) = 0.174H-atom parameters constrained
S = 1.16Δρmax = 0.50 e Å3
8168 reflectionsΔρmin = 0.50 e Å3
451 parameters
Special details top

Experimental. 1H NMR, 400.13 MHz, (DMSO-d6): 3.06, 3.08 (d, 6H, CH3), 7.3 (m, 10H, C6H5), 10.28 (s, 1H, NH). 31P NMR, 162.1 MHz, (DMSO-d6): 5.46 (m). IR (KBr pellet, cm1): 3040 (s, N—H), 2850, 1730(s, CO), 1600 (s, CC), 1470 (s, C—N), 1280, 1245, 1210(s, PO), 1090, 1039, 930, 885, 815, 700, 685 (s, C—Cl).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.33568 (8)0.18559 (6)0.59326 (7)0.0137 (2)
Cl110.48523 (10)0.22113 (6)0.87366 (7)0.0261 (3)
Cl120.34981 (12)0.11928 (8)0.94348 (8)0.0370 (3)
Cl130.51399 (12)0.07733 (7)0.83310 (9)0.0365 (3)
O110.4195 (2)0.20901 (16)0.53685 (19)0.0171 (7)
N120.2449 (3)0.24477 (19)0.6008 (3)0.0168 (8)
N130.2727 (3)0.1149 (2)0.5658 (2)0.0183 (8)
N110.3948 (3)0.1685 (2)0.6933 (2)0.0183 (8)
H11B0.46170.17180.69830.022*
C1310.2676 (3)0.3157 (2)0.5929 (3)0.0154 (9)
C120.4208 (4)0.1426 (2)0.8517 (3)0.0197 (10)
C1410.1944 (3)0.1152 (2)0.4930 (3)0.0179 (9)
C1420.2132 (4)0.1471 (2)0.4134 (3)0.0209 (10)
H14A0.27710.16810.40560.025*
C1320.3617 (3)0.3435 (2)0.6318 (3)0.0185 (10)
H13A0.41170.31490.65950.022*
O120.2530 (3)0.1401 (2)0.7707 (2)0.0311 (9)
C110.3452 (4)0.1500 (2)0.7667 (3)0.0195 (10)
C1460.0988 (4)0.0838 (2)0.5038 (3)0.0216 (10)
H14B0.08690.06220.55710.026*
C130.1359 (3)0.2280 (2)0.6205 (3)0.0192 (10)
H13B0.09550.26930.62150.029*
H13C0.13550.20580.67710.029*
H13D0.10620.19790.57550.029*
C1330.3785 (4)0.4132 (3)0.6281 (3)0.0247 (11)
H13E0.44020.43150.65350.030*
C1450.0208 (4)0.0844 (2)0.4363 (3)0.0254 (11)
H14C0.04350.06390.44420.030*
C1440.0408 (4)0.1166 (3)0.3554 (3)0.0282 (12)
H14D0.01010.11690.30890.034*
C1360.1951 (4)0.3596 (3)0.5512 (3)0.0247 (11)
H13F0.13320.34180.52550.030*
C1340.3039 (4)0.4568 (3)0.5869 (3)0.0280 (11)
H13G0.31500.50390.58600.034*
C1350.2133 (4)0.4290 (3)0.5474 (3)0.0258 (11)
H13H0.16440.45740.51800.031*
C1430.1355 (4)0.1473 (3)0.3458 (3)0.0254 (11)
H14E0.14800.16890.29260.030*
C140.2943 (6)0.0485 (3)0.6085 (4)0.0474 (18)
H14F0.24890.01430.58170.071*
H14G0.28260.05180.67050.071*
H14H0.36570.03590.60130.071*
P20.68252 (8)0.17932 (6)0.63323 (7)0.0135 (2)
Cl210.66403 (11)0.10956 (7)0.28388 (8)0.0311 (3)
Cl220.48977 (10)0.08272 (7)0.39052 (8)0.0278 (3)
Cl230.54923 (11)0.22269 (6)0.35201 (8)0.0294 (3)
O210.6002 (2)0.20639 (17)0.68822 (19)0.0179 (7)
N220.7759 (3)0.23606 (19)0.6228 (2)0.0149 (8)
N230.7424 (3)0.1085 (2)0.6634 (2)0.0163 (8)
N210.6213 (3)0.1617 (2)0.5331 (2)0.0160 (8)
H21B0.55460.16650.52810.019*
O220.7598 (2)0.12398 (19)0.4579 (2)0.0246 (8)
C2410.8228 (3)0.1087 (2)0.7325 (3)0.0174 (9)
C220.5976 (4)0.1391 (2)0.3743 (3)0.0218 (10)
C210.6696 (3)0.1405 (2)0.4607 (3)0.0157 (9)
C2460.9151 (3)0.0725 (2)0.7220 (3)0.0197 (10)
H24A0.92240.04660.67100.024*
C230.8826 (3)0.2165 (2)0.6004 (3)0.0186 (9)
H23A0.92520.25690.59810.028*
H23B0.87970.19410.54380.028*
H23C0.91210.18590.64490.028*
C2310.7582 (3)0.3072 (2)0.6305 (3)0.0158 (9)
C2320.6668 (4)0.3381 (3)0.5922 (3)0.0202 (10)
H23D0.61480.31110.56450.024*
C2430.8935 (4)0.1479 (3)0.8756 (3)0.0286 (12)
H24B0.88590.17290.92720.034*
C2420.8124 (4)0.1458 (2)0.8104 (3)0.0186 (9)
H24C0.75070.16940.81880.022*
C2360.8343 (4)0.3489 (2)0.6720 (3)0.0200 (10)
H23E0.89450.32930.69840.024*
C2350.8212 (4)0.4195 (3)0.6744 (3)0.0292 (12)
H23F0.87300.44660.70230.035*
C2340.7323 (4)0.4501 (3)0.6359 (3)0.0282 (12)
H23G0.72470.49750.63690.034*
C2330.6546 (4)0.4089 (3)0.5958 (3)0.0256 (11)
H23H0.59380.42890.57120.031*
C2450.9958 (4)0.0747 (3)0.7867 (4)0.0292 (12)
H24D1.05720.05080.77870.035*
C2440.9856 (4)0.1127 (3)0.8639 (3)0.0283 (12)
H24E1.04010.11430.90710.034*
C240.7110 (5)0.0406 (3)0.6298 (4)0.0377 (15)
H24F0.75680.00650.65620.057*
H24G0.71500.03960.56650.057*
H24H0.64050.03130.64450.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0101 (5)0.0170 (6)0.0141 (5)0.0013 (4)0.0009 (4)0.0008 (4)
Cl110.0343 (6)0.0281 (6)0.0160 (6)0.0131 (5)0.0028 (5)0.0025 (5)
Cl120.0538 (9)0.0416 (8)0.0167 (6)0.0202 (7)0.0116 (6)0.0007 (6)
Cl130.0501 (8)0.0352 (7)0.0235 (6)0.0177 (7)0.0046 (6)0.0018 (6)
O110.0131 (14)0.0230 (17)0.0154 (15)0.0037 (13)0.0022 (12)0.0021 (13)
N120.0096 (17)0.0166 (19)0.024 (2)0.0009 (15)0.0042 (15)0.0009 (16)
N130.0184 (19)0.018 (2)0.0180 (19)0.0055 (16)0.0004 (15)0.0008 (16)
N110.0138 (18)0.027 (2)0.0139 (18)0.0017 (16)0.0012 (15)0.0016 (16)
C1310.022 (2)0.013 (2)0.012 (2)0.0011 (18)0.0037 (17)0.0048 (17)
C120.028 (2)0.020 (2)0.011 (2)0.006 (2)0.0058 (18)0.0021 (18)
C1410.017 (2)0.021 (2)0.015 (2)0.0052 (18)0.0025 (17)0.0057 (18)
C1420.022 (2)0.020 (2)0.020 (2)0.0019 (19)0.0003 (19)0.0003 (19)
C1320.016 (2)0.019 (2)0.020 (2)0.0038 (18)0.0027 (18)0.0049 (19)
O120.0237 (18)0.045 (2)0.0250 (19)0.0120 (17)0.0089 (15)0.0000 (17)
C110.018 (2)0.023 (2)0.018 (2)0.0042 (19)0.0045 (18)0.0016 (19)
C1460.022 (2)0.020 (2)0.023 (2)0.0019 (19)0.0037 (19)0.001 (2)
C130.011 (2)0.020 (2)0.028 (2)0.0007 (18)0.0060 (18)0.004 (2)
C1330.022 (2)0.023 (3)0.028 (3)0.003 (2)0.003 (2)0.004 (2)
C1450.025 (3)0.016 (2)0.035 (3)0.001 (2)0.006 (2)0.005 (2)
C1440.029 (3)0.026 (3)0.029 (3)0.009 (2)0.010 (2)0.010 (2)
C1360.020 (2)0.030 (3)0.023 (3)0.002 (2)0.004 (2)0.000 (2)
C1340.035 (3)0.023 (3)0.026 (3)0.004 (2)0.002 (2)0.001 (2)
C1350.029 (3)0.018 (2)0.030 (3)0.005 (2)0.004 (2)0.004 (2)
C1430.029 (3)0.031 (3)0.016 (2)0.007 (2)0.001 (2)0.001 (2)
C140.070 (4)0.018 (3)0.050 (4)0.008 (3)0.036 (3)0.003 (3)
P20.0119 (5)0.0167 (6)0.0121 (5)0.0011 (4)0.0019 (4)0.0004 (4)
Cl210.0445 (8)0.0346 (7)0.0148 (6)0.0109 (6)0.0077 (5)0.0020 (5)
Cl220.0254 (6)0.0321 (6)0.0255 (6)0.0047 (5)0.0026 (5)0.0060 (6)
Cl230.0440 (8)0.0250 (6)0.0190 (6)0.0131 (6)0.0002 (5)0.0036 (5)
O210.0132 (15)0.0270 (18)0.0137 (15)0.0029 (13)0.0026 (12)0.0028 (13)
N220.0092 (16)0.0137 (18)0.022 (2)0.0001 (14)0.0035 (14)0.0001 (15)
N230.0163 (18)0.0181 (19)0.0143 (18)0.0005 (15)0.0014 (15)0.0018 (15)
N210.0102 (17)0.027 (2)0.0108 (18)0.0024 (15)0.0007 (14)0.0025 (15)
O220.0184 (17)0.040 (2)0.0163 (16)0.0067 (15)0.0070 (13)0.0031 (15)
C2410.018 (2)0.012 (2)0.022 (2)0.0018 (18)0.0010 (18)0.0049 (18)
C220.024 (2)0.021 (2)0.019 (2)0.002 (2)0.0006 (19)0.0039 (19)
C210.015 (2)0.019 (2)0.013 (2)0.0021 (18)0.0012 (17)0.0024 (17)
C2460.021 (2)0.016 (2)0.022 (2)0.0041 (19)0.0019 (19)0.0015 (19)
C230.012 (2)0.019 (2)0.025 (2)0.0022 (18)0.0021 (18)0.0058 (19)
C2310.016 (2)0.020 (2)0.013 (2)0.0018 (18)0.0052 (17)0.0018 (17)
C2320.016 (2)0.027 (3)0.018 (2)0.0048 (19)0.0019 (18)0.0055 (19)
C2430.034 (3)0.030 (3)0.020 (3)0.007 (2)0.008 (2)0.000 (2)
C2420.021 (2)0.017 (2)0.018 (2)0.0008 (19)0.0017 (18)0.0022 (18)
C2360.026 (2)0.021 (2)0.013 (2)0.002 (2)0.0007 (18)0.0002 (18)
C2350.045 (3)0.019 (3)0.023 (3)0.009 (2)0.002 (2)0.007 (2)
C2340.050 (3)0.015 (2)0.020 (2)0.004 (2)0.008 (2)0.003 (2)
C2330.035 (3)0.024 (3)0.018 (2)0.010 (2)0.006 (2)0.004 (2)
C2450.025 (3)0.027 (3)0.035 (3)0.008 (2)0.002 (2)0.009 (2)
C2440.030 (3)0.028 (3)0.026 (3)0.004 (2)0.011 (2)0.003 (2)
C240.058 (4)0.019 (3)0.033 (3)0.006 (3)0.023 (3)0.000 (2)
Geometric parameters (Å, º) top
P1—O111.483 (3)P2—O211.478 (3)
P1—N131.639 (4)P2—N231.634 (4)
P1—N121.649 (4)P2—N221.645 (4)
P1—N111.684 (4)P2—N211.698 (4)
Cl11—C121.763 (5)Cl21—C221.749 (5)
Cl12—C121.763 (5)Cl22—C221.795 (5)
Cl13—C121.780 (5)Cl23—C221.771 (5)
N12—C1311.421 (6)N22—C2311.413 (6)
N12—C131.482 (5)N22—C231.478 (5)
N13—C1411.444 (6)N23—C2411.424 (6)
N13—C141.469 (6)N23—C241.466 (6)
N11—C111.359 (6)N21—C211.353 (5)
N11—H11B0.8600N21—H21B0.8600
C131—C1361.388 (6)O22—C211.203 (5)
C131—C1321.419 (6)C241—C2421.396 (6)
C12—C111.570 (7)C241—C2461.396 (6)
C141—C1421.388 (6)C22—C211.555 (6)
C141—C1461.388 (6)C246—C2451.382 (7)
C142—C1431.385 (7)C246—H24A0.9300
C142—H14A0.9300C23—H23A0.9600
C132—C1331.379 (7)C23—H23B0.9600
C132—H13A0.9300C23—H23C0.9600
O12—C111.203 (6)C231—C2361.391 (6)
C146—C1451.386 (7)C231—C2321.412 (6)
C146—H14B0.9300C232—C2331.393 (7)
C13—H13B0.9600C232—H23D0.9300
C13—H13C0.9600C243—C2441.387 (8)
C13—H13D0.9600C243—C2421.391 (6)
C133—C1341.399 (7)C243—H24B0.9300
C133—H13E0.9300C242—H24C0.9300
C145—C1441.412 (8)C236—C2351.389 (7)
C145—H14C0.9300C236—H23E0.9300
C144—C1431.371 (7)C235—C2341.385 (8)
C144—H14D0.9300C235—H23F0.9300
C136—C1351.376 (7)C234—C2331.392 (7)
C136—H13F0.9300C234—H23G0.9300
C134—C1351.386 (7)C233—H23H0.9300
C134—H13G0.9300C245—C2441.395 (7)
C135—H13H0.9300C245—H24D0.9300
C143—H14E0.9300C244—H24E0.9300
C14—H14F0.9600C24—H24F0.9600
C14—H14G0.9600C24—H24G0.9600
C14—H14H0.9600C24—H24H0.9600
O11—P1—N13118.48 (19)O21—P2—N23119.01 (19)
O11—P1—N12111.25 (19)O21—P2—N22111.15 (19)
N13—P1—N12105.49 (19)N23—P2—N22105.29 (19)
O11—P1—N11105.88 (18)O21—P2—N21105.39 (18)
N13—P1—N11104.5 (2)N23—P2—N21105.18 (19)
N12—P1—N11111.0 (2)N22—P2—N21110.60 (19)
C131—N12—C13115.6 (4)C231—N22—C23115.3 (3)
C131—N12—P1121.8 (3)C231—N22—P2122.2 (3)
C13—N12—P1122.5 (3)C23—N22—P2122.5 (3)
C141—N13—C14116.3 (4)C241—N23—C24115.4 (4)
C141—N13—P1120.0 (3)C241—N23—P2120.7 (3)
C14—N13—P1123.6 (3)C24—N23—P2123.5 (3)
C11—N11—P1125.3 (3)C21—N21—P2124.9 (3)
C11—N11—H11B117.3C21—N21—H21B117.5
P1—N11—H11B117.3P2—N21—H21B117.5
C136—C131—C132118.8 (4)C242—C241—C246118.9 (4)
C136—C131—N12120.3 (4)C242—C241—N23121.3 (4)
C132—C131—N12120.8 (4)C246—C241—N23119.8 (4)
C11—C12—Cl11109.5 (3)C21—C22—Cl21111.7 (3)
C11—C12—Cl12110.2 (3)C21—C22—Cl23109.1 (3)
Cl11—C12—Cl12109.5 (2)Cl21—C22—Cl23109.6 (3)
C11—C12—Cl13109.0 (3)C21—C22—Cl22108.7 (3)
Cl11—C12—Cl13109.9 (3)Cl21—C22—Cl22108.6 (3)
Cl12—C12—Cl13108.7 (3)Cl23—C22—Cl22109.0 (3)
C142—C141—C146119.8 (4)O22—C21—N21126.7 (4)
C142—C141—N13120.9 (4)O22—C21—C22119.3 (4)
C146—C141—N13119.2 (4)N21—C21—C22114.0 (4)
C143—C142—C141119.2 (5)C245—C246—C241120.5 (5)
C143—C142—H14A120.4C245—C246—H24A119.8
C141—C142—H14A120.4C241—C246—H24A119.8
C133—C132—C131119.5 (4)N22—C23—H23A109.5
C133—C132—H13A120.3N22—C23—H23B109.5
C131—C132—H13A120.3H23A—C23—H23B109.5
O12—C11—N11126.2 (4)N22—C23—H23C109.5
O12—C11—C12120.4 (4)H23A—C23—H23C109.5
N11—C11—C12113.4 (4)H23B—C23—H23C109.5
C145—C146—C141121.0 (5)C236—C231—N22120.0 (4)
C145—C146—H14B119.5C236—C231—C232118.6 (4)
C141—C146—H14B119.5N22—C231—C232121.2 (4)
N12—C13—H13B109.5C233—C232—C231120.0 (5)
N12—C13—H13C109.5C233—C232—H23D120.0
H13B—C13—H13C109.5C231—C232—H23D120.0
N12—C13—H13D109.5C244—C243—C242120.1 (5)
H13B—C13—H13D109.5C244—C243—H24B119.9
H13C—C13—H13D109.5C242—C243—H24B119.9
C132—C133—C134120.9 (5)C243—C242—C241120.5 (5)
C132—C133—H13E119.5C243—C242—H24C119.7
C134—C133—H13E119.5C241—C242—H24C119.7
C146—C145—C144118.8 (5)C235—C236—C231120.6 (5)
C146—C145—H14C120.6C235—C236—H23E119.7
C144—C145—H14C120.6C231—C236—H23E119.7
C143—C144—C145119.6 (5)C234—C235—C236121.0 (5)
C143—C144—H14D120.2C234—C235—H23F119.5
C145—C144—H14D120.2C236—C235—H23F119.5
C135—C136—C131121.1 (5)C235—C234—C233118.9 (5)
C135—C136—H13F119.5C235—C234—H23G120.5
C131—C136—H13F119.5C233—C234—H23G120.5
C135—C134—C133119.2 (5)C232—C233—C234120.8 (5)
C135—C134—H13G120.4C232—C233—H23H119.6
C133—C134—H13G120.4C234—C233—H23H119.6
C136—C135—C134120.5 (5)C246—C245—C244120.4 (5)
C136—C135—H13H119.8C246—C245—H24D119.8
C134—C135—H13H119.8C244—C245—H24D119.8
C144—C143—C142121.6 (5)C243—C244—C245119.5 (5)
C144—C143—H14E119.2C243—C244—H24E120.2
C142—C143—H14E119.2C245—C244—H24E120.2
N13—C14—H14F109.5N23—C24—H24F109.5
N13—C14—H14G109.5N23—C24—H24G109.5
H14F—C14—H14G109.5H24F—C24—H24G109.5
N13—C14—H14H109.5N23—C24—H24H109.5
H14F—C14—H14H109.5H24F—C24—H24H109.5
H14G—C14—H14H109.5H24G—C24—H24H109.5
O11—P1—N12—C13128.0 (4)O21—P2—N22—C23125.4 (4)
N13—P1—N12—C131157.7 (3)N23—P2—N22—C231155.6 (3)
N11—P1—N12—C13189.6 (4)N21—P2—N22—C23191.3 (4)
O11—P1—N12—C13155.0 (3)O21—P2—N22—C23157.6 (3)
N13—P1—N12—C1325.3 (4)N23—P2—N22—C2327.4 (4)
N11—P1—N12—C1387.4 (4)N21—P2—N22—C2385.7 (4)
O11—P1—N13—C14176.1 (4)O21—P2—N23—C24178.4 (4)
N12—P1—N13—C14149.2 (4)N22—P2—N23—C24147.0 (4)
N11—P1—N13—C141166.4 (3)N21—P2—N23—C241163.9 (3)
O11—P1—N13—C14100.7 (5)O21—P2—N23—C2494.6 (4)
N12—P1—N13—C14134.0 (5)N22—P2—N23—C24140.0 (4)
N11—P1—N13—C1416.8 (5)N21—P2—N23—C2423.1 (5)
O11—P1—N11—C11175.3 (4)O21—P2—N21—C21174.9 (4)
N13—P1—N11—C1158.8 (4)N23—P2—N21—C2158.6 (4)
N12—P1—N11—C1154.4 (4)N22—P2—N21—C2154.6 (4)
C13—N12—C131—C13639.0 (6)C24—N23—C241—C242130.4 (5)
P1—N12—C131—C136143.8 (4)P2—N23—C241—C24243.1 (6)
C13—N12—C131—C132137.3 (4)C24—N23—C241—C24651.1 (6)
P1—N12—C131—C13239.9 (6)P2—N23—C241—C246135.4 (4)
C14—N13—C141—C142131.8 (5)P2—N21—C21—O228.5 (7)
P1—N13—C141—C14245.3 (5)P2—N21—C21—C22170.9 (3)
C14—N13—C141—C14649.2 (6)Cl21—C22—C21—O221.8 (6)
P1—N13—C141—C146133.7 (4)Cl23—C22—C21—O22119.6 (4)
C146—C141—C142—C1430.2 (7)Cl22—C22—C21—O22121.6 (4)
N13—C141—C142—C143178.8 (4)Cl21—C22—C21—N21178.7 (3)
C136—C131—C132—C1330.6 (7)Cl23—C22—C21—N2159.9 (5)
N12—C131—C132—C133175.7 (4)Cl22—C22—C21—N2158.9 (5)
P1—N11—C11—O123.4 (8)C242—C241—C246—C2451.5 (7)
P1—N11—C11—C12175.9 (3)N23—C241—C246—C245177.0 (4)
Cl11—C12—C11—O12120.4 (5)C23—N22—C231—C23640.6 (6)
Cl12—C12—C11—O120.1 (6)P2—N22—C231—C236142.1 (4)
Cl13—C12—C11—O12119.3 (5)C23—N22—C231—C232135.6 (4)
Cl11—C12—C11—N1159.0 (5)P2—N22—C231—C23241.6 (6)
Cl12—C12—C11—N11179.5 (3)C236—C231—C232—C2330.5 (7)
Cl13—C12—C11—N1161.3 (5)N22—C231—C232—C233175.8 (4)
C142—C141—C146—C1450.6 (7)C244—C243—C242—C2410.2 (7)
N13—C141—C146—C145178.5 (4)C246—C241—C242—C2431.3 (7)
C131—C132—C133—C1340.2 (7)N23—C241—C242—C243177.2 (4)
C141—C146—C145—C1440.9 (7)N22—C231—C236—C235175.3 (4)
C146—C145—C144—C1431.0 (7)C232—C231—C236—C2351.0 (7)
C132—C131—C136—C1350.0 (7)C231—C236—C235—C2340.2 (8)
N12—C131—C136—C135176.3 (4)C236—C235—C234—C2331.2 (8)
C132—C133—C134—C1351.6 (8)C231—C232—C233—C2340.9 (7)
C131—C136—C135—C1341.4 (8)C235—C234—C233—C2321.7 (7)
C133—C134—C135—C1362.2 (8)C241—C246—C245—C2440.7 (8)
C145—C144—C143—C1420.7 (8)C242—C243—C244—C2450.6 (8)
C141—C142—C143—C1440.3 (7)C246—C245—C244—C2430.4 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11B···O210.861.912.741 (5)161
N21—H21B···O110.861.932.752 (5)159

Experimental details

Crystal data
Chemical formulaC16H17Cl3N3O2P
Mr420.65
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)12.8226 (10), 19.5161 (15), 15.1132 (12)
β (°) 93.345 (6)
V3)3775.6 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.59
Crystal size (mm)0.40 × 0.20 × 0.05
Data collection
DiffractometerOxford Diffraction Xcalibur3
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.800, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
37663, 8168, 6768
Rint0.086
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.094, 0.174, 1.16
No. of reflections8168
No. of parameters451
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.50

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11B···O210.861.912.741 (5)161.0
N21—H21B···O110.861.932.752 (5)158.9
 

Acknowledgements

The authors thank the Fundamental Researchers State Fund of Ukraine for partial support of this research.

References

First citationAmirkhanov, V., Sieler, J., Trush, V., Ovchynnikov, V. & Domasevitch, K. (1997). Z. Naturforsch. Teil B, 52, 1194–1198.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGholivand, K., Alizadehgan, A., Mojahed, F. & Soleimani, P. (2008a). Polyhedron, 27, 1639–1649.  Web of Science CSD CrossRef CAS Google Scholar
First citationGholivand, K., Vedova, C., Erben, M., Mahzouni, H., Shariatinia, Z. & Amiri, S. (2008b). J. Mol. Struct. 874, 178–186.  Web of Science CSD CrossRef CAS Google Scholar
First citationGubina, K., Ovchynnikov, V., Amirkhanov, V., Sliva, T., Skopenko, V., Głowiak, T. & Kozłowski, H. (1999). Z. Naturforsch. Teil B, 54, 1357–1359.  CAS Google Scholar
First citationGubina, K., Ovchynnikov, V., Świątek-Kozłowska, J., Amirkhanov, V., Sliva, T. & Domasevitch, K. (2002). Polyhedron, 21, 963–967.  Web of Science CSD CrossRef CAS Google Scholar
First citationHelm, M., Katz, T., Imioczyk, R., Hands, R. & Norman, A. (1999). Inorg. Chem. 38, 3167–3172.  Web of Science CrossRef CAS Google Scholar
First citationJaroslav, K. & Swetdloff, F. (1985). US Patent 4 517 003.  Google Scholar
First citationKatti, K., Pinkerton, A. & Cavell, R. (1991). Inorg. Chem. 30, 2631–2633.  CSD CrossRef CAS Web of Science Google Scholar
First citationKirsanov, A. & Derkach, G. (1956). Zh. Obshch. Khim. 26, 2009–2014.  CAS Google Scholar
First citationOczko, G., Legendziewicz, J., Trush, V. & Amirkhanov, V. (2003). New J. Chem. 27, 948–956.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationRebrova, O., Biyushkin, V., Malinovski, T., Ovrucki, V., Procenko, L., Dneprova, T. & Mazus, M. (1982). Dokl. Akad. Nauk USSR, 324, 103–108.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrush, E., Amirkhanov, V., Ovchynnikov, V., Świątek-Kozłowska, J., Lanikina, K. & Domasevitch, K. (2003). Polyhedron, 22, 1221–1229.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds