metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[2-(2-pyridylmethyl­ene­amino)benzene­sulfonato-κ3N,N′,O]cobalt(II) dihydrate

aCollege of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin 541004, People's Republic of China, and bKey Laboratory of New Processing Technology for Nonferrous Metals & Materials, Ministry of Education, Guilin University of Technology, Guilin 541004, People's Republic of China
*Correspondence e-mail: 499122835@qq.com

(Received 15 October 2009; accepted 23 October 2009; online 31 October 2009)

The title complex, [Co(C12H9N2O3S)2]·2H2O, has site symmetry 2 with the CoII cation located on a twofold rotation axis. Two tridentate 2-(2-pyridylmethyl­eneamino)benzene­sulfonate (paba) ligands chelate to the CoII cation in a distorted octa­hedral geometry. The pyridine and benzene rings in the paba ligand are oriented at a dihedral angle of 42.86 (13)°. Inter­molecular O—H⋯O and C—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

For general background to the coordination chemistry of the sulfonate ligands, see: Jiang et al. (2006[Jiang, Y.-M., Li, J.-M., Xie, F.-Q. & Wang, Y.-F. (2006). Chin. J. Struct. Chem. 25, 767-770.]). For the isostructural Zn and Cd complexes, see: Cai et al. (2008[Cai, C.-X., Ou-Yang, M., Zhao, Z.-Y. & Jiang, Y.-M. (2008). Acta Cryst. E64, m1195.]); Ou-Yang et al. (2008[Ou-Yang, M., Huang, X.-R., Zhang, Y.-L. & Jiang, Y.-M. (2008). Acta Cryst. E64, m1461.]). For the synthesis, see: Casella & Gullotti (1986[Casella, L. & Gullotti, M. (1986). Inorg. Chem. 25, 1293-1303.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C12H9N2O3S)2]·2H2O

  • Mr = 617.53

  • Orthorhombic, P b c n

  • a = 19.636 (2) Å

  • b = 8.0973 (8) Å

  • c = 16.2819 (16) Å

  • V = 2588.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.88 mm−1

  • T = 291 K

  • 0.31 × 0.25 × 0.07 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.771, Tmax = 0.939

  • 17970 measured reflections

  • 2410 independent reflections

  • 1960 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.089

  • S = 1.02

  • 2410 reflections

  • 177 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O3 2.1029 (16)
Co1—N1 2.1863 (18)
Co1—N2 2.147 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1W⋯O4i 0.85 2.16 3.009 (3) 179
O1—H2W⋯O2 0.84 2.15 2.867 (3) 143
C7—H7⋯O1ii 0.93 2.56 3.425 (3) 154
C11—H11⋯O4iii 0.93 2.46 3.389 (3) 172
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (ii) [x, -y+1, z-{\script{1\over 2}}]; (iii) [-x+2, y-1, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design of supermolecular coordination complexes in which both coordination bonds and hydrogen bonds take part in the self-assembly chemistry have recently generated increasing interest. Our group have focused on the exploration of the coordination chemistry of the sulfonate ligands (Jiang et al.., 2006). We report here the structure of the title complex (Fig. 1).

The CoII complex is isostructural with [Zn(Paba)2].2H2O and [Cd(Paba)2].2H2O whose structure has been described in detail (Cai et al.., 2008; Ou-Yang et al.., 2008). The Co(II) atom lies on the twofold rotation axis and is coordinated by pyridine N, imine N and sulfonate O atoms from two paba- ligands with a distorted octahedral geometry (Table 1). This structure is similar to complexes with N,N',O-tridentate donor ligands (Casella et al.., 1986). The O—H···O and C—H···O hydrogen bonding (Table 2) is present in the crystal structure.

Related literature top

For general background to the coordination chemistry of the sulfonate ligands, see: Jiang, et al. (2006). For the isostructural Zn and Cd complexes, see: Cai et al. (2008); Ou-Yang et al. (2008). For the synthesis, see: Casella & Gullotti (1986).

Experimental top

The potassium salt of 2-(pyridylmethyl)imine-2-benzenesulfonic acid (pabaK) was synthesized according to the literature method (Casella & Gullotti, 1986). To prepare the title complex, pabaK (1 mmol, 0.30 g) was dissolved in methanol (10 ml) at 333 k and an aqueous solution (10 ml) containing Co(AcO)2.4H2O (0.5 mmol, 0.125 g) was added. The mixture was stirred at 333 K for 4 h, then cooled to room temperature and filtered. Red crystals suitable for X-ray diffraction were obtained by slowly evaporation over several days, with a yield of 60%. Elemental analysis, found (%): C: 46.59; H: 4.04; N: 9.11; S: 10.25, calc (%): C: 46.64; H: 3.56; N: 9.07; S: 10.36.

Refinement top

H atoms bonded to C atoms were positioned geometrically with the C—H distance of 0.93 A, and treated as riding atoms, with Uiso(H) = 1.2Ueq(C). Water H atoms were placed in a difference Fourier map and refined as riding in as-found relative positions with Uiso(H) = 1.5Ueq(O).

Structure description top

The design of supermolecular coordination complexes in which both coordination bonds and hydrogen bonds take part in the self-assembly chemistry have recently generated increasing interest. Our group have focused on the exploration of the coordination chemistry of the sulfonate ligands (Jiang et al.., 2006). We report here the structure of the title complex (Fig. 1).

The CoII complex is isostructural with [Zn(Paba)2].2H2O and [Cd(Paba)2].2H2O whose structure has been described in detail (Cai et al.., 2008; Ou-Yang et al.., 2008). The Co(II) atom lies on the twofold rotation axis and is coordinated by pyridine N, imine N and sulfonate O atoms from two paba- ligands with a distorted octahedral geometry (Table 1). This structure is similar to complexes with N,N',O-tridentate donor ligands (Casella et al.., 1986). The O—H···O and C—H···O hydrogen bonding (Table 2) is present in the crystal structure.

For general background to the coordination chemistry of the sulfonate ligands, see: Jiang, et al. (2006). For the isostructural Zn and Cd complexes, see: Cai et al. (2008); Ou-Yang et al. (2008). For the synthesis, see: Casella & Gullotti (1986).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the complex, showing the atom-numbering scheme. Symmetry code: -x + 2, y, -z + 1/2.
Bis[2-(2-pyridylmethyleneamino)benzenesulfonato- κ3N,N',O]cobalt(II) dihydrate top
Crystal data top
[Co(C12H9N2O3S)2]·2H2OF(000) = 1268
Mr = 617.53Dx = 1.584 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 4317 reflections
a = 19.636 (2) Åθ = 2.5–24.7°
b = 8.0973 (8) ŵ = 0.88 mm1
c = 16.2819 (16) ÅT = 291 K
V = 2588.8 (4) Å3Block, red
Z = 40.31 × 0.25 × 0.07 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2410 independent reflections
Radiation source: fine-focus sealed tube1960 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
φ and ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2323
Tmin = 0.771, Tmax = 0.939k = 99
17970 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0467P)2 + 1.5384P]
where P = (Fo2 + 2Fc2)/3
2410 reflections(Δ/σ)max = 0.001
177 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
[Co(C12H9N2O3S)2]·2H2OV = 2588.8 (4) Å3
Mr = 617.53Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 19.636 (2) ŵ = 0.88 mm1
b = 8.0973 (8) ÅT = 291 K
c = 16.2819 (16) Å0.31 × 0.25 × 0.07 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2410 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1960 reflections with I > 2σ(I)
Tmin = 0.771, Tmax = 0.939Rint = 0.039
17970 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.02Δρmax = 0.44 e Å3
2410 reflectionsΔρmin = 0.46 e Å3
177 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l. s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co11.00000.68407 (5)0.25000.02746 (14)
S10.87615 (3)0.82456 (8)0.34750 (3)0.03191 (17)
O10.79780 (13)0.4090 (4)0.44814 (16)0.1166 (13)
H1W0.75500.41210.44000.175*
H2W0.81880.44250.40640.175*
O20.84711 (9)0.6617 (2)0.34011 (11)0.0477 (5)
O30.95125 (8)0.8220 (2)0.34231 (9)0.0350 (4)
O40.85336 (9)0.9170 (2)0.41814 (10)0.0438 (4)
N10.90902 (9)0.7307 (2)0.17616 (11)0.0297 (4)
N20.99827 (10)0.4858 (3)0.16249 (12)0.0335 (5)
C10.85084 (11)0.9367 (3)0.25933 (13)0.0310 (5)
C20.81355 (13)1.0800 (3)0.26678 (15)0.0413 (6)
H20.80161.11890.31860.050*
C30.79387 (15)1.1660 (4)0.19754 (18)0.0534 (8)
H30.76911.26340.20270.064*
C40.81090 (14)1.1074 (4)0.12064 (16)0.0538 (8)
H40.79741.16530.07410.065*
C50.84796 (13)0.9631 (4)0.11249 (15)0.0444 (7)
H50.85930.92460.06040.053*
C60.86829 (11)0.8756 (3)0.18134 (14)0.0309 (5)
C70.89905 (12)0.6270 (3)0.11848 (14)0.0362 (6)
H70.86240.63990.08280.043*
C80.94554 (12)0.4883 (3)0.10895 (13)0.0330 (5)
C90.93760 (15)0.3705 (3)0.04869 (16)0.0469 (7)
H90.90080.37490.01280.056*
C100.98533 (16)0.2455 (4)0.04253 (18)0.0534 (7)
H100.98080.16390.00270.064*
C111.03915 (16)0.2432 (3)0.09565 (18)0.0503 (7)
H111.07220.16120.09190.060*
C121.04376 (14)0.3648 (3)0.15512 (16)0.0428 (6)
H121.08020.36180.19150.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0260 (2)0.0333 (3)0.0231 (2)0.0000.00434 (16)0.000
S10.0305 (3)0.0415 (4)0.0238 (3)0.0001 (3)0.0004 (2)0.0016 (2)
O10.0579 (15)0.193 (3)0.099 (2)0.0322 (18)0.0192 (14)0.079 (2)
O20.0511 (11)0.0469 (11)0.0452 (11)0.0111 (9)0.0011 (9)0.0076 (9)
O30.0292 (8)0.0485 (10)0.0272 (8)0.0047 (7)0.0040 (7)0.0038 (7)
O40.0425 (10)0.0625 (12)0.0263 (9)0.0069 (9)0.0045 (7)0.0037 (8)
N10.0253 (9)0.0408 (11)0.0231 (10)0.0000 (8)0.0006 (7)0.0016 (9)
N20.0383 (11)0.0336 (11)0.0287 (10)0.0019 (9)0.0042 (8)0.0010 (8)
C10.0238 (11)0.0400 (13)0.0293 (12)0.0001 (10)0.0006 (9)0.0029 (10)
C20.0354 (14)0.0526 (16)0.0357 (13)0.0096 (12)0.0024 (11)0.0009 (12)
C30.0490 (16)0.0553 (18)0.0560 (18)0.0229 (14)0.0011 (14)0.0072 (14)
C40.0512 (17)0.072 (2)0.0377 (15)0.0214 (15)0.0016 (12)0.0139 (14)
C50.0389 (14)0.0639 (19)0.0305 (13)0.0118 (13)0.0013 (11)0.0054 (12)
C60.0229 (11)0.0433 (13)0.0266 (11)0.0005 (10)0.0010 (9)0.0015 (11)
C70.0301 (12)0.0503 (15)0.0282 (12)0.0005 (11)0.0073 (10)0.0023 (11)
C80.0342 (12)0.0382 (13)0.0265 (12)0.0024 (11)0.0032 (10)0.0016 (10)
C90.0526 (16)0.0487 (16)0.0395 (15)0.0023 (13)0.0109 (12)0.0098 (13)
C100.073 (2)0.0435 (16)0.0433 (17)0.0039 (15)0.0087 (15)0.0127 (13)
C110.0646 (19)0.0376 (15)0.0488 (17)0.0134 (14)0.0012 (14)0.0036 (13)
C120.0492 (16)0.0410 (15)0.0381 (14)0.0070 (12)0.0085 (12)0.0004 (12)
Geometric parameters (Å, º) top
Co1—O32.1029 (16)C2—C31.380 (4)
Co1—O3i2.1029 (16)C2—H20.9300
Co1—N1i2.1862 (18)C3—C41.380 (4)
Co1—N12.1863 (18)C3—H30.9300
Co1—N22.147 (2)C4—C51.383 (4)
Co1—N2i2.147 (2)C4—H40.9300
S1—O21.4421 (18)C5—C61.385 (3)
S1—O41.4433 (17)C5—H50.9300
S1—O31.4773 (17)C7—C81.456 (3)
S1—C11.770 (2)C7—H70.9300
O1—H1W0.8502C8—C91.378 (3)
O1—H2W0.8402C9—C101.383 (4)
N1—C71.275 (3)C9—H90.9300
N1—C61.422 (3)C10—C111.366 (4)
N2—C121.331 (3)C10—H100.9300
N2—C81.354 (3)C11—C121.384 (4)
C1—C21.377 (3)C11—H110.9300
C1—C61.406 (3)C12—H120.9300
O3—Co1—O3i115.85 (9)C1—C2—H2119.9
O3—Co1—N2149.80 (7)C3—C2—H2119.9
O3i—Co1—N285.98 (7)C2—C3—C4120.0 (3)
O3—Co1—N2i85.98 (7)C2—C3—H3120.0
O3i—Co1—N2i149.80 (7)C4—C3—H3120.0
N2—Co1—N2i83.20 (11)C3—C4—C5120.3 (2)
O3—Co1—N1i83.51 (6)C3—C4—H4119.8
O3i—Co1—N1i85.95 (6)C5—C4—H4119.8
N2—Co1—N1i120.48 (7)C4—C5—C6120.4 (2)
N2i—Co1—N1i75.60 (7)C4—C5—H5119.8
O3—Co1—N185.95 (6)C6—C5—H5119.8
O3i—Co1—N183.51 (6)C5—C6—C1118.7 (2)
N2—Co1—N175.60 (7)C5—C6—N1122.4 (2)
N2i—Co1—N1120.48 (7)C1—C6—N1118.78 (19)
N1i—Co1—N1160.09 (11)N1—C7—C8119.4 (2)
O2—S1—O4114.72 (11)N1—C7—H7120.3
O2—S1—O3112.14 (11)C8—C7—H7120.3
O4—S1—O3111.25 (10)N2—C8—C9122.3 (2)
O2—S1—C1106.90 (11)N2—C8—C7115.0 (2)
O4—S1—C1107.06 (11)C9—C8—C7122.6 (2)
O3—S1—C1103.96 (10)C8—C9—C10118.8 (2)
H1W—O1—H2W110.5C8—C9—H9120.6
S1—O3—Co1120.19 (9)C10—C9—H9120.6
C7—N1—C6120.03 (19)C11—C10—C9119.2 (3)
C7—N1—Co1114.63 (16)C11—C10—H10120.4
C6—N1—Co1124.72 (14)C9—C10—H10120.4
C12—N2—C8117.8 (2)C10—C11—C12118.9 (3)
C12—N2—Co1126.85 (16)C10—C11—H11120.5
C8—N2—Co1115.36 (16)C12—C11—H11120.5
C2—C1—C6120.4 (2)N2—C12—C11122.9 (2)
C2—C1—S1120.67 (18)N2—C12—H12118.6
C6—C1—S1118.91 (18)C11—C12—H12118.6
C1—C2—C3120.1 (2)
Symmetry code: (i) x+2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···O4ii0.852.163.009 (3)179
O1—H2W···O20.842.152.867 (3)143
C7—H7···O1iii0.932.563.425 (3)154
C11—H11···O4iv0.932.463.389 (3)172
Symmetry codes: (ii) x+3/2, y1/2, z; (iii) x, y+1, z1/2; (iv) x+2, y1, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(C12H9N2O3S)2]·2H2O
Mr617.53
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)291
a, b, c (Å)19.636 (2), 8.0973 (8), 16.2819 (16)
V3)2588.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.88
Crystal size (mm)0.31 × 0.25 × 0.07
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.771, 0.939
No. of measured, independent and
observed [I > 2σ(I)] reflections
17970, 2410, 1960
Rint0.039
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.089, 1.02
No. of reflections2410
No. of parameters177
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.46

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Co1—O32.1029 (16)Co1—N22.147 (2)
Co1—N12.1863 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···O4i0.852.163.009 (3)179.2
O1—H2W···O20.842.152.867 (3)143.1
C7—H7···O1ii0.932.563.425 (3)154
C11—H11···O4iii0.932.463.389 (3)172
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x, y+1, z1/2; (iii) x+2, y1, z+1/2.
 

Acknowledgements

This work was supported by the Science Foundation of the Guangxi Zhuang Autonomous Region of China (grant No. 0731053).

References

First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, C.-X., Ou-Yang, M., Zhao, Z.-Y. & Jiang, Y.-M. (2008). Acta Cryst. E64, m1195.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCasella, L. & Gullotti, M. (1986). Inorg. Chem. 25, 1293–1303.  CrossRef CAS Web of Science Google Scholar
First citationJiang, Y.-M., Li, J.-M., Xie, F.-Q. & Wang, Y.-F. (2006). Chin. J. Struct. Chem. 25, 767–770.  CAS Google Scholar
First citationOu-Yang, M., Huang, X.-R., Zhang, Y.-L. & Jiang, Y.-M. (2008). Acta Cryst. E64, m1461.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds