metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(ethylenediamine- $\kappa^2 N, N'$)bis-(phenytoinato- κN)cobalt(II)

Xi-Lan Hu,^a* Xing-You Xu,^b Da-Qi Wang^c and Yan-Qin Zhou^a

^aHuaihai Institute of Technology, Jiangsu 222005, People's Republic of China, ^bHuaiyin Institute of Technology, Jiangsu 223003, People's Republic of China, and ^cCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China

Correspondence e-mail: huxilan@hhit.edu.cn

Received 19 October 2009; accepted 23 October 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.043; wR factor = 0.120; data-to-parameter ratio = 13.3.

The title compound [systematic name: bis(2,5-dioxo-4,4diphenylimidazolidin-1-ido- κN^1)bis(ethylenediamine- $\kappa^2 N, N'$)cobalt(II)], [Co(C₁₅H₁₁N₂O₂)₂(C₂H₈N₂)₂], has site symmetry $\overline{1}$. The Co^{II} cation is located on an inversion center and coordinated by two phenytoin anions and two ethylenediamine ligands in a distorted octahedral geometry. In the phenytoin anion, the two phenyl rings are twisted with respect to the central hydantoin ring, making dihedral angles of 77.49 (16) and 64.55 (15)°. Intramolecular and intermolecular N-H···O hydrogen bonding is present in the crystal structure.

Related literature

For applications of phenytoin, see: Akitsu & Einaga (2005); Akitsu *et al.* (1997). For related compounds, see: Hu *et al.* (2006, 2007).

Experimental

Crystal data [Co(C₁₅H₁₁N₂O₂)₂(C₂H₈N₂)₂] M_r = 681.65

Monoclinic, $P2_1/c$ a = 11.8035 (12) Å b = 12.3439 (13) Å c = 11.0768 (10) Å $\beta = 92.277 (1)^{\circ}$ $V = 1612.6 (3) \text{ Å}^{3}$ Z = 2

Data collection

Bruker SMART CCD area-detector	7877 measured reflections
diffractometer	2836 independent reflections
Absorption correction: multi-scan	2201 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.053$
$T_{\min} = 0.751, \ T_{\max} = 0.854$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.043$	214 parameters
$wR(F^2) = 0.120$	H-atom parameters constrained
S = 1.08	$\Delta \rho_{\rm max} = 0.45 \text{ e } \text{\AA}^{-3}$
2836 reflections	$\Delta \rho_{\rm min} = -0.63 \text{ e} \text{ Å}^{-3}$

Mo $K\alpha$ radiation

 $0.52 \times 0.42 \times 0.28 \text{ mm}$

 $\mu = 0.58 \text{ mm}^{-1}$

T = 298 K

Table 1

Selected bond lengths (Å).

Co1-N2	2.180 (2)	Co1-N4	2.171 (2)
Co1-N3	2.123 (2)		

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\overline{\begin{array}{c} N1 - H1 \cdots O2^{i} \\ N3 - H3A \cdots O1^{ii} \\ N3 - H3B \cdots O2 \end{array}}$	0.86	2.00	2.861 (3)	173
	0.90	2.18	2.947 (3)	143
	0.90	2.20	2.966 (3)	143

Symmetry codes: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) -x + 1, -y, -z.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

We are grateful for financial support from the Key Project for Fundamental Research of the Education Committee of Jiangsu Province (07KJA15011) and the Natural Science Foundation of Huaihai Institute of Technology, China (KX07042).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2649).

References

Akitsu, T. & Einaga, Y. (2005). Acta Cryst. C61, m183-m186.

- Akitsu, T., Komorita, S., Kushi, Y., Li, C., Kanehisa, N. & Kai, Y. (1997). Bull. Chem. Soc. Jpn, 70, 821–827.
- Hu, X.-L., Xu, X.-Y., Wang, D.-Q., Liu, H.-F. & Ying, F.-J. (2007). Acta Cryst. E63, m405–m406.
- Hu, X.-L., Xu, X.-Y., Liu, H.-F., Xu, T.-T. & Wang, D.-Q. (2006). Acta Cryst. E62, m2976–m2977.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

supporting information

Acta Cryst. (2009). E65, m1470 [https://doi.org/10.1107/S1600536809044092] Bis(ethylenediamine- $\kappa^2 N, N'$)bis(phenytoinato- κN)cobalt(II)

Xi-Lan Hu, Xing-You Xu, Da-Qi Wang and Yan-Qin Zhou

S1. Comment

5,5-Diphenylimidazoline-2,4-dione (phenytoin) compound is a widely used drug in the treatment of epilepsy and should be an excellent ligand for transition metal complex (Akitsu *et al.*, 1997; Akitsu & Einaga, 2005). We have synthesized a series of complexes with 5,5-diphenylhydantoinate ligand (Hu *et al.*, 2006, 2007). We report here the crystal structure of the title compound.

The compound (Fig. 1) consists of $[Co(pht)_2(en)_2]$ (Hpht = 5,5-diphenylhydantoin; en = ethylendiamine) complex neutral molecule. The Co atom is coordinated by two nitrogen atoms from two Hpht ligands and four nitrogen atoms from two en ligands in a distorted octahedral CoN₆ coordination environment (Table 1). The Co—N bond distances lie in the range of 2.123 (2) Å to 2.180 (2) Å. There are intra- and intermolecular N—H···O hydrogen bonds (Table 2).

S2. Experimental

To a solution of Hpht (1 mmol) in methanol (10 ml) was added cobalt acetate tetrahydrate (0.5 mmol) and the solution of ethylenediamine (1 mmol) in methanol (10 ml). Then the mixture was sealed in a 25 ml stainless steel vessel with Teflon linear, and heated at 393 K for 50 h. After cooling to room temperature, the orange single crystals were obtained.

S3. Refinement

H atoms were placed at calculated positions with N—H = 0.86–0.90 Å and C—H = 0.93–0.97 Å, and refined in riding mode with $U_{iso}(H) = 1.2U_{eq}(C,N)$.

Figure 1

The molecular structure of the title complex. Displacement ellipsoids are drawn at the 30% probability level. The H-atom have been omitted for clarity.

bis(2,5-dioxo-4,4-diphenylimidazolidin-1-ido- κN^1)bis(ethylenediamine- $\kappa^2 N, N'$)cobalt(II)

F(000) = 714

 $\theta = 2.4 - 26.9^{\circ}$ $\mu = 0.58 \text{ mm}^{-1}$

Block, orange

 $0.52 \times 0.42 \times 0.28 \text{ mm}$

T = 298 K

 $D_{\rm x} = 1.404 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3389 reflections

Crystal data

 $\begin{bmatrix} \text{Co}(\text{C}_{15}\text{H}_{11}\text{N}_2\text{O}_2)_2(\text{C}_2\text{H}_8\text{N}_2)_2 \end{bmatrix} \\ M_r = 681.65 \\ \text{Monoclinic, } P_{21}/c \\ \text{Hall symbol: -P 2ybc} \\ a = 11.8035 (12) \text{ Å} \\ b = 12.3439 (13) \text{ Å} \\ c = 11.0768 (10) \text{ Å} \\ \beta = 92.277 (1)^{\circ} \\ V = 1612.6 (3) \text{ Å}^3 \\ Z = 2 \\ \end{bmatrix}$

Data collection

Bruker SMART CCD area-detector	7877 measured reflections
diffractometer	2836 independent reflections
Radiation source: fine-focus sealed tube	2201 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.053$
φ and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$
Absorption correction: multi-scan	$h = -14 \rightarrow 11$
(SADABS; Sheldrick, 1996)	$k = -14 \rightarrow 14$
$T_{\min} = 0.751, \ T_{\max} = 0.854$	$l = -13 \rightarrow 12$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.043$	Hydrogen site location: inferred from
$wR(F^2) = 0.120$	neighbouring sites
S = 1.08	H-atom parameters constrained
2836 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0528P)^2 + 0.9459P]$
214 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.45 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.63 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Col	0.5000	0.0000	0.0000	0.02790 (18)	
N1	0.69362 (19)	0.2364 (2)	0.21879 (19)	0.0366 (6)	
H1	0.7028	0.2732	0.2843	0.044*	
N2	0.61498 (18)	0.11950 (18)	0.08239 (18)	0.0300 (5)	

N3	0.63769 (19)	-0.0802 (2)	-0.0794 (2)	0.0412 (6)
H3A	0.6163	-0.1046	-0.1534	0.049*
H3B	0.6959	-0.0339	-0.0869	0.049*
N4	0.5465 (2)	-0.1072 (2)	0.1492 (2)	0.0437 (6)
H4A	0.5499	-0.0702	0.2193	0.052*
H4B	0.4951	-0.1606	0.1549	0.052*
01	0.53186 (17)	0.14774 (19)	0.26695 (18)	0.0513 (6)
O2	0.74262 (16)	0.13811 (15)	-0.06839 (15)	0.0335 (5)
C1	0.6080 (2)	0.1661 (2)	0.1968 (2)	0.0336 (6)
C2	0.7082 (2)	0.1602 (2)	0.0329 (2)	0.0277 (6)
C3	0.7685 (2)	0.2423 (2)	0.1181 (2)	0.0304 (6)
C4	0.7646 (2)	0.3540 (2)	0.0582 (2)	0.0353 (7)
C5	0.6736 (3)	0.4219 (3)	0.0689 (4)	0.0608 (10)
Н5	0.6148	0.4013	0.1174	0.073*
C6	0.6674 (4)	0.5196 (3)	0.0096 (5)	0.0799 (13)
H6	0.6046	0.5642	0.0177	0.096*
C7	0.7544 (4)	0.5513 (3)	-0.0617 (3)	0.0715 (12)
H7	0.7504	0.6174	-0.1019	0.086*
C8	0.8464 (4)	0.4856 (3)	-0.0734 (3)	0.0688 (12)
H8	0.9051	0.5067	-0.1217	0.083*
C9	0.8516 (3)	0.3875 (3)	-0.0129 (3)	0.0538 (9)
H9	0.9148	0.3434	-0.0203	0.065*
C10	0.8891 (2)	0.2084 (2)	0.1586 (2)	0.0329 (6)
C11	0.9473 (3)	0.2721 (3)	0.2414 (3)	0.0527 (9)
H11	0.9147	0.3362	0.2674	0.063*
C12	1.0538 (3)	0.2423 (4)	0.2868 (3)	0.0681 (11)
H12	1.0921	0.2864	0.3430	0.082*
C13	1.1027 (3)	0.1489 (4)	0.2494 (3)	0.0681 (12)
H13	1.1735	0.1282	0.2812	0.082*
C14	1.0475 (3)	0.0858 (3)	0.1654 (3)	0.0618 (10)
H14	1.0817	0.0231	0.1380	0.074*
C15	0.9402 (3)	0.1147 (3)	0.1204 (3)	0.0473 (8)
H15	0.9025	0.0705	0.0640	0.057*
C16	0.6722 (4)	-0.1698 (4)	-0.0025 (4)	0.0868 (14)
H16A	0.6294	-0.2335	-0.0277	0.104*
H16B	0.7517	-0.1849	-0.0143	0.104*
C17	0.6569 (4)	-0.1520 (4)	0.1242 (4)	0.0873 (15)
H17A	0.7153	-0.1028	0.1551	0.105*
H17B	0.6665	-0.2202	0.1668	0.105*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Col	0.0217 (3)	0.0286 (3)	0.0338 (3)	0.0002 (2)	0.00614 (19)	-0.0021 (2)
N1	0.0347 (13)	0.0453 (15)	0.0303 (12)	-0.0069 (11)	0.0082 (10)	-0.0116 (11)
N2	0.0266 (12)	0.0330 (13)	0.0308 (11)	-0.0021 (10)	0.0062 (9)	-0.0046 (10)
N3	0.0299 (13)	0.0402 (14)	0.0542 (14)	-0.0011 (11)	0.0085 (11)	-0.0106 (12)
N4	0.0394 (14)	0.0436 (16)	0.0480 (14)	-0.0049 (12)	0.0015 (11)	0.0072 (12)

supporting information

O1	0.0414 (12)	0.0723 (17)	0.0415 (11)	-0.0166 (11)	0.0190 (10)	-0.0120 (11)
O2	0.0405 (11)	0.0343 (11)	0.0261 (9)	-0.0047 (9)	0.0082 (8)	-0.0015 (8)
C1	0.0287 (14)	0.0389 (17)	0.0334 (14)	-0.0016 (13)	0.0036 (11)	-0.0003 (12)
C2	0.0295 (14)	0.0256 (14)	0.0281 (13)	-0.0009 (11)	0.0035 (11)	0.0019 (11)
C3	0.0297 (14)	0.0312 (15)	0.0306 (13)	-0.0040 (12)	0.0066 (11)	-0.0051 (11)
C4	0.0392 (16)	0.0277 (15)	0.0390 (15)	-0.0049 (13)	0.0019 (12)	-0.0058 (12)
C5	0.048 (2)	0.047 (2)	0.088 (3)	0.0023 (17)	0.0093 (19)	0.009 (2)
C6	0.075 (3)	0.048 (3)	0.116 (4)	0.015 (2)	-0.003 (3)	0.014 (2)
C7	0.114 (4)	0.034 (2)	0.066 (2)	-0.003 (2)	-0.001 (2)	0.0057 (19)
C8	0.109 (4)	0.042 (2)	0.057 (2)	-0.009 (2)	0.029 (2)	0.0037 (17)
C9	0.069 (2)	0.0373 (19)	0.0565 (19)	0.0007 (17)	0.0248 (17)	0.0010 (16)
C10	0.0281 (14)	0.0396 (17)	0.0314 (14)	-0.0046 (13)	0.0058 (11)	0.0019 (12)
C11	0.0349 (17)	0.066 (2)	0.0576 (19)	-0.0035 (17)	0.0022 (14)	-0.0179 (17)
C12	0.0347 (19)	0.107 (3)	0.062 (2)	-0.011 (2)	-0.0046 (16)	-0.019 (2)
C13	0.0327 (18)	0.110 (4)	0.062 (2)	0.006 (2)	-0.0013 (17)	0.013 (2)
C14	0.047 (2)	0.063 (2)	0.075 (2)	0.0152 (19)	0.0041 (18)	0.007 (2)
C15	0.0419 (18)	0.047 (2)	0.0531 (18)	0.0017 (16)	-0.0014 (14)	-0.0023 (16)
C16	0.079 (3)	0.077 (3)	0.106 (4)	0.046 (3)	0.026 (3)	0.009 (3)
C17	0.072 (3)	0.094 (4)	0.097 (3)	0.043 (3)	0.011 (2)	0.037 (3)

Geometric parameters (Å, °)

Co1—N2 ⁱ	2.180 (2)	С5—Н5	0.9300
Co1—N2	2.180 (2)	C6—C7	1.377 (6)
Co1—N3	2.123 (2)	С6—Н6	0.9300
Co1—N3 ⁱ	2.123 (2)	С7—С8	1.365 (6)
Co1—N4 ⁱ	2.171 (2)	С7—Н7	0.9300
Co1—N4	2.171 (2)	C8—C9	1.384 (5)
N1—C1	1.347 (3)	C8—H8	0.9300
N1—C3	1.452 (3)	С9—Н9	0.9300
N1—H1	0.8600	C10-C11	1.372 (4)
N2—C2	1.346 (3)	C10—C15	1.378 (4)
N2—C1	1.397 (3)	C11—C12	1.386 (5)
N3—C16	1.444 (5)	C11—H11	0.9300
N3—H3A	0.9000	C12—C13	1.362 (6)
N3—H3B	0.9000	C12—H12	0.9300
N4—C17	1.452 (5)	C13—C14	1.359 (5)
N4—H4A	0.9000	C13—H13	0.9300
N4—H4B	0.9000	C14—C15	1.389 (5)
01—C1	1.232 (3)	C14—H14	0.9300
O2—C2	1.239 (3)	C15—H15	0.9300
С2—С3	1.540 (4)	C16—C17	1.439 (6)
C3—C4	1.530 (4)	C16—H16A	0.9700
C3—C10	1.533 (4)	C16—H16B	0.9700
C4—C5	1.371 (4)	C17—H17A	0.9700
C4—C9	1.383 (4)	C17—H17B	0.9700
C5—C6	1.374 (5)		

N3—Co1—N3 ⁱ	180.00 (17)	C9—C4—C3	120.4 (3)
N3—Co1—N4 ⁱ	98.26 (10)	C4—C5—C6	121.5 (4)
N3 ⁱ —Co1—N4 ⁱ	81.74 (10)	С4—С5—Н5	119.2
N3—Co1—N4	81.74 (10)	С6—С5—Н5	119.2
N3 ⁱ —Co1—N4	98.26 (10)	C5—C6—C7	119.8 (4)
N4 ⁱ —Co1—N4	180.00 (13)	С5—С6—Н6	120.1
N3—Co1—N2 ⁱ	89.15 (9)	С7—С6—Н6	120.1
N3 ⁱ —Co1—N2 ⁱ	90.85 (9)	C8—C7—C6	120.0 (4)
N4 ⁱ —Co1—N2 ⁱ	87.67 (9)	С8—С7—Н7	120.0
N4—Co1—N2 ⁱ	92.33 (9)	С6—С7—Н7	120.0
N3—Co1—N2	90.85 (9)	C7—C8—C9	119.6 (4)
N3 ⁱ —Co1—N2	89.15 (9)	С7—С8—Н8	120.2
N4 ⁱ —Co1—N2	92.33 (9)	С9—С8—Н8	120.2
N4—Co1—N2	87.67 (9)	C4—C9—C8	121.2 (4)
N2 ⁱ —Co1—N2	180.00 (13)	С4—С9—Н9	119.4
C1—N1—C3	111.7 (2)	С8—С9—Н9	119.4
C1—N1—H1	124.2	C11—C10—C15	118.2 (3)
C3—N1—H1	124.2	C11—C10—C3	118.2 (3)
C2—N2—C1	107.1 (2)	C15—C10—C3	123.5 (3)
C2—N2—Co1	125.97 (16)	C10—C11—C12	120.9 (4)
C1—N2—Co1	126.87 (17)	C10-C11-H11	119.5
C16—N3—Co1	108.4 (2)	C12—C11—H11	119.5
C16—N3—H3A	110.0	C13—C12—C11	120.2 (4)
Co1—N3—H3A	110.0	C13—C12—H12	119.9
C16—N3—H3B	110.0	C11—C12—H12	119.9
Co1—N3—H3B	110.0	C14—C13—C12	119.8 (3)
H3A—N3—H3B	108.4	C14—C13—H13	120.1
C17—N4—Co1	106.7 (2)	C12—C13—H13	120.1
C17—N4—H4A	110.4	C13—C14—C15	120.2 (4)
Co1—N4—H4A	110.4	C13—C14—H14	119.9
C17—N4—H4B	110.4	C15—C14—H14	119.9
Co1—N4—H4B	110.4	C10—C15—C14	120.6 (3)
H4A—N4—H4B	108.6	C10—C15—H15	119.7
O1—C1—N1	124.4 (3)	C14—C15—H15	119.7
O1—C1—N2	124.6 (3)	C17—C16—N3	114.5 (3)
N1—C1—N2	111.0 (2)	C17—C16—H16A	108.6
O2—C2—N2	126.1 (2)	N3—C16—H16A	108.6
O2—C2—C3	122.7 (2)	C17—C16—H16B	108.6
N2—C2—C3	111.2 (2)	N3—C16—H16B	108.6
N1—C3—C4	111.7 (2)	H16A—C16—H16B	107.6
N1—C3—C10	110.4 (2)	C16—C17—N4	113.1 (3)
C4—C3—C10	112.6 (2)	C16—C17—H17A	109.0
N1—C3—C2	99.0 (2)	N4—C17—H17A	109.0
C4—C3—C2	108.7 (2)	C16—C17—H17B	109.0
C10—C3—C2	113.6 (2)	N4—C17—H17B	109.0
C5—C4—C9	117.9 (3)	H17A—C17—H17B	107.8
C5—C4—C3	121.6 (3)		

N3—Co1—N2—C2	36.0 (2)	O2—C2—C3—C4	63.0 (3)
N3 ⁱ —Co1—N2—C2	-144.0 (2)	N2-C2-C3-C4	-115.9 (2)
N4 ⁱ —Co1—N2—C2	-62.3 (2)	O2—C2—C3—C10	-63.3 (3)
N4—Co1—N2—C2	117.7 (2)	N2-C2-C3-C10	117.7 (2)
N2 ⁱ —Co1—N2—C2	-164 (100)	N1—C3—C4—C5	-22.4 (4)
N3—Co1—N2—C1	-142.2 (2)	C10—C3—C4—C5	-147.3 (3)
N3 ⁱ —Co1—N2—C1	37.8 (2)	C2—C3—C4—C5	85.8 (3)
N4 ⁱ —Co1—N2—C1	119.5 (2)	N1—C3—C4—C9	160.3 (3)
N4—Co1—N2—C1	-60.5 (2)	C10—C3—C4—C9	35.4 (4)
N2 ⁱ —Co1—N2—C1	18 (100)	C2—C3—C4—C9	-91.5 (3)
N3 ⁱ —Co1—N3—C16	63 (100)	C9—C4—C5—C6	1.0 (5)
N4 ⁱ —Co1—N3—C16	-170.8 (3)	C3—C4—C5—C6	-176.4 (3)
N4—Co1—N3—C16	9.2 (3)	C4—C5—C6—C7	-0.5 (7)
N2 ⁱ —Co1—N3—C16	-83.3 (3)	C5—C6—C7—C8	0.0 (7)
N2—Co1—N3—C16	96.7 (3)	C6—C7—C8—C9	-0.2 (6)
N3—Co1—N4—C17	13.2 (3)	C5—C4—C9—C8	-1.2 (5)
N3 ⁱ —Co1—N4—C17	-166.8 (3)	C3—C4—C9—C8	176.2 (3)
N4 ⁱ Co1N4C17	-140 (100)	C7—C8—C9—C4	0.8 (6)
N2 ⁱ —Co1—N4—C17	102.0 (3)	N1-C3-C10-C11	-65.3 (3)
N2—Co1—N4—C17	-78.0 (3)	C4—C3—C10—C11	60.3 (3)
C3—N1—C1—O1	-178.6 (3)	C2-C3-C10-C11	-175.5 (3)
C3—N1—C1—N2	-0.7 (3)	N1—C3—C10—C15	111.6 (3)
C2-N2-C1-O1	179.1 (3)	C4—C3—C10—C15	-122.8 (3)
Co1—N2—C1—O1	-2.4 (4)	C2-C3-C10-C15	1.5 (4)
C2-N2-C1-N1	1.1 (3)	C15-C10-C11-C12	-1.0 (5)
Co1—N2—C1—N1	179.62 (18)	C3—C10—C11—C12	176.2 (3)
C1—N2—C2—O2	180.0 (3)	C10-C11-C12-C13	0.2 (6)
Co1—N2—C2—O2	1.5 (4)	C11—C12—C13—C14	1.3 (6)
C1—N2—C2—C3	-1.1 (3)	C12-C13-C14-C15	-1.9 (6)
Co1—N2—C2—C3	-179.66 (16)	C11—C10—C15—C14	0.3 (5)
C1—N1—C3—C4	114.4 (3)	C3-C10-C15-C14	-176.6 (3)
C1—N1—C3—C10	-119.5 (3)	C13—C14—C15—C10	1.1 (5)
C1—N1—C3—C2	0.0 (3)	Co1—N3—C16—C17	-31.8 (5)
O2—C2—C3—N1	179.7 (2)	N3-C16-C17-N4	46.5 (6)
N2—C2—C3—N1	0.7 (3)	Co1—N4—C17—C16	-34.6 (5)

Symmetry code: (i) -x+1, -y, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —H	H···A	$D \cdots A$	D—H···A	
N1—H1····O2 ⁱⁱ	0.86	2.00	2.861 (3)	173	
N3—H3A····O1 ⁱ	0.90	2.18	2.947 (3)	143	
N3—H3 <i>B</i> ···O2	0.90	2.20	2.966 (3)	143	

Symmetry codes: (i) -x+1, -y, -z; (ii) x, -y+1/2, z+1/2.