organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2,6,6-Tetra­methyl­piperidinium triisopropoxysilane­thiol­ate

aDepartment of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicz St., 80233 - PL Gdańsk, Poland
*Correspondence e-mail: kasiab29@wp.pl

(Received 3 September 2009; accepted 19 October 2009; online 23 October 2009)

The crystal of the title compound, C9H20N+·C9H21O3SSi, is built of aggregates, each made up of two 2,2,6,6-tetra­methyl­piperidinium cations and two triisopropoxysilanethiol­ate anions. The aggregates are linked by four N—H⋯S bonds and correspond to an R24(8) graph-set motif.

Related literature

For the structures of similar compounds and comparison of bond distances, see Baranowska, Chojnacki, Gosiewska & Wojnowski (2006[Baranowska, K., Chojnacki, J., Gosiewska, M. & Wojnowski, W. (2006). Z. Anorg. Allg. Chem. 632, 1086-1090.]); Baranowska, Chojnacki, Konitz et al. (2006[Baranowska, K., Chojnacki, J., Konitz, A., Wojnowski, W. & Becker, B. (2006). Polyhedron, 25, 1555-1560.]); Baranowska & Piwowarska (2008[Baranowska, K. & Piwowarska, N. (2008). Acta Cryst. E64, o1781.]); Becker et al. (2004[Becker, B., Baranowska, K., Chojnacki, J. & Wojnowski, W. (2004). Chem. Commun. pp. 620-621.]). For the graph-set description of hydrogen-bonding patterns, see Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]).

[Scheme 1]

Experimental

Crystal data
  • C9H20N+·C9H21O3SSi

  • Mr = 379.67

  • Triclinic, [P \overline 1]

  • a = 9.2433 (6) Å

  • b = 11.5545 (8) Å

  • c = 11.7593 (7) Å

  • α = 85.955 (5)°

  • β = 77.190 (6)°

  • γ = 67.620 (6)°

  • V = 1132.28 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 120 K

  • 0.42 × 0.39 × 0.33 mm

Data collection
  • Oxford Diffraction KM4/Xcalibur diffractometer with Sapphire2 detector

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.908, Tmax = 0.934

  • 6937 measured reflections

  • 4209 independent reflections

  • 3561 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.122

  • S = 1.10

  • 4209 reflections

  • 235 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯S1 0.966 (17) 2.352 (17) 3.3166 (14) 177 (2)
N1—H1B⋯S1i 0.927 (17) 2.338 (17) 3.2354 (14) 163.0 (17)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Hydrogen bonding is arguably the most prominent interaction in selfassembly of molecules in crystals and plays an important role in determining structure of chemical and biological systems. Hydrogen bonds of the (+)N···H–S(–)type have gained relatively little attention, as these bonds are mostly weak and quite seldom lead to the proton transfer. One notable exception are silanethiolates, where ionization of the SH group is facilitated by the neighbouring silicon atom. The salts of these anions with primary amines as counter-ions often feature tetrameric aggregates with a cubane-like hydrogen bonded core (Becker et al., 2004). Secondary amines give derivatives with discrete dimeric units in the solid state (Baranowska, Chojnacki, Konitz et al. 2006).

We present here the crystal structure of the title compound, which was obtained by the reaction of tri-iso-propoxysilanethiol with 2,2,6,6-tetramethylpiperidine.

The crystal structure is built of aggregates, made up of two tri-iso-propoxysilanethiolate anions and two piperidinium cations (Fig. 1). The aggregates contain eight-membered ring built due to the formation of four charge-assisted (+)NH···S(–)hydrogen bonds (graph theory motif R24(8) according to Etter, 1990; Bernstein et al., 1995). The N···S distances (Table 1) lie in the range comparable with the values observed in aromatic thiolates (Baranowska & Piwowarska, 2008) or silanethiolates (Baranowska, Chojnacki, Gosiewska, Wojnowski, 2006).

Related literature top

For the structures of similar compounds and comparison of bond distances, see Baranowska, Chojnacki, Gosiewska & Wojnowski (2006); Baranowska, Chojnacki, Konitz et al. (2006); Baranowska & Piwowarska (2008); Becker et al. (2004). For the graph-set description of hydrogen-bonding patterns, see Bernstein et al. (1995); Etter (1990).

Experimental top

Tri-iso-propoxysilanethiol (2 mmol) was dissolved in 8 ml of propanol-2 and 2,2,6,6-tetramethylpiperidine (0,338 ml, 2 mmol) was added. The solvent was then added gradually until a white deposit formed was completely dissolved. The solution was left to stand at 4 °C for a few days for crystallization. The obtained colourless crystals were suitable for X-ray diffraction analysis. The product is hygroscopic and slowly oxidizes in the air, therefore all operations were carried out using a vacuum-nitrogen line and Schlenk techniques.

Refinement top

Hydrogen atoms were placed in geometrically calculated positions (C—H 0.98 Å for methyl, 0.99 Å for methylene and 1.00 Å for methine H atoms) and refined as riding on their parent atoms with Uiso(H) = 1.2Ueq(C) for methylene and methine and 1.5Ueq(C) for methyl groups. Hydrogen atoms of ammonium group were found in the difference map and refined in isotropic approximation constrained to produce N—H bonds equal within 0.04 Å (SADI instruction of SHELXL97; Sheldrick, 2008)

Structure description top

Hydrogen bonding is arguably the most prominent interaction in selfassembly of molecules in crystals and plays an important role in determining structure of chemical and biological systems. Hydrogen bonds of the (+)N···H–S(–)type have gained relatively little attention, as these bonds are mostly weak and quite seldom lead to the proton transfer. One notable exception are silanethiolates, where ionization of the SH group is facilitated by the neighbouring silicon atom. The salts of these anions with primary amines as counter-ions often feature tetrameric aggregates with a cubane-like hydrogen bonded core (Becker et al., 2004). Secondary amines give derivatives with discrete dimeric units in the solid state (Baranowska, Chojnacki, Konitz et al. 2006).

We present here the crystal structure of the title compound, which was obtained by the reaction of tri-iso-propoxysilanethiol with 2,2,6,6-tetramethylpiperidine.

The crystal structure is built of aggregates, made up of two tri-iso-propoxysilanethiolate anions and two piperidinium cations (Fig. 1). The aggregates contain eight-membered ring built due to the formation of four charge-assisted (+)NH···S(–)hydrogen bonds (graph theory motif R24(8) according to Etter, 1990; Bernstein et al., 1995). The N···S distances (Table 1) lie in the range comparable with the values observed in aromatic thiolates (Baranowska & Piwowarska, 2008) or silanethiolates (Baranowska, Chojnacki, Gosiewska, Wojnowski, 2006).

For the structures of similar compounds and comparison of bond distances, see Baranowska, Chojnacki, Gosiewska & Wojnowski (2006); Baranowska, Chojnacki, Konitz et al. (2006); Baranowska & Piwowarska (2008); Becker et al. (2004). For the graph-set description of hydrogen-bonding patterns, see Bernstein et al. (1995); Etter (1990).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Dimeric aggregates [C9H20N+C9H21O3SiS-]2 in the structure of the title compound. The unlabeled atoms are derived from the reference atoms by the (1 - x, 1 - y, 1 - z) symmetry transformation. Displacement ellipsoids are drawn at the 50% probability level. C-bound H atoms have been omitted for clarity.
2,2,6,6-Tetramethylpiperidinium triisopropoxysilanethiolate top
Crystal data top
C9H20N+·C9H21O3SSiZ = 2
Mr = 379.67F(000) = 420
Triclinic, P1Dx = 1.114 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.2433 (6) ÅCell parameters from 5191 reflections
b = 11.5545 (8) Åθ = 2.4–28.8°
c = 11.7593 (7) ŵ = 0.21 mm1
α = 85.955 (5)°T = 120 K
β = 77.190 (6)°Prism, colourless
γ = 67.620 (6)°0.42 × 0.39 × 0.33 mm
V = 1132.28 (13) Å3
Data collection top
Oxford Diffraction KM4/Xcalibur
diffractometer with Sapphire2 detector
4209 independent reflections
Graphite monochromator3561 reflections with I > 2σ(I)
Detector resolution: 8.1883 pixels mm-1Rint = 0.015
ω scansθmax = 25.5°, θmin = 2.4°
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2006)
h = 1011
Tmin = 0.908, Tmax = 0.934k = 1313
6937 measured reflectionsl = 714
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0855P)2]
where P = (Fo2 + 2Fc2)/3
4209 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.45 e Å3
1 restraintΔρmin = 0.43 e Å3
Crystal data top
C9H20N+·C9H21O3SSiγ = 67.620 (6)°
Mr = 379.67V = 1132.28 (13) Å3
Triclinic, P1Z = 2
a = 9.2433 (6) ÅMo Kα radiation
b = 11.5545 (8) ŵ = 0.21 mm1
c = 11.7593 (7) ÅT = 120 K
α = 85.955 (5)°0.42 × 0.39 × 0.33 mm
β = 77.190 (6)°
Data collection top
Oxford Diffraction KM4/Xcalibur
diffractometer with Sapphire2 detector
4209 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2006)
3561 reflections with I > 2σ(I)
Tmin = 0.908, Tmax = 0.934Rint = 0.015
6937 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0491 restraint
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.45 e Å3
4209 reflectionsΔρmin = 0.43 e Å3
235 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7770 (2)0.42248 (16)0.00766 (13)0.0205 (4)
H10.71820.36620.01040.025*
C20.6713 (2)0.55565 (17)0.02787 (15)0.0272 (4)
H2A0.57120.57990.0310.041*
H2B0.64760.56160.10580.041*
H2C0.72660.61170.0220.041*
C30.9338 (2)0.37720 (18)0.09727 (15)0.0302 (4)
H3A0.99350.43050.09320.045*
H3B0.91150.38140.17550.045*
H3C0.99750.29050.08090.045*
C41.0748 (2)0.28839 (16)0.23790 (15)0.0236 (4)
H41.07150.35830.1820.028*
C51.1457 (3)0.3044 (3)0.33692 (19)0.0506 (6)
H5A1.07740.38380.37810.076*
H5B1.2530.30490.30570.076*
H5C1.15270.2350.39120.076*
C61.1706 (3)0.1663 (2)0.1731 (2)0.0481 (6)
H6A1.17790.09690.22740.072*
H6B1.27830.16350.13770.072*
H6C1.11790.15870.11190.072*
C70.7501 (2)0.09780 (16)0.18044 (15)0.0246 (4)
H70.66940.12730.2550.03*
C80.6687 (3)0.0770 (2)0.0905 (2)0.0460 (6)
H8A0.57840.15420.08180.069*
H8B0.62950.00960.11560.069*
H8C0.74520.05380.01560.069*
C90.8863 (3)0.01829 (18)0.2035 (2)0.0416 (5)
H9A0.96540.04820.13060.062*
H9B0.84530.08340.23430.062*
H9C0.93690.00130.26050.062*
C100.3378 (2)0.77040 (17)0.24261 (14)0.0256 (4)
H10A0.37140.68890.20260.031*
H10B0.23930.8280.21840.031*
C110.4694 (2)0.82307 (17)0.20331 (15)0.0280 (4)
H11A0.49120.83020.11730.034*
H11B0.43330.90780.23760.034*
C120.6221 (2)0.73804 (16)0.24148 (14)0.0233 (4)
H12A0.7050.77450.2160.028*
H12B0.66170.65550.2020.028*
C130.5987 (2)0.71909 (15)0.37349 (14)0.0197 (4)
C140.5719 (2)0.83674 (16)0.44152 (16)0.0290 (4)
H14A0.52840.82780.52420.044*
H14B0.4960.91020.41050.044*
H14C0.67390.84730.43330.044*
C150.7431 (2)0.61143 (15)0.40297 (15)0.0234 (4)
H15A0.83930.63120.37660.035*
H15B0.75740.53460.36370.035*
H15C0.72550.59930.48750.035*
C160.2995 (2)0.75210 (16)0.37445 (14)0.0218 (4)
C170.2107 (2)0.87568 (17)0.44395 (16)0.0319 (4)
H17A0.20990.85960.5270.048*
H17B0.10040.91260.43270.048*
H17C0.2650.93370.41660.048*
C180.1976 (2)0.67189 (17)0.40504 (15)0.0255 (4)
H18A0.25550.59010.36560.038*
H18B0.09630.71390.37950.038*
H18C0.17570.66030.48960.038*
O10.81444 (14)0.41560 (10)0.10576 (9)0.0198 (3)
O20.91262 (14)0.29862 (11)0.28713 (10)0.0212 (3)
O30.81113 (14)0.19313 (10)0.13885 (10)0.0233 (3)
Si10.77654 (5)0.32207 (4)0.20952 (4)0.01653 (15)
S10.55226 (5)0.38899 (4)0.31590 (3)0.01896 (14)
N10.45724 (16)0.67745 (12)0.41129 (12)0.0182 (3)
H1A0.489 (3)0.5932 (17)0.3823 (19)0.046 (6)*
H1B0.437 (2)0.6748 (18)0.4920 (15)0.033 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0237 (9)0.0253 (9)0.0159 (8)0.0128 (8)0.0048 (7)0.0011 (6)
C20.0229 (9)0.0336 (10)0.0226 (9)0.0078 (8)0.0055 (7)0.0023 (7)
C30.0304 (11)0.0329 (10)0.0224 (9)0.0099 (9)0.0024 (8)0.0050 (7)
C40.0152 (9)0.0275 (9)0.0286 (9)0.0100 (8)0.0036 (7)0.0046 (7)
C50.0249 (11)0.0914 (19)0.0412 (13)0.0269 (13)0.0081 (9)0.0038 (12)
C60.0200 (10)0.0409 (12)0.0749 (17)0.0051 (10)0.0006 (11)0.0118 (11)
C70.0254 (10)0.0226 (9)0.0265 (9)0.0123 (8)0.0003 (7)0.0025 (7)
C80.0505 (15)0.0505 (13)0.0541 (14)0.0334 (12)0.0207 (12)0.0073 (11)
C90.0400 (13)0.0258 (10)0.0625 (14)0.0147 (10)0.0153 (11)0.0079 (9)
C100.0215 (9)0.0296 (9)0.0209 (9)0.0043 (8)0.0050 (7)0.0022 (7)
C110.0295 (10)0.0269 (9)0.0220 (9)0.0068 (8)0.0033 (8)0.0055 (7)
C120.0238 (9)0.0233 (9)0.0223 (9)0.0107 (8)0.0007 (7)0.0015 (7)
C130.0200 (9)0.0202 (8)0.0199 (8)0.0094 (7)0.0023 (7)0.0015 (6)
C140.0344 (11)0.0262 (9)0.0288 (10)0.0140 (9)0.0044 (8)0.0067 (7)
C150.0199 (9)0.0249 (9)0.0272 (9)0.0096 (8)0.0059 (7)0.0013 (7)
C160.0168 (8)0.0223 (9)0.0205 (8)0.0010 (7)0.0036 (7)0.0007 (7)
C170.0279 (10)0.0267 (10)0.0301 (10)0.0005 (8)0.0022 (8)0.0041 (8)
C180.0171 (9)0.0312 (10)0.0252 (9)0.0061 (8)0.0038 (7)0.0003 (7)
O10.0239 (6)0.0233 (6)0.0161 (6)0.0124 (5)0.0057 (5)0.0009 (5)
O20.0149 (6)0.0279 (6)0.0208 (6)0.0084 (5)0.0036 (5)0.0028 (5)
O30.0258 (7)0.0200 (6)0.0230 (6)0.0114 (5)0.0034 (5)0.0040 (5)
Si10.0155 (3)0.0168 (2)0.0167 (2)0.00606 (19)0.00172 (18)0.00110 (17)
S10.0151 (2)0.0219 (2)0.0187 (2)0.00605 (18)0.00163 (16)0.00349 (16)
N10.0169 (7)0.0187 (7)0.0178 (7)0.0053 (6)0.0033 (6)0.0006 (6)
Geometric parameters (Å, º) top
C1—O11.4399 (18)C10—H10A0.99
C1—C21.512 (2)C10—H10B0.99
C1—C31.519 (2)C11—C121.523 (2)
C1—H11.00C11—H11A0.99
C2—H2A0.98C11—H11B0.99
C2—H2B0.98C12—C131.531 (2)
C2—H2C0.98C12—H12A0.99
C3—H3A0.98C12—H12B0.99
C3—H3B0.98C13—C151.526 (2)
C3—H3C0.98C13—N11.527 (2)
C4—O21.444 (2)C13—C141.536 (2)
C4—C61.502 (3)C14—H14A0.98
C4—C51.510 (2)C14—H14B0.98
C4—H41.00C14—H14C0.98
C5—H5A0.98C15—H15A0.98
C5—H5B0.98C15—H15B0.98
C5—H5C0.98C15—H15C0.98
C6—H6A0.98C16—N11.525 (2)
C6—H6B0.98C16—C181.531 (2)
C6—H6C0.98C16—C171.535 (2)
C7—O31.430 (2)C17—H17A0.98
C7—C81.506 (3)C17—H17B0.98
C7—C91.507 (3)C17—H17C0.98
C7—H71.00C18—H18A0.98
C8—H8A0.98C18—H18B0.98
C8—H8B0.98C18—H18C0.98
C8—H8C0.98O1—Si11.6408 (11)
C9—H9A0.98O2—Si11.6441 (11)
C9—H9B0.98O3—Si11.6452 (11)
C9—H9C0.98Si1—S12.0558 (6)
C10—C111.530 (3)N1—H1A0.966 (17)
C10—C161.530 (2)N1—H1B0.927 (17)
O1—C1—C2108.93 (13)C10—C11—H11A109.6
O1—C1—C3107.87 (14)C12—C11—H11B109.6
C2—C1—C3112.55 (14)C10—C11—H11B109.6
O1—C1—H1109.1H11A—C11—H11B108.1
C2—C1—H1109.1C11—C12—C13113.24 (15)
C3—C1—H1109.1C11—C12—H12A108.9
C1—C2—H2A109.5C13—C12—H12A108.9
C1—C2—H2B109.5C11—C12—H12B108.9
H2A—C2—H2B109.5C13—C12—H12B108.9
C1—C2—H2C109.5H12A—C12—H12B107.7
H2A—C2—H2C109.5C15—C13—N1105.89 (13)
H2B—C2—H2C109.5C15—C13—C12110.41 (14)
C1—C3—H3A109.5N1—C13—C12107.30 (12)
C1—C3—H3B109.5C15—C13—C14108.82 (13)
H3A—C3—H3B109.5N1—C13—C14111.15 (14)
C1—C3—H3C109.5C12—C13—C14113.03 (14)
H3A—C3—H3C109.5C13—C14—H14A109.5
H3B—C3—H3C109.5C13—C14—H14B109.5
O2—C4—C6111.26 (14)H14A—C14—H14B109.5
O2—C4—C5107.29 (15)C13—C14—H14C109.5
C6—C4—C5112.44 (17)H14A—C14—H14C109.5
O2—C4—H4108.6H14B—C14—H14C109.5
C6—C4—H4108.6C13—C15—H15A109.5
C5—C4—H4108.6C13—C15—H15B109.5
C4—C5—H5A109.5H15A—C15—H15B109.5
C4—C5—H5B109.5C13—C15—H15C109.5
H5A—C5—H5B109.5H15A—C15—H15C109.5
C4—C5—H5C109.5H15B—C15—H15C109.5
H5A—C5—H5C109.5N1—C16—C10107.55 (13)
H5B—C5—H5C109.5N1—C16—C18106.11 (13)
C4—C6—H6A109.5C10—C16—C18110.72 (14)
C4—C6—H6B109.5N1—C16—C17110.86 (13)
H6A—C6—H6B109.5C10—C16—C17113.25 (14)
C4—C6—H6C109.5C18—C16—C17108.14 (15)
H6A—C6—H6C109.5C16—C17—H17A109.5
H6B—C6—H6C109.5C16—C17—H17B109.5
O3—C7—C8107.94 (15)H17A—C17—H17B109.5
O3—C7—C9108.78 (15)C16—C17—H17C109.5
C8—C7—C9113.02 (17)H17A—C17—H17C109.5
O3—C7—H7109H17B—C17—H17C109.5
C8—C7—H7109C16—C18—H18A109.5
C9—C7—H7109C16—C18—H18B109.5
C7—C8—H8A109.5H18A—C18—H18B109.5
C7—C8—H8B109.5C16—C18—H18C109.5
H8A—C8—H8B109.5H18A—C18—H18C109.5
C7—C8—H8C109.5H18B—C18—H18C109.5
H8A—C8—H8C109.5C1—O1—Si1124.60 (10)
H8B—C8—H8C109.5C4—O2—Si1123.87 (10)
C7—C9—H9A109.5C7—O3—Si1126.27 (11)
C7—C9—H9B109.5O1—Si1—O2104.18 (6)
H9A—C9—H9B109.5O1—Si1—O3103.66 (6)
C7—C9—H9C109.5O2—Si1—O3110.48 (6)
H9A—C9—H9C109.5O1—Si1—S1116.03 (5)
H9B—C9—H9C109.5O2—Si1—S1109.64 (5)
C11—C10—C16113.34 (14)O3—Si1—S1112.43 (5)
C11—C10—H10A108.9C16—N1—C13119.89 (13)
C16—C10—H10A108.9C16—N1—H1A105.6 (13)
C11—C10—H10B108.9C13—N1—H1A108.5 (14)
C16—C10—H10B108.9C16—N1—H1B108.0 (13)
H10A—C10—H10B107.7C13—N1—H1B106.7 (13)
C12—C11—C10110.38 (14)H1A—N1—H1B107.6 (18)
C12—C11—H11A109.6
C16—C10—C11—C1257.4 (2)C1—O1—Si1—O337.28 (14)
C10—C11—C12—C1357.91 (19)C1—O1—Si1—S186.47 (13)
C11—C12—C13—C15167.08 (14)C4—O2—Si1—O135.98 (13)
C11—C12—C13—N152.13 (18)C4—O2—Si1—O374.77 (13)
C11—C12—C13—C1470.76 (19)C4—O2—Si1—S1160.78 (11)
C11—C10—C16—N151.19 (19)C7—O3—Si1—O1158.72 (12)
C11—C10—C16—C18166.70 (14)C7—O3—Si1—O290.20 (13)
C11—C10—C16—C1771.65 (19)C7—O3—Si1—S132.64 (14)
C2—C1—O1—Si1123.01 (13)C10—C16—N1—C1350.41 (18)
C3—C1—O1—Si1114.55 (14)C18—C16—N1—C13168.93 (13)
C6—C4—O2—Si172.47 (18)C17—C16—N1—C1373.89 (18)
C5—C4—O2—Si1164.15 (14)C15—C13—N1—C16168.72 (13)
C8—C7—O3—Si1126.51 (15)C12—C13—N1—C1650.79 (18)
C9—C7—O3—Si1110.51 (16)C14—C13—N1—C1673.25 (17)
C1—O1—Si1—O2152.92 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S10.97 (2)2.35 (2)3.3166 (14)177 (2)
N1—H1B···S1i0.93 (2)2.34 (2)3.2354 (14)163 (2)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC9H20N+·C9H21O3SSi
Mr379.67
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)9.2433 (6), 11.5545 (8), 11.7593 (7)
α, β, γ (°)85.955 (5), 77.190 (6), 67.620 (6)
V3)1132.28 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.42 × 0.39 × 0.33
Data collection
DiffractometerOxford Diffraction KM4/Xcalibur
diffractometer with Sapphire2 detector
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.908, 0.934
No. of measured, independent and
observed [I > 2σ(I)] reflections
6937, 4209, 3561
Rint0.015
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.122, 1.10
No. of reflections4209
No. of parameters235
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.43

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX publication routines (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S10.966 (17)2.352 (17)3.3166 (14)177 (2)
N1—H1B···S1i0.927 (17)2.338 (17)3.2354 (14)163.0 (17)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors thank Dr Agnieszka Pladzyk and Dr Jarosław Chojnacki for helpful discussions during the preparation of the manuscript.

References

First citationBaranowska, K., Chojnacki, J., Gosiewska, M. & Wojnowski, W. (2006). Z. Anorg. Allg. Chem. 632, 1086–1090.  Web of Science CSD CrossRef CAS Google Scholar
First citationBaranowska, K., Chojnacki, J., Konitz, A., Wojnowski, W. & Becker, B. (2006). Polyhedron, 25, 1555–1560.  Web of Science CSD CrossRef CAS Google Scholar
First citationBaranowska, K. & Piwowarska, N. (2008). Acta Cryst. E64, o1781.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBecker, B., Baranowska, K., Chojnacki, J. & Wojnowski, W. (2004). Chem. Commun. pp. 620–621.  Web of Science CSD CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds