

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[[triaqua(μ_3 -pyridine-2,4,6-tricarboxylato)gadolinium(III)] monohydrate]

Hong-Sheng Wang* and Wan-Qiang Zhang

College of Chemistry and Chemical Engineering, Xuchang University, Xuchang, Henan Province 461000, People's Republic of China Correspondence e-mail: xcuwaller@163.com

Received 10 September 2009; accepted 25 September 2009

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.005 Å; R factor = 0.021; wR factor = 0.049; data-to-parameter ratio = 13.5.

The title compound, $\{[Gd(C_8H_2NO_6)(H_2O)_3]\cdot H_2O\}_n$, was obtained in water under hydrothermal conditions. The Gd^{III} ions are nine-coordinated by two O and one N atoms from one pyridine-2,4,6-tricarboxylate ligand, two O atoms from another ligand, one O atom from a third ligand and three coordinated water molecules. Each ligand binds three metal centers. Two-dimensional layers are formed through the Gd– O bonds and the layers are linked by O–H···O hydrogen bonds, forming a three-dimensional network.

Related literature

For related structures, see: Gao *et al.* (2006); Ghosh & Bharadwaj (2005); Wang *et al.* (2007); Fu & Xu (2008); Li *et al.* (2008). For general background to lanthanide-organic frameworks and their properties, see: Parker (2000); Tobisch (2005); Pan *et al.* (2003).

Experimental

Crystal data $[Gd(C_8H_2NO_6)(H_2O)_3]\cdot H_2O$ $M_r = 437.42$ Monoclinic, $P2_1/c$ a = 11.896 (3) Å b = 7.2696 (14) Å

c = 13.505 (3) Å $\beta = 96.259 (3)^{\circ}$ $V = 1160.9 (4) \text{ Å}^{3}$ Z = 4Mo K α radiation metal-organic compounds

 $\mu = 5.77 \text{ mm}^{-1}$ T = 113 K

Data collection

Rigaku Saturn diffractometer Absorption correction: multi-scan (*REQAB*; Jacobson, 1998) $T_{\rm min} = 0.544, T_{\rm max} = 0.655$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.021$ $wR(F^2) = 0.049$ S = 1.042776 reflections 206 parameters 8 restraints 10599 measured reflections 2776 independent reflections 2366 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.038$

 $0.12\,\times\,0.10\,\times\,0.08~\text{mm}$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.64 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -1.29 \text{ e } \text{\AA}^{-3}$

 Table 1

 Hydrogen-bond geometry (Å, °).

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
O7-H7A···O1 ⁱ 0.82 (2) 2.02 (3) 2.794 (3) 157 (4) O7-H7B···O3 ⁱⁱ 0.83 (2) 1.97 (2) 2.795 (3) 175 (4) O8-H8A···O6 ⁱⁱⁱ 0.82 (3) 1.80 (3) 2.621 (3) 171 (4) O8-H8B···O4 ^{iv} 0.75 (2) 2.22 (3) 2.933 (3) 158 (4) O9-H9A···O6 ⁱⁱⁱ 0.82 (2) 2.01 (3) 2.800 (3) 161 (4) O9-H9B···O10 0.83 (2) 1.91 (3) 2.723 (3) 166 (4) O10-H10A···O8 ^{iv} 0.81 (2) 2.245 (3) 3.051 (4) 173 (4)	$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O10-H10B\cdots O9$ 0.82 (3) 2.43 (3) 3.109 (4) 148 (4)	$\begin{array}{c} 07 - H7A \cdots 01^{i} \\ 07 - H7B \cdots 03^{ii} \\ 08 - H8A \cdots 06^{iii} \\ 08 - H8B \cdots 04^{iv} \\ 09 - H9A \cdots 06^{iii} \\ 09 - H9B \cdots 010 \\ 010 - H10A \cdots 08^{iv} \\ 010 - H10B \cdots 09^{v} \end{array}$	0.82 (2) 0.83 (2) 0.82 (3) 0.75 (2) 0.82 (2) 0.83 (2) 0.81 (2) 0.82 (3)	2.02 (3) 1.97 (2) 1.80 (3) 2.22 (3) 2.01 (3) 1.91 (3) 2.24 (3) 2.45 (3)	2.794 (3) 2.795 (3) 2.621 (3) 2.800 (3) 2.723 (3) 3.051 (4) 3.169 (4)	157 (4) 175 (4) 171 (4) 158 (4) 161 (4) 166 (4) 173 (4) 148 (4)

Symmetry codes: (i) $-x + 1, y - \frac{1}{2}, -z + \frac{3}{2}$; (ii) x, y - 1, z; (iii) $-x, y - \frac{1}{2}, -z + \frac{3}{2}$; (iv) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (v) -x, -y + 1, -z + 1.

Data collection: *CrystalClear* (Rigaku/MSC, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *CrystalStructure* (Rigaku/MSC, 2005).

This work was supported by the Education Department of Henan Province (2009B150026).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2008).

References

- Fu, D.-W. & Xu, H.-J. (2008). Acta Cryst. E64, m35.
- Gao, H. L., Yi, L., Ding, B., Wang, H. S., Cheng, P., Liao, D. Z. & Yan, S. P. (2006). *Inorg. Chem.* 45, 481–483.
- Ghosh, S. K. & Bharadwaj, P. K. (2005). *Eur. J. Inorg. Chem.* 24, 4886–4889. Jacobson, R. (1998). *REQAB*. Private communication to the Rigaku
- Corporation, Tokyo, Japan. Li, C. J., Peng, M. X., Leng, J. D., Yang, M. M., Lin, Z. J. & Tong, M. L. (2008). *CrystEngComm*, **10**, 1645–1652.
- Pan, L., Adams, K. M., Hernandez, H. E., Wang, X., Zheng, C., Hattori, Y. & Kaneko, K. (2003). J. Am. Chem. Soc. 125, 3062–3063.
- Parker, D. (2000). Coord. Chem. Rev. 205, 109-115.
- Rigaku/MSC (2005). CrystalStructure and CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tobisch, S. (2005). J. Am. Chem. Soc. 127, 11979–11980.
- Wang, H. S., Zhao, B., Zhai, B., Shi, W., Cheng, P., Liao, D. Z. & Yan, S. P. (2007). Cryst. Growth Des. 7, 1851–1857.

Acta Cryst. (2009). E65, m1271 [https://doi.org/10.1107/S1600536809038793] Poly[[triaqua(µ₃-pyridine-2,4,6-tricarboxylato)gadolinium(III)] monohydrate]

Hong-Sheng Wang and Wan-Qiang Zhang

S1. Comment

The preparation and property researching of metal-organic frameworks have attracted widespread interest in recent years due to their potential application in the areas of magnetism, luminescence, adsorption, catalysis and so on (Parker, 2000; Tobisch, 2005; Pan *et al.*, 2003). Multicarboxylic acids containing pyridyl rings were widely used and many 1-D, 2-D and 3-D coordination polymers with novel structures have been reported. Especially, complexes with pyridine-2,4,6-tri-carboxylato (H₃pta = pyridine-2,4,6-tricarboxylic acid) ligands have been recently reported (Li *et al.*, 2008; Wang *et al.*, 2007; Fu *et al.*, 2008.). The title compound is a new Gd^{III} complex built with pta ligands and prepared under hydro-thermal conditions.

As shown in Fig. 1, the local geometry of Gd^{III} ion is a distorted monocapped antitetragonal prism. Each pta ligand connects three Gd^{III} ions with oxgen atoms of the carboxyl groups and the nitrogen atom. There are three coordination water molecules on each Gd^{III} ion. A two-dimentional layer is constructed by the bonding among oxygen atoms and Gd^{III} ions (see Fig. 2). In addition, a lattice water molecule per asymmetric unit is in the crystal structure. Many O—H···O hydrogen bonds are formed between the oxygen atoms of water molecules and the oxygen atoms of caboxyl groups. As a result, the three-dimensional network formed by hydrogen bonds is shown in Fig. 3.

S2. Experimental

A mixture of H₃pta (0.0422 g, 0.2 mmol), GdCl₃.6H₂O (0.0743 g, 0.2 mmol) and deionized water (15 ml) was put in a teflon-lined steel bomb and heated at 453 K for 3 days, then cooled the bomb at a rate of 2 K/hour. The colorless crystals suitable for X-ray diffraction measurements were obtained. Spectroscopic analysis: IR (KBr, v cm⁻¹): 3606, 3382, 1631, 1608, 1582, 1549, 1445, 1395, 1352, 1277, 1235, 1110, 1025, 950, 931, 818, 791, 740, 664, 623, 587, 543, 479, 435. Elemental analysis, calculated for C₈H₁₀GdNO₁₀: C, 21.97; H, 2.30; N, 3.20.%; found: C, 22.18; H, 2.11; N, 3.54%.

S3. Refinement

All hydrogen atoms bonded to carbon atoms were positioned geometrically and refined as riding, with C—H = 0.95 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. The H atoms of water molecules were found from difference Fourier maps and included in the final refinements with a restraint of O—H = 0.75 - 0.85 Å and $U_{iso}(H) = 1.5 U_{eq}(O)$.

Figure 1

The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.

The packing of (I), showing the two-dimensional layers formed by Gd—O bonds.

Figure 3

View of the three-dimensional network constructed by O—H…O hydrogen bonds (dashed lines). All H atoms were omitted for clarity.

Poly[[triaqua(µ₃-pyridine-2,4,6-tricarboxylato)gadolinium(III)] monohydrate]

Crystal data

$[Gd(C_8H_2NO_6)(H_2O)_3] \cdot H_2O$ $M_r = 437.42$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 11.896 (3) Å b = 7.2696 (14) Å c = 13.505 (3) Å $\beta = 96.259$ (3)° V = 1160.9 (4) Å ³ Z = 4	F(000) = 836 $D_x = 2.503 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71070 \text{ Å}$ Cell parameters from 3775 reflections $\theta = 1.7-28.7^{\circ}$ $\mu = 5.77 \text{ mm}^{-1}$ T = 113 K Block, colourless $0.12 \times 0.10 \times 0.08 \text{ mm}$
Data collection Rigaku Saturn diffractometer Radiation source: rotating anode Confocal monochromator Detector resolution: 7.31 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (REQAB; Jacobson, 1998) $T_{min} = 0.544, T_{max} = 0.655$	10599 measured reflections 2776 independent reflections 2366 reflections with $I > 2\sigma(I)$ $R_{int} = 0.038$ $\theta_{max} = 27.9^{\circ}, \theta_{min} = 1.7^{\circ}$ $h = -15 \rightarrow 15$ $k = -8 \rightarrow 9$ $l = -17 \rightarrow 17$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.021$	Hydrogen site location: inferred from
$wR(F^2) = 0.049$	neighbouring sites
S = 1.04	H atoms treated by a mixture of independent
2776 reflections	and constrained refinement
206 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0242P)^2]$
8 restraints	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.64 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -1.29 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Gd1	0.283337 (12)	0.28362 (2)	0.703522 (11)	0.00496 (6)	
01	0.46782 (18)	0.4287 (3)	0.74763 (16)	0.0085 (5)	
O2	0.58731 (18)	0.5825 (3)	0.85710 (16)	0.0080 (4)	
03	0.3449 (2)	1.0594 (3)	1.05119 (16)	0.0101 (5)	
04	0.25022 (19)	0.8881 (3)	1.14877 (16)	0.0111 (5)	
05	0.10951 (19)	0.3347 (3)	0.77338 (17)	0.0118 (5)	
06	0.00718 (19)	0.4715 (3)	0.88248 (16)	0.0105 (5)	
07	0.3762 (2)	0.1238 (3)	0.85200 (17)	0.0109 (5)	
H7A	0.425 (3)	0.051 (4)	0.838 (3)	0.016*	
H7B	0.369 (3)	0.110 (5)	0.9117 (19)	0.016*	
08	0.1937 (2)	-0.0211 (3)	0.71872 (18)	0.0117 (5)	
H8A	0.129 (2)	-0.034 (5)	0.690 (3)	0.018*	
H8B	0.225 (3)	-0.109 (4)	0.709 (3)	0.018*	
09	0.1329 (2)	0.2581 (3)	0.56658 (18)	0.0135 (5)	
H9A	0.081 (3)	0.185 (4)	0.571 (3)	0.020*	
H9B	0.121 (3)	0.314 (5)	0.513 (2)	0.020*	
O10	0.0781 (2)	0.4862 (3)	0.40873 (19)	0.0194 (6)	
H10A	0.106 (4)	0.505 (6)	0.357 (2)	0.029*	
H10B	0.016 (3)	0.531 (5)	0.392 (3)	0.029*	
N1	0.2963 (2)	0.4907 (3)	0.85098 (19)	0.0060 (5)	
C1	0.3938 (3)	0.5761 (4)	0.8822 (2)	0.0055 (6)	
C2	0.4007 (3)	0.7107 (4)	0.9553 (2)	0.0073 (6)	
H2	0.4699	0.7730	0.9744	0.009*	
C3	0.3035 (3)	0.7525 (4)	1.0003 (2)	0.0082 (6)	

C4	0.2043 (3)	0.6563 (4)	0.9712 (2)	0.0073 (6)	
H4	0.1385	0.6761	1.0037	0.009*	
C5	0.2035 (3)	0.5320 (4)	0.8944 (2)	0.0070 (6)	
C6	0.4912 (3)	0.5242 (4)	0.8255 (2)	0.0068 (6)	
C7	0.3007 (3)	0.9081 (4)	1.0720 (2)	0.0077 (6)	
C8	0.0974 (3)	0.4387 (4)	0.8469 (2)	0.0072 (6)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Gd1	0.00489 (8)	0.00531 (9)	0.00486 (9)	0.00011 (6)	0.00130 (6)	-0.00021 (6)
01	0.0066 (11)	0.0089 (11)	0.0103 (12)	-0.0013 (8)	0.0017 (9)	-0.0024 (9)
O2	0.0051 (11)	0.0103 (11)	0.0082 (11)	-0.0021 (8)	-0.0006 (9)	0.0004 (8)
03	0.0137 (12)	0.0071 (11)	0.0099 (12)	-0.0012 (9)	0.0034 (9)	-0.0026 (9)
O4	0.0143 (13)	0.0104 (12)	0.0094 (12)	-0.0038 (9)	0.0059 (9)	-0.0025 (9)
05	0.0075 (12)	0.0142 (11)	0.0142 (12)	-0.0027 (9)	0.0030 (9)	-0.0062 (9)
O6	0.0054 (11)	0.0150 (12)	0.0111 (12)	0.0014 (9)	0.0015 (9)	-0.0024 (9)
O7	0.0132 (13)	0.0111 (12)	0.0086 (12)	0.0047 (9)	0.0023 (10)	0.0035 (9)
08	0.0084 (12)	0.0096 (12)	0.0166 (13)	0.0008 (9)	-0.0005 (10)	-0.0012 (10)
09	0.0135 (13)	0.0173 (13)	0.0088 (12)	-0.0061 (9)	-0.0027 (10)	0.0041 (9)
O10	0.0237 (16)	0.0199 (13)	0.0141 (14)	0.0057 (11)	0.0010 (12)	0.0048 (11)
N1	0.0057 (13)	0.0058 (12)	0.0065 (13)	0.0006 (9)	0.0012 (10)	0.0008 (10)
C1	0.0072 (15)	0.0040 (14)	0.0056 (15)	-0.0021 (11)	0.0024 (12)	0.0023 (11)
C2	0.0071 (15)	0.0054 (14)	0.0094 (16)	-0.0029 (11)	0.0015 (12)	0.0004 (12)
C3	0.0097 (17)	0.0102 (16)	0.0042 (15)	0.0004 (11)	-0.0011 (12)	0.0011 (11)
C4	0.0061 (15)	0.0070 (14)	0.0092 (16)	0.0013 (11)	0.0026 (12)	0.0021 (12)
C5	0.0059 (15)	0.0073 (15)	0.0083 (16)	0.0010 (11)	0.0021 (12)	0.0009 (12)
C6	0.0095 (16)	0.0038 (14)	0.0071 (16)	0.0000 (11)	0.0007 (12)	0.0014 (11)
C7	0.0054 (15)	0.0101 (15)	0.0070 (16)	0.0018 (11)	-0.0017 (12)	0.0000 (12)
C8	0.0065 (16)	0.0060 (15)	0.0095 (16)	-0.0008 (11)	0.0023 (12)	0.0021 (12)

Geometric parameters (Å, °)

Gd1—O2 ⁱ	2.335 (2)	O7—H7B	0.83 (2)
Gd1—O5	2.393 (2)	O8—H8A	0.82 (3)
Gd109	2.437 (3)	O8—H8B	0.75 (2)
Gd1—01	2.449 (2)	O9—H9A	0.82 (2)
Gd1—O7	2.471 (2)	O9—H9B	0.83 (2)
Gd1—O8	2.477 (2)	O10—H10A	0.81 (2)
Gd1—N1	2.488 (2)	O10—H10B	0.82 (3)
Gd1—O4 ⁱⁱ	2.517 (2)	N1—C5	1.339 (4)
Gd1—O3 ⁱⁱ	2.530 (2)	N1—C1	1.342 (4)
Gd1—C7 ⁱⁱ	2.880 (3)	C1—C2	1.386 (4)
O1—C6	1.266 (4)	C1—C6	1.504 (4)
O2—C6	1.250 (4)	C2—C3	1.397 (4)
O2—Gd1 ⁱⁱⁱ	2.335 (2)	C2—H2	0.9500
O3—C7	1.264 (4)	C3—C4	1.391 (4)
O3—Gd1 ^{iv}	2.530 (2)	C3—C7	1.492 (4)

O4—C7	1.261 (4)	C4—C5	1.374 (4)
O4—Gd1 ^{iv}	2.517 (2)	C4—H4	0.9500
O5—C8	1.269 (4)	C5—C8	1.513 (4)
O6—C8	1.245 (4)	C7—Gd1 ^{iv}	2.880 (3)
O7—H7A	0.82 (2)		
02 641 05	150.00 (8)	C6 01 C41	122 22 (10)
$O_2^{i} = O_1^{i} = O_2^{i}$	130.00(8)	$C_{0} = C_{1} = C_{0}$	123.22(19) 134.0(2)
02 - 041 - 09	73 52 (8)	$C_{7} = O_{3} = Gd_{1iv}$	134.9(2) 02 60(17)
O_{2}^{i} Gd1 O1	75.32 (8)	$C7 O4 Gd1^{iv}$	92.09(17)
02 - 041 - 01	13.39(7) 128.84(7)	C_{1}^{0} C_{2}^{0} C_{3}^{0} C_{4}^{0}	33.33(10)
09 Gd1 01	120.04(7) 141.45(7)	$C_{0} = 05 = 001$	123.3(2) 112(3)
O_{2}^{i} Gd1 O_{7}^{i}	7473(7)	Gd1 = 07 = H7R	112(3)
02 - 041 - 07	74.73(7)		140(3)
00 - 641 - 07	142.75(8)	$\Pi/A = 0/-\Pi/B$	107(4) 117(2)
$0_{9} - 0_{1} - 0_{7}$	143.73(0)	Cd1 = 00 = H8P	117(3) 121(2)
O_{i}^{i} Cd1 O_{i}^{i}	72.28 (7)		121(3)
02 - 001 - 08	77.00(7)	$H\delta A = U\delta = H\delta B$	100(4)
03 - 001 - 08	73.01 (8)	Gu1 = O9 = H9A	119(3)
09 - 001 - 08	12.98 (8)		131(3)
OI - GdI - O8	138.37(7)	Н9А—09—Н9В	109(4)
0/-Gd1-08	70.78 (8) 122.20 (8)	HI0A - 010 - HI0B	98 (4) 118 0 (2)
$O_2 - Gal - N_1$	132.39(8)	C5-N1-C1	118.9 (3)
US—Gdl—NI	64.62 (8)	C5—NI—Gal	120.3 (2)
09—Gdl—NI	129.04 (8)	CI—NI—Gal	120.47 (19)
Ol—Gdl—Nl	64.48 (7)	NI-CI-C2	122.2 (3)
O'/GdlNI	69.63 (8)	NI-CI-C6	114.3 (3)
O8—Gd1—N1	117.68 (8)	C2—C1—C6	123.4 (3)
$O2^{i}$ —Gd1—O4 ⁱⁱ	125.38 (7)	C1—C2—C3	118.4 (3)
$O5-Gd1-O4^n$	81.63 (7)	C1—C2—H2	120.8
O9—Gd1—O4 ⁱⁱ	76.75 (8)	C3—C2—H2	120.8
O1—Gd1—O4 ⁱⁱ	76.74 (7)	C4—C3—C2	119.0 (3)
O7—Gd1—O4 ⁱⁱ	136.55 (8)	C4—C3—C7	119.1 (3)
O8—Gd1—O4 ⁱⁱ	144.83 (8)	C2—C3—C7	121.7 (3)
N1—Gd1—O4 ⁱⁱ	69.84 (8)	C5—C4—C3	118.7 (3)
O2 ⁱ —Gd1—O3 ⁱⁱ	74.76 (7)	C5—C4—H4	120.7
O5—Gd1—O3 ⁱⁱ	126.13 (8)	C3—C4—H4	120.7
O9—Gd1—O3 ⁱⁱ	70.79 (8)	N1—C5—C4	122.7 (3)
O1—Gd1—O3 ⁱⁱ	70.88 (7)	N1—C5—C8	113.8 (3)
O7—Gd1—O3 ⁱⁱ	136.76 (8)	C4—C5—C8	123.4 (3)
O8—Gd1—O3 ⁱⁱ	129.52 (7)	O2—C6—O1	125.4 (3)
N1—Gd1—O3 ⁱⁱ	112.32 (8)	O2—C6—C1	117.9 (3)
O4 ⁱⁱ —Gd1—O3 ⁱⁱ	51.91 (7)	O1—C6—C1	116.7 (3)
O2 ⁱ —Gd1—C7 ⁱⁱ	100.19 (8)	O4—C7—O3	122.0 (3)
O5Gd1C7 ⁱⁱ	104.20 (8)	O4—C7—C3	119.5 (3)
O9—Gd1—C7 ⁱⁱ	71.79 (8)	O3—C7—C3	118.4 (3)
O1—Gd1—C7 ⁱⁱ	72.09 (8)	O4—C7—Gd1 ^{iv}	60.73 (15)
O7—Gd1—C7 ⁱⁱ	144.11 (8)	O3—C7—Gd1 ^{iv}	61.32 (15)
O8—Gd1—C7 ⁱⁱ	143.83 (9)	C3—C7—Gd1 ^{iv}	176.6 (2)

N1—Gd1—C7 ⁱⁱ	91.16 (8)	O6—C8—O5	126.3 (3)
O4 ⁱⁱ —Gd1—C7 ⁱⁱ	25.92 (7)	O6—C8—C5	117.7 (3)
O3 ⁱⁱ —Gd1—C7 ⁱⁱ	25.99 (7)	O5—C8—C5	116.0 (3)
O2 ⁱ —Gd1—O1—C6	-147.2 (2)	Gd1—N1—C1—C2	171.2 (2)
O5—Gd1—O1—C6	12.7 (3)	C5—N1—C1—C6	-177.8 (3)
O9—Gd1—O1—C6	127.9 (2)	Gd1—N1—C1—C6	-4.0 (3)
O7—Gd1—O1—C6	-68.8 (2)	N1—C1—C2—C3	2.6 (4)
O8—Gd1—O1—C6	-97.2 (2)	C6—C1—C2—C3	177.5 (3)
N1—Gd1—O1—C6	6.5 (2)	C1—C2—C3—C4	0.9 (4)
O4 ⁱⁱ —Gd1—O1—C6	80.3 (2)	C1—C2—C3—C7	-173.7 (3)
O3 ⁱⁱ —Gd1—O1—C6	134.2 (2)	C2—C3—C4—C5	-4.3 (5)
C7 ⁱⁱ —Gd1—O1—C6	106.8 (2)	C7—C3—C4—C5	170.5 (3)
O2 ⁱ —Gd1—O5—C8	133.9 (2)	C1—N1—C5—C4	-1.1 (4)
O9—Gd1—O5—C8	-148.4 (3)	Gd1-N1-C5-C4	-174.9 (2)
O1—Gd1—O5—C8	-4.4 (3)	C1—N1—C5—C8	175.1 (3)
O7—Gd1—O5—C8	66.6 (2)	Gd1—N1—C5—C8	1.3 (3)
O8—Gd1—O5—C8	134.8 (3)	C3—C4—C5—N1	4.6 (5)
N1—Gd1—O5—C8	1.8 (2)	C3—C4—C5—C8	-171.3 (3)
O4 ⁱⁱ —Gd1—O5—C8	-69.8 (2)	Gd1 ⁱⁱⁱ —O2—C6—O1	62.9 (4)
O3 ⁱⁱ —Gd1—O5—C8	-98.3 (2)	Gd1 ⁱⁱⁱ —O2—C6—C1	-115.0 (3)
C7 ⁱⁱ —Gd1—O5—C8	-82.7 (2)	Gd1-01-C6-02	171.1 (2)
O2 ⁱ —Gd1—N1—C5	-151.4 (2)	Gd1-01-C6-C1	-11.0 (3)
O5—Gd1—N1—C5	-1.5 (2)	N1-C1-C6-O2	-172.4 (3)
O9—Gd1—N1—C5	36.4 (3)	C2-C1-C6-O2	12.4 (4)
O1—Gd1—N1—C5	173.1 (2)	N1-C1-C6-O1	9.6 (4)
O7—Gd1—N1—C5	-107.4 (2)	C2-C1-C6-O1	-165.6 (3)
O8—Gd1—N1—C5	-53.6 (2)	Gd1 ^{iv} —O4—C7—O3	0.5 (3)
O4 ⁱⁱ —Gd1—N1—C5	88.6 (2)	Gd1 ^{iv} —O4—C7—C3	-176.1 (3)
O3 ⁱⁱ —Gd1—N1—C5	119.2 (2)	Gd1 ^{iv} —O3—C7—O4	-0.5 (3)
C7 ⁱⁱ —Gd1—N1—C5	103.6 (2)	Gd1 ^{iv} —O3—C7—C3	176.1 (3)
$O2^{i}$ —Gd1—N1—C1	34.9 (3)	C4—C3—C7—O4	45.8 (4)
O5—Gd1—N1—C1	-175.3 (2)	C2—C3—C7—O4	-139.6 (3)
O9—Gd1—N1—C1	-137.4 (2)	C4—C3—C7—O3	-131.0 (3)
O1—Gd1—N1—C1	-0.6 (2)	C2—C3—C7—O3	43.6 (4)
O7—Gd1—N1—C1	78.9 (2)	Gd1O5C8O6	177.7 (2)
O8—Gd1—N1—C1	132.6 (2)	Gd1	-1.8 (4)
O4 ⁱⁱ —Gd1—N1—C1	-85.1 (2)	N1—C5—C8—O6	-179.3 (3)
O3 ⁱⁱ —Gd1—N1—C1	-54.5 (2)	C4—C5—C8—O6	-3.1 (4)
C7 ⁱⁱ —Gd1—N1—C1	-70.1 (2)	N1—C5—C8—O5	0.2 (4)
C5—N1—C1—C2	-2.6 (4)	C4—C5—C8—O5	176.4 (3)

Symmetry codes: (i) -x+1, y-1/2, -z+3/2; (ii) x, -y+3/2, z-1/2; (iii) -x+1, y+1/2, -z+3/2; (iv) x, -y+3/2, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
O7—H7A···O1 ⁱ	0.82 (2)	2.02 (3)	2.794 (3)	157 (4)

O7—H7 <i>B</i> ···O3 ^v	0.83 (2)	1.97 (2)	2.795 (3)	175 (4)
O8—H8A····O6 ^{vi}	0.82 (3)	1.80 (3)	2.621 (3)	171 (4)
O8—H8 <i>B</i> ····O4 ^{vii}	0.75 (2)	2.22 (3)	2.933 (3)	158 (4)
O9—H9A…O6 ^{vi}	0.82 (2)	2.01 (3)	2.800 (3)	161 (4)
O9—H9 <i>B</i> ···O10	0.83 (2)	1.91 (3)	2.723 (3)	166 (4)
O10—H10A····O8 ^{vii}	0.81 (2)	2.24 (3)	3.051 (4)	173 (4)
O10—H10 <i>B</i> ····O9 ^{viii}	0.82 (3)	2.45 (3)	3.169 (4)	148 (4)

Symmetry codes: (i) -*x*+1, *y*-1/2, -*z*+3/2; (v) *x*, *y*-1, *z*; (vi) -*x*, *y*-1/2, -*z*+3/2; (vii) *x*, -*y*+1/2, *z*-1/2; (viii) -*x*, -*y*+1, -*z*+1.