Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

(2E)-1-(3-Chlorophenyl)-3-(4-chloro-phenyl)prop-2-en-1-one

Jerry P. Jasinski, ${ }^{\text {a }}$ Ray J. Butcher, ${ }^{\text {b }}$ * B. Narayana, ${ }^{\text {c }}$ K. Veena ${ }^{c}$ and H. S. Yathirajan ${ }^{\text {d }}$
${ }^{\text {a }}$ Department of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, ${ }^{\text {b }}$ Department of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, ${ }^{\text {c }}$ Department of Studies in Chemistry, Mangalore University, Manalaganotri 574 199, India, and ${ }^{\text {d Department of Studies in }}$ Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India Correspondence e-mail: rbutcher99@yahoo.com

Received 8 September 2009; accepted 18 September 2009
Key indicators: single-crystal X-ray study; $T=110 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.047 ; \omega R$ factor $=0.133$; data-to-parameter ratio $=14.7$.

The title compound, $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}$, is a chalcone with 3chlorophenyl and 4-chlorophenyl substituents bonded at the opposite ends of a propenone group, the biologically active region. The dihedral angle between mean planes of these two chloro-substituted benzene rings is 46.7 (7) ${ }^{\circ}$ compared to 46.0 (1) and $32.4(1)^{\circ}$ in similar published sructures. The angles between the mean plane of the prop-2-en-1-one group and the mean planes of the 3 -chlorophenyl and 4 -chlorophenyl rings are 24.1 (2) and 29.63°, respectively. While no classical hydrogen bonds are present, weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$-ring interactions are observed, which contribute to the stability of crystal packing.

Related literature

For the potential use of chalcones or chalcone-rich plant extracts as drugs or food preservatives, see: Dhar (1981). For the biological and pharmaceutical activity of chalcones, see: Dimmock et al. (1999); Troeberg et al. (2000); Ram et al. (2000). For their applications as organic nonlinear optical materials, see: Sarojini et al. (2006). For the bis-(4-chlorophenyl) analog, see: Wang et al. (2005) and for the (2chlorophenyl, 4-chlorophenyl) analog, see: Fun et al. (2008b). For antitumor and antioxidant activity studies and non-linear optical studies, see: Mukherjee et al. (2001); Poornesh et al. (2009); Shettigar et al. (2006, 2008); Wang et al. (1997). For related structures, see: Butcher et al. (2007); Fischer et al. (2007); Fun et al. (2008a); Harrison et al. (2006); Ng et al. (2006); Teh et al. (2007); Yathirajan et al. (2006).

Experimental

Crystal data
$\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}$
$\gamma=92.933(11)^{\circ}$
$M_{r}=277.13$
$V=613.88(14) \mathrm{A}^{3}$
Triclinic, $P \overline{1}$
$a=5.8884$ (9) A
$Z=2$

$\mathrm{Cu} \mathrm{K} \alpha$ radiation
$b=7.3328$ (9) A
$c=14.6752(16) \AA$
$\mu=4.61 \mathrm{~mm}^{-1}$
$\alpha=102.821(10)^{\circ}$
$T=110 \mathrm{~K}$
$\beta=95.003$ (10) ${ }^{\circ}$
$0.53 \times 0.33 \times 0.28 \mathrm{~mm}$

Data collection

Oxford Diffraction Gemini R CCD diffractometer
Absorption correction: multi-scan
(CrysAlisPro; Oxford
2402 independent reflections
2147 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.035$

Diffraction, 2007)
$T_{\text {min }}=0.067, T_{\text {max }}=0.275$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$	163 parameters
$w R\left(F^{2}\right)=0.133$	H-atom parameters constrained
$S=1.04$	$\Delta \rho_{\max }=0.48 \mathrm{e}^{-3}$
2402 reflections	$\Delta \rho_{\min }=-0.39 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 A \cdots C g 2^{\mathrm{i}}$	0.95	2.98	$3.608(2)$	125
$\mathrm{C} 5-\mathrm{H} 5 A \cdots C g 2^{\text {ii }}$	0.95	2.88	$3.488(2)$	126
$\mathrm{C} 14-\mathrm{H} 14 A \cdots C g 1^{\mathrm{iii}}$	0.95	2.77	$3.474(2)$	131
Symmetry codes:	(i)	$-x+1,-y+1,-z+1 ;$	(ii) $-x,-y,-z+1 ; \quad$ (iii)	
$-x,-y+1,-z+1 . C g 1$ the $\mathbf{C 1 0}-\mathrm{C} 15$ ring.				

Data collection: CrysAlis Pro (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

KV thanks the UGC for the award of a Junior Research Fellowship and for an SAP Chemical grant. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

[^0]
organic compounds

References

Butcher, R. J., Jasinski, J. P., Yathirajan, H. S., Lakshmana, K. \& Narayana, B. (2007). Acta Cryst. E63, o3661.

Dhar, D. N. (1981). The Chemistry of Chalcones and Related Compounds. New York: John Wiley.
Dimmock, J. R., Elias, D. W., Beazely, M. A. \& Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125-1149.
Fischer, A., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. \& Sarojini, B. K. (2007). Acta Cryst. E63, o1353-o1354.

Fun, H.-K., Jebas, S. R., Razak, I. A., Patil, P. S., Dharmaprakash, S. M. \& Deepak D'Silva, E. (2008a). Acta Cryst. E64, o1177
Fun, H.-K., Kia, R., Patil, P. S., Dharmaprakash, S. M. \& Razak, I. A. (2008b). Acta Cryst. E64, o2014-o2015.
Harrison, W. T. A., Yathirajan, H. S., Narayana, B., Mithun, A. \& Sarojini, B. K. (2006). Acta Cryst. E62, o5290-o5292.

Mukherjee, S., Kumar, V., Prasad, A. K., Raj, H. G., Bracke, M. E., Olsen, C. E., Jain, S. C. \& Parmar, V. S. (2001). Bioorg. Med. Chem. 9, 337-345.

Ng, S.-L., Patil, P. S., Razak, I. A., Fun, H.-K. \& Dharmaprakash, S. M. (2006). Acta Cryst. E62, o3200-o3202.
Oxford Diffraction (2007). CrysAlis Pro and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.

Poornesh, P., Shettigar, S., Umesh, G., Manjunatha, K. B., Prakash Kamath, K., Sarojini, B. K. \& Narayana, B. (2009). Opt. Mat. 31, 854-859.
Ram, V. J., Saxena, A. S., Srivastava, S. \& Chandra, S. (2000). Bioorg. Med. Chem. Lett. 10, 2159-2161.
Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. \& Lobo, K. J. (2006). J. Cryst. Growth, 295, 54-59.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Shettigar, S., Chandrasekharan, K., Umesh, G., Sarojini, B. K. \& Narayana, B. (2006). Polymer, 47, 3565-3567.

Shettigar, S., Umesh, G., Chandrasekharan, K., Sarojini, B. K. \& Narayana, B. (2008). Opt. Mat. 30, 1297-1303.

Teh, J. B.-J., Patil, P. S., Fun, H.-K., Razak, I. A. \& Dharmaprakash, S. M. (2007). Acta Cryst. E63, o1783-o1784.

Troeberg, L., Chen, X., Flaherty, T. M., Morty, R. E., Cheng, M., Springer, H. C, McKerrow, J. H, Kenyon, G. L., Lonsdale-Eccles, J. D., Coetzer, T. H. T. \& Cohen, F. E. (2000). Mol. Med. 6, 660-669.

Wang, J. P., Tsao, L. T., Raung, S. L. \& Lin, C. N. (1997). Eur. J. Pharmacol. 320, 201-208.
Wang, L., Yang, W. \& Zhang, D.-C. (2005). Acta Cryst. E61, o2820-o2822.
Yathirajan, H. S., Sreevidya, T. V., Narayana, B., Sarojini, B. K. \& Bolte, M. (2006). Acta Cryst. E62, o5923-o5924.

supporting information

Acta Cryst. (2009). E65, o2641-o2642 [https://doi.org/10.1107/S1600536809037805]
(2E)-1-(3-Chlorophenyl)-3-(4-chlorophenyl)prop-2-en-1-one

Jerry P. Jasinski, Ray J. Butcher, B. Narayana, K. Veena and H. S. Yathirajan

S1. Comment

Chalcones or 1,3-diaryl-2-propen-1-ones, belong to the flavonoid family. Chemically, they consist of open-chain flavonoids in which the two aromatic rings are joined by a three-carbon α, β-unsaturated carbonyl system. A vast number of naturally occurring chalcones are polyhydroxylated in the aryl rings. The radical quenching properties of the phenolic groups present in many chalcones have raised interest in using the compounds or chalcone-rich plant extracts as drugs or food preservatives (Dhar, 1981). Among the many useful properties that chalcones have been reported to possess include anti-inflammatory, antimicrobial, antifungal, antioxidant, cytotoxic and anticancer activities (Dimmock et al., 1999).

Many chalcones have been assessed for their high antimalarial activity, which is probably a result of Michael addition of nucleophilic species to the double bond of the enone (Troeberg et al., 2000; Ram et al., 2000). Chalcones are also finding applications as organic non-linear optical (NLO) materials due to their good SHG conversion efficiencies (Sarojini et al., 2006). Owing to the importance of these flavanoid analogs, the title chalcone (I), $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}$ has been synthesized and its crystal structure is reported here.
The title compound is a chalcone with 3-chlorophenyl and 4-chlorophenyl rings bonded at the opposite ends of a propenone group which is the biologically active region. The dihedral angle between mean planes of these two chlorosubstituted benzene rings is $46.7(7)^{\circ}$ compared to $46.0(1)^{\circ}$ in the bis-(4-chlorophenyl) analog (Wang et al., 2005) and 32.4 (1) ${ }^{\circ}$ in the (2-chlorophenyl, 4-chlorophenyl) analog (Fun et al., 2008b). The angles between the mean plane of the prop-2-ene-1-one group and the mean planes of the 3-chlorophenyl and 4-chlorophenyl rings are $24.1(2)^{\circ}$ and 29.63°, respectively. While no classical hydrogen bonds are present, weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$-ring interactions are observed which contribute to the stability of crystal packing (Table 1).

S2. Experimental

$50 \% \mathrm{KOH}$ was added to a mixture of 3-chloroacetophenone (0.01 mol) and p-chlorobenzaldehyde (0.01 mol) in 25 ml of ethanol. The mixture was stirred for an hour at room temperature and the precipitate was collected by filtration and purified by recrystallization from ethanol: yield 70%. Single crystals (m.p. 406-408 K) were grown from ethyl acetate by the slow evaporation method. Anal. found: C, $64.96 ; \mathrm{H}, 3.61 \%$; calc. for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}: \mathrm{C} 65.01 ; \mathrm{H}, 3.64 \%$.

S3. Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with $\mathrm{C}-\mathrm{H}=0.95 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.17-1.24 U_{\text {eq }}(\mathrm{C})$.

Figure 1

Molecular structure of the title compound (I) showing the atom labeling scheme and 50\% probability displacement ellipsoids.

Figure 2
Packing diagram of the title compound viewed down the a axis of the unit cell.
(2E)-1-(3-Chlorophenyl)-3-(4-chlorophenyl)prop-2-en-1-one

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}$
$M_{r}=277.13$
Triclinic, $P 1$
Hall symbol: -P 1
$a=5.8884$ (9) A
$b=7.3328$ (9) \AA
$c=14.6752(16) \AA$
$\alpha=102.821(10)^{\circ}$
$\beta=95.003(10)^{\circ}$
$\gamma=92.933(11)^{\circ}$
$V=613.88(14) \AA^{3}$

$$
\begin{aligned}
& Z=2 \\
& F(000)=284 \\
& D_{\mathrm{x}}=1.499 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Melting point }=406-408 \mathrm{~K} \\
& \mathrm{Cu} K \alpha \text { radiation, } \lambda=1.54184 \AA \\
& \text { Cell parameters from } 2900 \text { reflections } \\
& \theta=6.2-73.9^{\circ} \\
& \mu=4.61 \mathrm{~mm}^{-1} \\
& T=110 \mathrm{~K} \\
& \text { Block, colorless } \\
& 0.53 \times 0.33 \times 0.28 \mathrm{~mm}
\end{aligned}
$$

Data collection

Oxford Diffraction Gemini R CCD
diffractometer
Radiation source: Enhance (Cu) X-ray Source
Graphite monochromator
Detector resolution: 10.5081 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
$T_{\min }=0.067, T_{\text {max }}=0.275$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.133$
$S=1.04$
2402 reflections
163 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

4041 measured reflections
2402 independent reflections
2147 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.035$
$\theta_{\text {max }}=73.9^{\circ}, \theta_{\text {min }}=6.2^{\circ}$
$h=-7 \rightarrow 7$
$k=-4 \rightarrow 9$
$l=-18 \rightarrow 18$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0992 P)^{2}+0.1931 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.48 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.39 \mathrm{e}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C11	$0.57079(8)$	$-0.05763(7)$	$0.10784(3)$	$0.0235(2)$
Cl2	$-0.09011(9)$	$0.72931(8)$	$0.93921(3)$	$0.0286(2)$
O1	$0.7088(2)$	$0.2250(2)$	$0.47821(10)$	$0.0233(4)$

C1	$0.3892(3)$	$0.1004(3)$
C2	$0.5165(3)$	$0.0748(3)$
H2A	0.6696	0.1269
C3	$0.4159(3)$	$-0.0275(3)$
C4	$0.1936(4)$	$-0.1087(3)$
H4A	0.1276	-0.1790
C5	$0.0704(3)$	$-0.0849(3)$
H5A	-0.0810	-0.1409
C6	$0.1652(3)$	$0.0201(3)$
H6A	0.0777	0.0371
C7	$0.5008(3)$	$0.2095(3)$
C8	$0.3516(3)$	$0.2980(3)$
H8A	0.1959	0.3100
C9	$0.4301(3)$	$0.3613(3)$
H9A	0.5857	0.3439
C10	$0.3008(3)$	$0.4551(3)$
C11	$0.3922(3)$	$0.4779(3)$
H11A	0.5390	0.4357
C12	$0.2738(3)$	$0.5603(3)$
H12A	0.3365	0.5729
C13	$0.0614(4)$	$0.6243(3)$
C14	$-0.0325(3)$	$0.6083(3)$
H14A	-0.1765	0.6555
C15	$0.0860(3)$	$0.5226(3)$
H15A	0.0213	0.5094
H		

$0.36950(14)$	$0.0161(4)$
$0.29158(14)$	$0.0154(4)$
0.2980	0.019^{*}
$0.20525(14)$	$0.0164(4)$
$0.19394(15)$	$0.0203(4)$
0.1343	0.024^{*}
$0.27143(15)$	$0.0198(4)$
0.2649	0.024^{*}
$0.35873(14)$	$0.0179(4)$
0.4110	0.021^{*}
$0.46235(14)$	$0.0177(4)$
$0.53315(14)$	$0.0191(4)$
0.5139	0.023^{*}
$0.62341(14)$	$0.0169(4)$
0.6403	0.020^{*}
$0.69935(14)$	$0.0161(4)$
$0.79294(14)$	$0.0174(4)$
0.8058	0.021^{*}
$0.86707(14)$	$0.0202(4)$
0.9302	0.024^{*}
$0.84698(14)$	$0.0189(4)$
$0.75532(14)$	$0.0177(4)$
0.7430	0.021^{*}
$0.68181(14)$	$0.0167(4)$
0.6189	0.020^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	$0.0286(3)$	$0.0275(3)$	$0.0145(3)$	$0.0029(2)$	$0.0075(2)$	$0.0028(2)$
C12	$0.0267(3)$	$0.0389(4)$	$0.0174(3)$	$0.0087(2)$	$0.0064(2)$	$-0.0026(2)$
O1	$0.0188(7)$	$0.0308(9)$	$0.0191(7)$	$0.0014(6)$	$0.0024(6)$	$0.0028(6)$
C1	$0.0191(9)$	$0.0144(9)$	$0.0156(10)$	$0.0038(7)$	$0.0033(7)$	$0.0041(7)$
C2	$0.0154(9)$	$0.0139(9)$	$0.0177(10)$	$0.0025(7)$	$0.0025(7)$	$0.0045(7)$
C3	$0.0193(10)$	$0.0154(9)$	$0.0154(9)$	$0.0045(7)$	$0.0053(7)$	$0.0035(7)$
C4	$0.0231(10)$	$0.0164(10)$	$0.0196(10)$	$0.0005(8)$	$-0.0013(8)$	$0.0017(8)$
C5	$0.0162(9)$	$0.0168(10)$	$0.0264(11)$	$-0.0002(8)$	$0.0005(8)$	$0.0063(8)$
C6	$0.0169(9)$	$0.0189(10)$	$0.0201(10)$	$0.0038(8)$	$0.0066(7)$	$0.0067(8)$
C7	$0.0205(10)$	$0.0182(10)$	$0.0160(10)$	$0.0031(8)$	$0.0048(7)$	$0.0055(8)$
C8	$0.0193(10)$	$0.0214(10)$	$0.0167(10)$	$0.0041(8)$	$0.0049(7)$	$0.0029(8)$
C9	$0.0181(9)$	$0.0142(9)$	$0.0194(10)$	$0.0007(7)$	$0.0053(7)$	$0.0047(8)$
C10	$0.0182(10)$	$0.0132(9)$	$0.0168(10)$	$-0.0016(7)$	$0.0038(7)$	$0.0031(7)$
C11	$0.0183(10)$	$0.0147(10)$	$0.0183(10)$	$-0.0002(7)$	$0.0010(7)$	$0.0026(7)$
C12	$0.0230(10)$	$0.0213(10)$	$0.0148(9)$	$0.0004(8)$	$0.0007(7)$	$0.0015(8)$
C13	$0.0216(10)$	$0.0174(10)$	$0.0167(10)$	$-0.0002(8)$	$0.0067(8)$	$0.0006(7)$
C14	$0.0169(9)$	$0.0150(10)$	$0.0211(10)$	$0.0006(7)$	$0.0033(7)$	$0.0036(8)$
C15	$0.0194(10)$	$0.0162(10)$	$0.0142(9)$	$-0.0004(8)$	$0.0014(7)$	$0.0034(7)$

Geometric parameters ($A,{ }^{\circ}$)

C11-C3	1.7414 (19)	C8-C9	1.335 (3)
C12-C13	1.743 (2)	C8-H8A	0.9500
O1-C7	1.221 (2)	C9-C10	1.469 (3)
C1-C6	1.398 (3)	C9-H9A	0.9500
C1-C2	1.405 (3)	C10-C11	1.401 (3)
C1-C7	1.495 (3)	C10-C15	1.405 (3)
C2-C3	1.386 (3)	C11-C12	1.385 (3)
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9500	C11-H11A	0.9500
C3-C4	1.391 (3)	C12-C13	1.389 (3)
C4-C5	1.385 (3)	C12-H12A	0.9500
C4-H4A	0.9500	C13-C14	1.386 (3)
C5-C6	1.393 (3)	C14-C15	1.386 (3)
C5-H5A	0.9500	C14-H14A	0.9500
C6-H6A	0.9500	C15-H15A	0.9500
C7-C8	1.480 (3)		
C6- $\mathrm{C} 1-\mathrm{C} 2$	119.42 (18)	C7-C8-H8A	119.1
C6- $\mathrm{C} 1-\mathrm{C} 7$	122.00 (17)	C8-C9-C10	126.68 (19)
C2-C1-C7	118.57 (17)	C8-C9-H9A	116.7
C3-C2-C1	119.19 (17)	C10-C9-H9A	116.7
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	120.4	C11-C10-C15	118.27 (19)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	120.4	C11-C10-C9	119.40 (18)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	121.81 (18)	C15-C10-C9	122.33 (18)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{Cl} 1$	119.60 (15)	C12-C11-C10	121.58 (19)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{Cl} 1$	118.59 (16)	C12-C11-H11A	119.2
C5-C4-C3	118.61 (19)	C10-C11-H11A	119.2
C5-C4-H4A	120.7	C11-C12-C13	118.49 (19)
C3-C4-H4A	120.7	C11-C12-H12A	120.8
C4-C5-C6	120.93 (18)	$\mathrm{C} 13-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$	120.8
C4-C5-H5A	119.5	C14-C13-C12	121.62 (19)
C6-C5-H5A	119.5	C14-C13-Cl2	119.12 (16)
C5-C6-C1	120.02 (18)	C12-C13-Cl2	119.25 (16)
C5-C6-H6A	120.0	C15-C14-C13	119.30 (19)
C1-C6-H6A	120.0	C15-C14-H14A	120.4
O1-C7-C8	121.66 (19)	C13-C14-H14A	120.4
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 1$	120.42 (18)	C14-C15-C10	120.71 (18)
C8-C7-C1	117.93 (17)	C14-C15-H15A	119.6
C9-C8-C7	121.72 (19)	C10-C15-H15A	119.6
C9-C8-H8A	119.1		
C6-C1-C2-C3	1.0 (3)	C1-C7-C8-C9	164.85 (19)
C7-C1-C2-C3	179.45 (17)	C7-C8-C9-C10	178.46 (18)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-1.3 (3)	C8-C9-C10-C11	166.7 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{Cl} 1$	179.19 (14)	C8-C9-C10-C15	-12.9 (3)
C2-C3-C4-C5	0.4 (3)	C15-C10-C11-C12	1.6 (3)
Cl1-C3-C4-C5	179.94 (15)	C9-C10-C11-C12	-178.04 (17)

$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$0.8(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$-1.1(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$0.2(3)$
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-178.20(18)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7-\mathrm{O} 1$	$155.76(19)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{O} 1$	$-22.7(3)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 8$	$-24.7(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 8$	$156.89(18)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$-15.6(3)$

$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$-1.2(3)$
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$-0.4(3)$
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 12$	$-179.77(15)$
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$	$1.4(3)$
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$	$-179.14(14)$
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 10$	$-1.0(3)$
$\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 15-\mathrm{C} 14$	$-0.4(3)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 15-\mathrm{C} 14$	$179.15(17)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2 — \mathrm{H} 2 A \cdots C g 2^{\mathrm{i}}$	0.95	2.98	$3.608(2)$	125
$\mathrm{C} 5 — \mathrm{H} 5 A \cdots C g 2^{\mathrm{ii}}$	0.95	2.88	$3.488(2)$	126
$\mathrm{C} 14 — \mathrm{H} 14 A \cdots C g 1^{\mathrm{iii}}$	0.95	2.77	$3.474(2)$	131

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $-x,-y,-z+1$; (iii) $-x,-y+1,-z+1$.

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2009).

