## Acta Crystallographica Section E

## Structure Reports <br> Online

ISSN 1600-5368

## 4, $4^{\prime}$-Bipyridinium bis(oxalato- $\kappa^{2} O^{1}, O^{2}$ )cuprate(II): an ion-pair complex

Lai-Jun Zhang, ${ }^{\text {a,b* }}$ Xing-Can Shen ${ }^{\mathrm{c}}$ and Hong Liang ${ }^{\mathrm{c}}$<br>${ }^{\text {a }}$ Department of Chemistry, Shangrao Normal University, Shangrao 334001, People's Republic of China, ${ }^{\mathbf{b}}$ School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China, and 'Key Laboratory of Medicinal Chemical Resources and Molecular Engineering, School of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin 541004, People's Republic of China<br>Correspondence e-mail: ljzhang@sru.jx.cn<br>Received 14 September 2009; accepted 26 September 2009<br>Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; $R$ factor $=0.027 ; w R$ factor $=0.073$; data-to-parameter ratio $=10.2$.

The title compound, $\left(\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\right]$ or $\left(4,4^{\prime}-\mathrm{H}_{2} \mathrm{bpy}\right)$ $\left[\mathrm{Cu}(\mathrm{ox})_{2}\right]$ (bpy is $4,4^{\prime}$-bipyridine and ox is oxalate), is an ionpair complex comprising a protonated $4,4^{\prime}$-bipyridinium dication and a square-planar dioxalatocopper(II) dianion. In the centrosymmetric dianion, the $\mathrm{Cu}^{\mathrm{II}}$ centre is coordinated by four O atoms from the two dicrete oxalate ligands $[\mathrm{Cu}-\mathrm{O}=$ 1.9245 (19) and 1.9252 (17) $\AA$ ], while the planar dications are also centrosymmetric. Inter-species $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the cations and anions into one-dimensional chains and, together with weak intra-ion $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions, give a two-dimensional sheet structure.

## Related literature

For related background, see: Ren et al. (2007). For related structures, see, for example: Bukowska-Strzyzewska \& Tosik (1979); Crawford et al. (2004); Diallo et al. (2008); Dou et al. (2007); Madhu \& Das (2004); Näther et al. (2001); Tosik et al. (1990); Willett et al. (2006).



## Experimental

Crystal data
$\left(\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\right]$
$M_{r}=397.79$
Triclinic, $P \overline{1}$
$a=3.6900(7) \AA$
$b=9.950(2) \AA$
$c=10.230(2) \AA$
$\alpha=113.77$ (3) ${ }^{\circ}$
$\beta=98.43$ (3) ${ }^{\circ}$
$\gamma=97.89(3)^{\circ}$
$V=331.93(15) \AA^{3}$
$Z=1$
Mo $K \alpha$ radiation
$\mu=1.70 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.41 \times 0.27 \times 0.22 \mathrm{~mm}$

## Data collection

Bruker APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2005)
$T_{\text {min }}=0.527, T_{\text {max }}=0.705$
1761 measured reflections 1168 independent reflections 1126 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.013$

## Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.073$

## 115 parameters

H -atom parameters constrained
$S=1.09$
1168 reflections
$\Delta \rho_{\text {max }}=0.30 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.29 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ( $\AA,^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | D-H | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 4^{\mathrm{i}}$ | 0.86 | 2.02 | 2.755 (3) | 143 |
| $\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 1^{\text {i }}$ | 0.86 | 2.21 | 2.880 (3) | 135 |
| $\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{O} 4^{\text {ii }}$ | 0.93 | 2.49 | 3.381 (3) | 160 |
| $\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O} 3^{\text {ii }}$ | 0.93 | 2.57 | 3.195 (3) | 125 |
| $\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O}$ | 0.93 | 2.42 | 3.272 (3) | 153 |
| C5-H5 . O 1 | 0.93 | 2.46 | 3.215 (3) | 138 |

Symmetry codes: (i) $-x+2,-y+1,-z+1$; (ii) $x+1, y, z-1$.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINTPlus (Bruker, 2005); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We are grateful for the support of the National Natural Science Foundation of China (No. 20701010), the Natural Science Foundation of Guangxi Province (No. 0728094) and the Department of Education of Jiangxi Province [grant No. GanJiaoJiZi (2007)348].

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2010).

## References

Bruker (2005). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bukowska-Strzyzewska, M. \& Tosik, A. (1979). Pol. J. Chem. 53, 2423-2428.
Crawford, P. C., Gillon, A. L., Green, J., Orpen, A. G., Podesta, T. J. \& Pritchard, S. V. (2004). CrystEngComm, 6, 419-428.
Diallo, M., Tamboura, F. B., Gaye, M., Barry, A. H. \& Bah, Y. (2008). Acta Cryst. E64, m1124-m1125.
Dou, Q.-Q., He, Y.-K., Zhang, L.-T. \& Han, Z.-B. (2007). Acta Cryst. E63, m2908-m2909.
Madhu, V. \& Das, S. K. (2004). Polyhedron, 23, 1235-1242.
Näther, C., Jess, I. \& Bolte, M. (2001). Acta Cryst. E57, m78-m79.

## metal-organic compounds

Ren, H., Xu, J.-N., Yu, L.-X., Ye, J.-W., Bi, M.-H., Zhang, P. \& Song, T.-Y. (2007). Chem. J. Chin. Univ. 28, 1014-1017.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Tosik, A. M., Bukowska-Strzyzewska, M. \& Mrozinski, J. (1990). J. Coord. Chem. 21, 253-261.
Willett, R. D., Butcher, R. E., Landee, C. P. \& Twamley, B. (2006). Polyhedron, 25, 2093-2100.

## supporting information

Acta Cryst. (2009). E65, m1276-m1277 [https://doi.org/10.1107/S1600536809039117]

## 4,4'-Bipyridinium bis(oxalato- $\kappa^{2} O^{1}, O^{2}$ )cuprate(II): an ion-pair complex

Lai-Jun Zhang, Xing-Can Shen and Hong Liang

## S1. Comment

Currently, in situ chemical reactions are of considerable interest, providing a powerful route for the preparation of novel crystals with unexpected structures, e.g. Ren et al. (2007) has reported the hydrothermal synthesis of a new coordination polymer $\left[\mathrm{Cu}(\mathrm{ox})\left(4,4^{\prime}-\text { bpy }\right)\right]_{\mathrm{n}}$ (bpy $=4,4^{\prime}-$ bipyridine; ox $=$ oxalate ${ }^{2-}$ ) resulting from the decomposition of furan- 2 -carboxylic acid to give the ox ${ }^{2-}$ ligand in the reaction of this acid with $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and $4,4^{\prime}$-bpy. In the work reported here, a novel ion-pair complex, ( $\left.4,4^{\prime}-\mathrm{H}_{2} \mathrm{bpy}\right)\left[\mathrm{Cu}(\mathrm{ox})_{2}\right]$ (I) was obtained by using sodium 2-hydroxyphosphonocarboxylate as the ox ${ }^{2-}$ source and $\mathrm{CuCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$ as the copper source. Copper(II) is a relatively strong oxidant with the ability to oxidise the sodium 2-hydroxyphosphonocarboxylic giving ox ${ }^{2-}$ which is generated in situ, resulting in formation of the title compound, the structure of which is reported here.
The structure of the (I) shows an ion-pair complex comprising a protonated 4,4'-bipyridine dication, (4,4'- $\mathrm{H}_{2}$ bpy $)^{2+}$ (Bukowska-Strzyzewska et al., 1979; Crawford et al., 2004; Dou et al., 2007; Madhu et al., 2004; Näther et al., 2001; Tosik et al., 1990; Willett et al., 2006), and a $\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\right]^{2-}$ anion (Fig. 1). The discrete bis-(oxalato)copper(II) dianions have square planar $\mathrm{CuO}_{4}$ stereochemistry, comprising four O donor atoms from two oxalate ligands [ $\mathrm{Cu}-\mathrm{O}, 1.9245$ (19), 1.9252 (17) $\AA$ ] and lie across inversion centres in the unit cell. In the axial sites, the $\mathrm{Cu}-\mathrm{O}_{\text {oxalate }}$ contacts are 2.920 (2) $\AA$. With the $4,4^{\prime}$-bipyridine dications, the pyridine rings are coplanar and also have crystallographic inversion symmetry. Interamolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1) link the cations and anions into one-dimensional chains and together with weak intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions give two-dimensional sheet structures which layer down the $a$ direction in the unit cell (Fig. 2).

## S2. Experimental

Sodium 2-hydroxyphosphonocarboxylate ( 1 mmol ) was dissolved in 10 ml of $50 \%$ ethanol-water after which 1 mmol of copper(II) chloride dihydrate and 1 mmol of $4,4^{\prime}$-bipyridine were added in sequence. After stirring for 10 min , the resulting mixture was transferred into a Teflon-lined stainless steel vessel ( 15 ml ) which was sealed and heated at $110^{\circ} \mathrm{C}$ for four days, then allowed to cool to room temperature. The blue-green single crystal blocks of the title compound (I), together with yellow-red prismatic crystals of a second unidentified component were obtained. The yield of (I) was $c a$. $25 \%$ (based on copper). IR ( $\left.\mathrm{cm}^{-1}, \mathrm{KBr}\right): 3439,3110,3060,2921,1665,1581,1487,1409,1273,12051106,1000,892$, 827, 798.

## S3. Refinement

All H atoms were geometrically placed and refined using a riding model approximation, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ or $\mathrm{N}-\mathrm{H}=$ $0.86 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.


Figure 1
Molecular configuration and atom numbering scheme for the discrete dication and dianion species in (I). Displacement ellipsoids are drawn at the $50 \%$ probability level. Both cation and anion have crystallographic inversion symmetry. Symmetry codes: (A) $-x+1,-y,-z$; (B) $-x,-y,-z+1$.


Figure 2
The two-dimensional hydrogen-bonded sheet structure of (I) showing intra- and intermolecular hydrogen bonds as dashed lines.

## 4,4'-Bipyridinium bis(oxalato- $\kappa^{2} O^{1}, O^{2}$ )cuprate(II)

## Crystal data

$\left(\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\right]$
$M_{r}=397.79$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=3.6900$ (7) $\AA$
$b=9.950(2) \AA$
$c=10.230(2) \AA$
$\alpha=113.77$ (3) ${ }^{\circ}$
$\beta=98.43(3)^{\circ}$
$\gamma=97.89(3)^{\circ}$
$V=331.93$ (15) $\AA^{3}$

## Data collection

Bruker APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube Graphite monochromator
$Z=1$
$F(000)=201$
$D_{\mathrm{x}}=1.990 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1168 reflections
$\theta=2.2-25.1^{\circ}$
$\mu=1.70 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, green-blue
$0.41 \times 0.27 \times 0.22 \mathrm{~mm}$
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\text {min }}=0.527, T_{\text {max }}=0.705$

1761 measured reflections
1168 independent reflections
1126 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.013$

## Refinement

Refinement on $F^{2}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.073$
$S=1.09$
1168 reflections
115 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

$$
\begin{aligned}
& \theta_{\max }=25.1^{\circ}, \theta_{\min }=2.2^{\circ} \\
& h=-4 \rightarrow 4 \\
& k=-9 \rightarrow 11 \\
& l=-11 \rightarrow 12
\end{aligned}
$$

## Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of $F^{2}$ against ALL reflections. The weighted $R$-factor $w R$ and goodness of fit $S$ are based on $F^{2}$, conventional $R$-factors $R$ are based on $F$, with $F$ set to zero for negative $F^{2}$. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating $R$-factors(gt) etc. and is not relevant to the choice of reflections for refinement. $R$-factors based on $F^{2}$ are statistically about twice as large as those based on $F$, and $R$ - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $\AA^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }} * / U_{\text {eq }}$ |
| :--- | :--- | :--- | :--- | :--- |
| Cu1 | 0.0000 | 0.0000 | 0.5000 | $0.02273(16)$ |
| C1 | $0.9693(6)$ | $0.2924(3)$ | $0.0264(3)$ | $0.0263(5)$ |
| H1 | 1.0658 | 0.3392 | -0.0273 | $0.032^{*}$ |
| C2 | $0.7599(6)$ | $0.1481(3)$ | $-0.0443(3)$ | $0.0228(5)$ |
| H2 | 0.7140 | 0.0971 | -0.1459 | $0.027^{*}$ |
| C3 | $0.6154(6)$ | $0.0779(2)$ | $0.0367(2)$ | $0.0182(4)$ |
| C4 | $0.6955(7)$ | $0.1599(3)$ | $0.1887(3)$ | $0.0265(5)$ |
| H4 | 0.6054 | 0.1165 | 0.2461 | $0.032^{*}$ |
| C5 | $0.9057(7)$ | $0.3037(3)$ | $0.2534(3)$ | $0.0312(6)$ |
| H5 | 0.9580 | 0.3582 | 0.3547 | $0.037^{*}$ |
| C6 | $0.4733(6)$ | $0.2586(3)$ | $0.5616(3)$ | $0.0232(5)$ |
| C7 | $0.3414(6)$ | $0.2770(3)$ | $0.7045(2)$ | $0.0224(5)$ |
| N1 | $1.0353(5)$ | $0.3657(2)$ | $0.1713(2)$ | $0.0273(4)$ |
| H1A | 1.1664 | 0.4564 | 0.2135 | $0.033^{*}$ |
| O1 | $0.6801(5)$ | $0.3636(2)$ | $0.5609(2)$ | $0.0342(4)$ |
| O2 | $0.3514(5)$ | $0.12699(19)$ | $0.45407(17)$ | $0.0286(4)$ |
| O3 | $0.1187(5)$ | $0.16185(19)$ | $0.69418(18)$ | $0.0265(4)$ |
| O4 | $0.4569(5)$ | $0.39568(19)$ | $0.81441(18)$ | $0.0313(4)$ |

Atomic displacement parameters $\left(\AA^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Cu1 | $0.0285(2)$ | $0.0171(2)$ | $0.0166(2)$ | $-0.00496(16)$ | $0.00626(16)$ | $0.00411(17)$ |
| C1 | $0.0250(12)$ | $0.0251(12)$ | $0.0318(13)$ | $0.0015(10)$ | $0.0060(10)$ | $0.0167(11)$ |
| C2 | $0.0249(11)$ | $0.0219(12)$ | $0.0211(11)$ | $0.0009(9)$ | $0.0046(9)$ | $0.0102(10)$ |
| C3 | $0.0155(10)$ | $0.0184(11)$ | $0.0216(11)$ | $0.0041(9)$ | $0.0043(8)$ | $0.0095(9)$ |
| C4 | $0.0319(13)$ | $0.0245(12)$ | $0.0218(12)$ | $-0.0003(10)$ | $0.0082(10)$ | $0.0101(10)$ |
| C5 | $0.0360(14)$ | $0.0262(13)$ | $0.0237(13)$ | $-0.0002(11)$ | $0.0047(10)$ | $0.0059(11)$ |
| C6 | $0.0244(11)$ | $0.0224(12)$ | $0.0214(12)$ | $0.0018(9)$ | $0.0051(9)$ | $0.0092(10)$ |
| C7 | $0.0235(11)$ | $0.0221(12)$ | $0.0208(12)$ | $0.0022(9)$ | $0.0046(9)$ | $0.0096(10)$ |
| N1 | $0.0242(10)$ | $0.0160(10)$ | $0.0371(12)$ | $-0.0022(8)$ | $0.0040(9)$ | $0.0099(9)$ |
| O1 | $0.0425(10)$ | $0.0237(9)$ | $0.0309(10)$ | $-0.0083(8)$ | $0.0111(8)$ | $0.0101(8)$ |
| O2 | $0.0381(9)$ | $0.0205(8)$ | $0.0196(8)$ | $-0.0057(7)$ | $0.0102(7)$ | $0.0037(7)$ |
| O3 | $0.0332(9)$ | $0.0208(8)$ | $0.0198(8)$ | $-0.0059(7)$ | $0.0079(7)$ | $0.0062(7)$ |
| O4 | $0.0389(10)$ | $0.0203(9)$ | $0.0227(9)$ | $-0.0070(7)$ | $0.0063(7)$ | $0.0018(7)$ |
|  |  |  |  |  |  |  |

Geometric parameters ( $\AA,{ }^{\circ}$ )

| $\mathrm{Cu} 1-\mathrm{O} 3$ | 1.9245 (19) | C4-C5 | 1.367 (4) |
| :---: | :---: | :---: | :---: |
| $\mathrm{Cu} 1-\mathrm{O}^{\text {i }}$ | 1.9245 (19) | C4-H4 | 0.9300 |
| $\mathrm{Cu} 1-\mathrm{O}^{2}{ }^{\text {i }}$ | 1.9252 (17) | C5-N1 | 1.331 (3) |
| $\mathrm{Cu} 1-\mathrm{O} 2$ | 1.9252 (17) | C5-H5 | 0.9300 |
| C1-N1 | 1.327 (3) | C6-O1 | 1.210 (3) |
| $\mathrm{C} 1-\mathrm{C} 2$ | 1.369 (3) | C6-O2 | 1.288 (3) |
| C1-H1 | 0.9300 | C6-C7 | 1.557 (3) |
| C2-C3 | 1.397 (3) | C7-O4 | 1.221 (3) |
| C2-H2 | 0.9300 | C7-O3 | 1.272 (3) |
| C3-C4 | 1.395 (3) | N1—H1A | 0.8600 |
| $\mathrm{C} 3-\mathrm{C} 3{ }^{\text {ii }}$ | 1.485 (4) |  |  |
| $\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{O}^{\text {i }}$ | 180.0 | C5-C4-H4 | 119.9 |
| $\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{O}^{2}$ | 93.91 (7) | C3-C4-H4 | 119.9 |
| $\mathrm{O} 3-\mathrm{Cu}-\mathrm{O}^{\text {i }}$ | 86.09 (7) | N1-C5-C4 | 119.9 (2) |
| $\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{O} 2$ | 86.09 (7) | N1-C5-H5 | 120.1 |
| $\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{O} 2$ | 93.91 (7) | C4-C5-H5 | 120.1 |
| $\mathrm{O} 2 \mathrm{C}-\mathrm{Cu} 1-\mathrm{O} 2$ | 180.00 (8) | O1-C6-O2 | 126.2 (2) |
| N1-C1-C2 | 120.4 (2) | O1-C6-C7 | 119.2 (2) |
| N1-C1-H1 | 119.8 | O2-C6-C7 | 114.60 (19) |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$ | 119.8 | O4-C7-O3 | 125.9 (2) |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ | 119.7 (2) | O4-C7-C6 | 119.3 (2) |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$ | 120.1 | O3-C7-C6 | 114.8 (2) |
| C3-C2-H2 | 120.1 | C1-N1-C5 | 122.3 (2) |
| $\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$ | 117.5 (2) | $\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$ | 118.9 |
| $\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 3{ }^{\text {ii }}$ | 121.4 (2) | C5-N1-H1A | 118.9 |


| $\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 3{ }^{\mathrm{ii}}$ | $121.1(3)$ | $\mathrm{C} 6-\mathrm{O} 2-\mathrm{Cu} 1$ | $111.74(14)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$ | $120.3(2)$ | $\mathrm{C} 7-\mathrm{O} 3-\mathrm{Cu} 1$ | $112.38(14)$ |

Symmetry codes: (i) $-x,-y,-z+1$; (ii) $-x+1,-y,-z$.

Hydrogen-bond geometry ( $\AA,{ }^{\circ}$ )

| $D — \mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D — \mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~N} 1 — \mathrm{H} 1 A \cdots \mathrm{O} 4^{\text {iii }}$ | 0.86 | 2.02 | $2.755(3)$ | 143 |
| $\mathrm{~N} 1 — \mathrm{H} 1 A \cdots 1^{\text {iii }}$ | 0.86 | 2.21 | $2.880(3)$ | 135 |
| $\mathrm{C} 1 — \mathrm{H} 1 \cdots \mathrm{O}^{\text {iv }}$ | 0.93 | 2.49 | $3.381(3)$ | 160 |
| $\mathrm{C} 2 — \mathrm{H} 2 \cdots \mathrm{O}^{\text {iv }}$ | 0.93 | 2.57 | $3.195(3)$ | 125 |
| $\mathrm{C} 4 — \mathrm{H} 4 \cdots \mathrm{O} 2$ | 0.93 | 2.42 | $3.272(3)$ | 153 |
| $\mathrm{C} 5 — \mathrm{H} 5 \cdots \mathrm{O} 1$ | 0.93 | 2.46 | $3.215(3)$ | 138 |

Symmetry codes: (iii) $-x+2,-y+1,-z+1$; (iv) $x+1, y, z-1$.

