

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-(4-Methoxyphenyl)-tert-butanesulfinamide

Mrityunjoy Datta,^a Alan J. Buglass^a* and Mark R. J. Elsegood^b

^aDepartment of Chemistry, Korea Advanced Institute of Science and Technology, Daeieon 305-701, Republic of Korea, and ^bChemistry Department, Loughborough University, Loughborough LE11 3TU, England Correspondence e-mail: ajbuglass@kaist.ac.kr

Received 14 October 2009; accepted 16 October 2009

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.002 Å; R factor = 0.039; wR factor = 0.108; data-to-parameter ratio = 25.4.

In the title compound, $C_{11}H_{17}NO_2S$, the molecules interact head-to-tail through N-H···OS hydrogen bonds, giving discrete centrosymmetric cyclic dimers. The $N-C_{arvl}$ bond length [1.4225 (14) Å] is intermediate between that in Nphenyl-tert-butanesulfinamide [1.4083 (12) Å] and the N-Calkyl bond lengths in N-alkylalkanesulfinamides (1.470-1.530 Å), suggesting weaker delocalization of electrons over the N atom and the aromatic ring due to the presence of the 4methoxy group.

Related literature

For N-arylalkanesulfinamides, see: Datta et al. (2008, 2009). For N-alkylalkanesulfinamides, see: Sato et al. (1975); Schuckmann et al. (1978); Ferreira et al. (2005). For the synthesis, see: Stretter et al. (1969).

Experimental

Crystal data $C_{11}H_{17}NO_2S$

 $M_r = 227.32$

Z = 8

Mo $K\alpha$ radiation

 $0.70 \times 0.37 \times 0.33 \text{ mm}$

26681 measured reflections 3659 independent reflections

3027 reflections with $I > 2\sigma(I)$

 $\mu = 0.25 \text{ mm}^{-1}$

T = 150 K

 $R_{\rm int} = 0.033$

Orthorhombic, Pbcn a = 19.6157 (11) Åb = 9.1034 (5) Å c = 13.3808 (7) Å V = 2389.4 (2) Å³

Data collection

Bruker APEXII CCD-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
$T_{\min} = 0.843, T_{\max} = 0.921$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2007) $T_{min} = 0.843, T_{max} = 0.921$

Refinement

R

wİ

S

36

14

$F^2 > 2\sigma(F^2)] = 0.039$	H atoms treated by a mixture of
$R(F^2) = 0.108$	independent and constrained
= 1.05	refinement
59 reflections	$\Delta \rho_{\rm max} = 0.37 \text{ e } \text{\AA}^{-3}$
4 parameters	$\Delta \rho_{\rm min} = -0.38 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1\cdotsO1^i$	0.867 (16)	2.062 (17)	2.9201 (14)	170.1 (14)
Symmetry code: (i)	-x + 1, -v + 2	-7.		

-x + 1, -y + 2, -z

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and local programs.

MD and AJB thank KAIST for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2015).

References

- Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Datta, M., Buglass, A. J. & Elsegood, M. R. J. (2009). Acta Cryst. E65, o2034. Datta, M., Buglass, A. J., Hong, C. S. & Lim, J. H. (2008). Acta Cryst. E64, 01393
- Ferreira, F., Audoin, M. & Chemla, F. (2005). Chem. Eur. J. 11, 5269-5278.
- Sato, S., Yoshioka, T. & Tamura, C. (1975). Acta Cryst. B31, 1385-1392.
- Schuckmann, W., Fuess, H., Mösinger, O. & Ried, W. (1978). Acta Cryst. B34, 1516-1520.
- Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stretter, H., Krause, M. & Last, W.-D. (1969). Chem. Ber. 102, 3357-3363.

supporting information

Acta Cryst. (2009). E65, o2823 [https://doi.org/10.1107/S1600536809042548]

N-(4-Methoxyphenyl)-tert-butanesulfinamide

Mrityunjoy Datta, Alan J. Buglass and Mark R. J. Elsegood

S1. Comment

The molecular structure of (I) (Fig. 1) indicates a short N— C_{aryl} bond (1.4225 (14) Å), in contrast with N— C_{alkyl} bonds in N-alkylalkenesulfinamides (1.470–1.530 Å) (Sato *et al.*, 1975; Schuckmann *et al.*, 1978; Ferreira *et al.*, 2005). However, the N- C_{aryl} bond in (I) is longer than its equivalent in N-phenyladamantane-1-sulfinamide (1.409 (2) Å) (Datta *et al.*, 2008) and N-phenyl-*tert*-butanesulfinamide (1.4083 (12) Å) (Datta *et al.*, 2009), suggesting weaker delocalization of electrons over N and the aromatic ring due to the presence of the *para*-methoxy group. The crystal packing shows an intermolecular head-to-tail cyclic interaction through N—H···OS hydrogen bonds, forming discrete centrosymmetric dimers (Fig. 2 and Table 1). There is no evidence of any formal hydrogen bonding involving the methoxy group, nor of weak intermolecular C—H···OS hydrogen bonding, as observed in the packing of N-phenyladamantane-1-sulfinamide (Datta *et al.*, 2008).

S2. Experimental

Compound (I) was prepared by the method of Stretter *et al.* (1969), using *tert*-butanesulfinyl chloride (281 mg, 2 mmol) and 4-methoxyaniline (492 mg, 4 mmol) in dry diethyl ether (30 ml). After 5 h reaction time (with TLC monitoring), the white solid amine salt was filtered off and the solvent was removed under reduced pressure. Column chromatography (silica gel, 1% methanol-dichloromethane) yielded (I) as colourless crystals (420 mg (92%), m.p. 384 K. Single crystals suitable for X-ray analysis were obtained by evaporation of a solution of (I) in diethyl ether at room temperature. Spectroscopic analysis: FTIR (KBr) (cm⁻¹) 3017, 1509, 1459, 1367, 1273, 1244, 1212, 1204, 1037, 866. ¹H NMR (400 MHz, CDCl₃, p.p.m. with respect to TMS) δ 6.96 (d, J = 8.8 Hz, 2H), 6.80 (d, J = 8.8 Hz, 2H), 5.20 (bs, 1H), 3.75 (s, 3H), 1.30 (s, 9H). ¹³C NMR (100 MHz, CDCl₃, p.p.m. with respect to TMS) δ 156.2, 134.8, 121.5, 114.6, 56.2. 55.5, 22.4. EIMS m/z (%) 228 (MH⁺, 42), 227 (*M*⁺, 55), 122 (*M*⁺ - 'BuSO, 100). These are the first recorded data for (I).

S3. Refinement

H atoms were located in a difference Fourier map and refined geometrically using a riding model except for N*H* for which the coordinates were freely refined. Bond lengths and displacement parameters were constrained as follows: C—H = 0.95-0.98 Å and with U_{iso} (H) = 1.2 (1.5 for CH₃) times U_{eq} (C, N).

Figure 1

Molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.

Figure 2

The centrosymmetric cyclic dimer of (I) in the crystal packing, showing intermolecular hydrogen bonding as dashed lines. Symmetry code: (i) -x + 1, -y + 2, -z.

N-(4-Methoxyphenyl)-tert-butanesulfinamide

Crystal data

C₁₁H₁₇NO₂S $M_r = 227.32$ Orthorhombic, *Pbcn* Hall symbol: -P 2n 2ab a = 19.6157 (11) Å b = 9.1034 (5) Å c = 13.3808 (7) Å V = 2389.4 (2) Å³ Z = 8F(000) = 976 $D_x = 1.264 \text{ Mg m}^{-3}$ Melting point: 384 K Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6992 reflections $\theta = 2.5-30.4^{\circ}$ $\mu = 0.25 \text{ mm}^{-1}$ T = 150 KBlock, colourless $0.70 \times 0.37 \times 0.33 \text{ mm}$ Data collection

Bruker APEXII CCD-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω rotation with narrow frames scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2007) $T_{\min} = 0.843, T_{\max} = 0.921$	26681 measured reflections 3659 independent reflections 3027 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$ $\theta_{max} = 30.6^{\circ}, \theta_{min} = 2.1^{\circ}$ $h = -27 \rightarrow 27$ $k = -13 \rightarrow 12$ $l = -18 \rightarrow 19$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.108$ S = 1.05 3659 reflections 144 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map	H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0614P)^{2} + 0.5032P]$ where P = $(F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.37$ e Å ⁻³ $\Delta\rho_{min} = -0.38$ e Å ⁻³ Extinction correction: SHELXL97>/i> (Sheldrick, 2008), Fc*=kFc[1+0.001xFc ² \lambda ³ /sin(2\theta)]^{-1/4}Extinction coefficient: 0.0049 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.55068 (4)	1.13801 (9)	0.06229 (6)	0.02755 (19)	
S 1	0.613894 (14)	1.06197 (3)	0.02673 (2)	0.02307 (10)	
N1	0.59358 (6)	0.89272 (11)	-0.01268 (8)	0.0256 (2)	
H1	0.5522 (8)	0.8854 (16)	-0.0349 (11)	0.031*	
C1	0.61179 (5)	0.77090 (13)	0.04831 (8)	0.0229 (2)	
C2	0.56489 (6)	0.65860 (12)	0.06430 (9)	0.0258 (2)	
H2	0.5208	0.6652	0.0353	0.031*	
C3	0.58165 (6)	0.53688 (13)	0.12200 (9)	0.0281 (2)	
H3	0.5491	0.4613	0.1328	0.034*	
C4	0.64632 (6)	0.52643 (13)	0.16383 (9)	0.0283 (2)	
C5	0.69388 (6)	0.63664 (14)	0.14644 (9)	0.0302 (3)	
H5	0.7383	0.6288	0.1743	0.036*	
C6	0.67709 (6)	0.75779 (13)	0.08881 (9)	0.0275 (2)	
H6	0.7101	0.8321	0.0768	0.033*	
O2	0.66770 (5)	0.41138 (10)	0.22206 (8)	0.0405 (2)	

C11	0.61629 (8)	0.32282 (15)	0.26749 (11)	0.0421 (3)
H11A	0.5832	0.3862	0.3014	0.063*
H11B	0.6374	0.2565	0.3162	0.063*
H11C	0.5930	0.2650	0.2160	0.063*
C7	0.63507 (6)	1.14369 (12)	-0.09505 (8)	0.0251 (2)
C8	0.57849 (6)	1.11814 (14)	-0.17123 (9)	0.0296 (2)
H8A	0.5877	1.1761	-0.2314	0.044*
H8B	0.5347	1.1482	-0.1425	0.044*
H8C	0.5767	1.0137	-0.1887	0.044*
C9	0.70236 (7)	1.07343 (15)	-0.12670 (11)	0.0351 (3)
H9A	0.6963	0.9670	-0.1330	0.053*
H9B	0.7373	1.0941	-0.0763	0.053*
H9C	0.7167	1.1142	-0.1912	0.053*
C10	0.64515 (7)	1.30746 (13)	-0.07418 (10)	0.0321 (3)
H10A	0.6645	1.3551	-0.1334	0.048*
H10B	0.6763	1.3198	-0.0175	0.048*
H10C	0.6011	1.3525	-0.0582	0.048*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0260 (4)	0.0291 (4)	0.0275 (4)	0.0000 (3)	0.0027 (3)	-0.0045 (3)
S1	0.02289 (15)	0.02413 (15)	0.02218 (15)	-0.00033 (9)	-0.00198 (9)	-0.00084 (9)
N1	0.0277 (5)	0.0220 (4)	0.0272 (5)	0.0001 (4)	-0.0057 (4)	0.0009 (4)
C1	0.0246 (5)	0.0237 (5)	0.0205 (5)	0.0034 (4)	0.0007 (4)	-0.0007 (4)
C2	0.0238 (5)	0.0256 (5)	0.0279 (5)	0.0019 (4)	-0.0032 (4)	-0.0012 (4)
C3	0.0282 (6)	0.0250 (5)	0.0310 (6)	-0.0009(4)	-0.0030 (4)	0.0013 (4)
C4	0.0305 (6)	0.0272 (5)	0.0272 (5)	0.0059 (5)	-0.0021 (4)	0.0017 (4)
C5	0.0229 (5)	0.0366 (6)	0.0310 (6)	0.0059 (5)	-0.0022 (4)	0.0030 (5)
C6	0.0220 (5)	0.0309 (6)	0.0295 (6)	0.0003 (4)	0.0022 (4)	0.0028 (4)
O2	0.0408 (5)	0.0357 (5)	0.0451 (6)	0.0047 (4)	-0.0105 (4)	0.0147 (4)
C11	0.0590 (9)	0.0309 (6)	0.0363 (7)	-0.0034 (6)	-0.0074 (6)	0.0087 (5)
C7	0.0251 (5)	0.0245 (5)	0.0256 (5)	-0.0002 (4)	0.0021 (4)	0.0009 (4)
C8	0.0336 (6)	0.0314 (6)	0.0238 (5)	-0.0004(5)	-0.0017 (4)	0.0017 (4)
C9	0.0274 (6)	0.0388 (7)	0.0392 (7)	0.0021 (5)	0.0070 (5)	-0.0028 (5)
C10	0.0339 (6)	0.0266 (5)	0.0358 (6)	-0.0045 (5)	0.0021 (5)	0.0007 (5)

Geometric parameters (Å, °)

01—S1	1.4977 (9)	O2—C11	1.4271 (18)	
S1—N1	1.6765 (10)	C11—H11A	0.9800	
S1—C7	1.8388 (11)	C11—H11B	0.9800	
N1—C1	1.4225 (14)	C11—H11C	0.9800	
N1—H1	0.867 (16)	С7—С8	1.5246 (16)	
C1—C2	1.3919 (16)	С7—С9	1.5267 (17)	
C1—C6	1.3960 (16)	C7—C10	1.5296 (16)	
С2—С3	1.3900 (16)	C8—H8A	0.9800	
С2—Н2	0.9500	C8—H8B	0.9800	

supporting information

C3—C4	1.3897 (17)	C8—H8C	0.9800
С3—Н3	0.9500	С9—Н9А	0.9800
C4—O2	1.3711 (14)	C9—H9B	0.9800
C4—C5	1.3896 (18)	С9—Н9С	0.9800
C5—C6	1.3854 (16)	C10—H10A	0.9800
С5—Н5	0.9500	C10—H10B	0.9800
С6—Н6	0.9500	C10—H10C	0.9800
00 110	019000		019000
01—S1—N1	109.15 (5)	O2—C11—H11C	109.5
01 - 1 - 07	106 35 (5)	$H_{11}A - C_{11} - H_{11}C$	109.5
N1 - S1 - C7	98 44 (5)	H11B-C11-H11C	109.5
C1 - N1 - S1	118 44 (8)	C8 - C7 - C9	112 33 (10)
C1 - N1 - H1	110.11(0) 111.8(10)	$C_{8} - C_{7} - C_{10}$	112.33(10) 111.40(10)
S1N1H1	111.0(10) 113.7(10)	C9-C7-C10	110.31 (10)
$C_2 C_1 C_6$	113.7(10) 118.05(11)	C^{8} C^{7} S^{1}	111.00 (8)
$C_2 = C_1 = C_0$	110.95 (11)	$C_{0} = C_{7} = S_{1}$	105 76 (8)
C_{2} C_{1} N_{1}	119.00(10) 121.32(11)	$C_{2} = C_{1} = S_{1}$	105.70(8)
$C_0 = C_1 = N_1$	121.32(11) 120.06(11)	$C_{10} - C_{7} - S_{1}$	103.17 (6)
$C_2 = C_2 = C_1$	120.90 (11)	$C/-C\delta$ -R δA	109.5
$C_3 = C_2 = H_2$	119.5	$C / - C \delta - H \delta B$	109.5
C1 = C2 = H2	119.5	H8A - C8 - H8B	109.5
C4 - C3 - C2	119.62 (11)	C/-C8-H8C	109.5
C4—C3—H3	120.2	H8A—C8—H8C	109.5
С2—С3—Н3	120.2	H8B—C8—H8C	109.5
O2—C4—C5	116.18 (11)	С7—С9—Н9А	109.5
O2—C4—C3	124.09 (11)	С7—С9—Н9В	109.5
C5—C4—C3	119.73 (11)	H9A—C9—H9B	109.5
C6—C5—C4	120.56 (11)	С7—С9—Н9С	109.5
С6—С5—Н5	119.7	Н9А—С9—Н9С	109.5
C4—C5—H5	119.7	Н9В—С9—Н9С	109.5
C5—C6—C1	120.14 (11)	C7—C10—H10A	109.5
С5—С6—Н6	119.9	C7—C10—H10B	109.5
С1—С6—Н6	119.9	H10A—C10—H10B	109.5
C4—O2—C11	117.22 (11)	C7—C10—H10C	109.5
O2-C11-H11A	109.5	H10A—C10—H10C	109.5
O2—C11—H11B	109.5	H10B-C10-H10C	109.5
H11A—C11—H11B	109.5		
O1—S1—N1—C1	-106.05 (9)	C4—C5—C6—C1	0.60 (19)
C7—S1—N1—C1	143.29 (9)	C2-C1-C6-C5	-1.93 (17)
S1—N1—C1—C2	135.83 (10)	N1—C1—C6—C5	-178.79 (11)
S1—N1—C1—C6	-47.33 (14)	C5—C4—O2—C11	160.40 (12)
C6—C1—C2—C3	1.88 (17)	C3—C4—O2—C11	-20.22(18)
N1—C1—C2—C3	178.79 (11)	O1—S1—C7—C8	-61.74 (9)
C1—C2—C3—C4	-0.47 (18)	N1—S1—C7—C8	51.16 (9)
C2-C3-C4-O2	179.75 (12)	01-51-67-69	175.89 (8)
C2-C3-C4-C5	-0.89(18)	N1 - S1 - C7 - C9	-71.21(9)
02-C4-C5-C6	-179.76 (11)	01 - 51 - 67 - 610	59.13 (9)
C_{3} C_{4} C_{5} C_{6}	0.83 (19)	N1 - S1 - C7 - C10	172.03 (8)
	····		······

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	$D \cdots A$	D—H···A
N1—H1···O1 ⁱ	0.867 (16)	2.062 (17)	2.9201 (14)	170.1 (14)

Symmetry code: (i) -x+1, -y+2, -z.