metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1514-m1515

Tetra­kis(quinolin-8-olato-κ2N,O)hafnium(IV) toluene disolvate

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: viljoenja@ufs.ac.za

(Received 19 October 2009; accepted 20 October 2009; online 4 November 2009)

In the title compound, [Hf(C9H6NO)4]·2C7H8, the hafnium metal centre is coordinated by four N,O-donating bidentate quinolin-8-olate ligands arranged to give a square-anti­prismatic coordination polyhedron with a slightly distorted dodeca­hedral geometry. The average Hf—O and Hf—N distances are 2.096 (3) and 2.398 (3) Å, respectively, and the average O—Hf—N bite angle is 70.99 (11)°. The crystal packing is controlled by ππ inter­actions between quinoline ligands of neighbouring mol­ecules and hydrogen-bonding inter­actions. The inter­planar distances vary between 3.138 (1) and 3.208 (2) Å, while the centroid–centroid distances range from 3.576 (1) to 4.074 (1) Å.

Related literature

For a Zr analogue of the title compound, see: Lewis & Fay (1974[Lewis, D. F. & Fay, R. C. (1974). J. Chem. Soc. Chem. Commun. pp. 1046-1047.]). For hafnium and zirconium β-diketonato complexes, see: Viljoen et al. (2008[Viljoen, J. A., Muller, A. & Roodt, A. (2008). Acta Cryst. E64, m838-m839.], 2009[Viljoen, J. A., Visser, H. G., Roodt, A. & Steyn, M. (2009). Acta Cryst. E65, m1367-m1368.]); Demakopoulos et al. (1995[Demakopoulos, I., Klouras, N., Raptopoulou, C. P. & Terzis, A. (1995). Z. Anorg. Allg. Chem. 621, 1761-1766.]), Zherikova et al. (2005[Zherikova, K. V., Morozova, N. B., Kurateva, N. V., Baidina, I. A., Stabnikov, P. A. & Igumenov, I. K. (2005). J. Struct. Chem. 46, 1039-1046.], 2006[Zherikova, K. V., Morozova, N. B., Baidina, I. A., Peresypkina, E. V. & Igumenov, I. K. (2006). J. Struct. Chem. 47, 570-574.], 2008[Zherikova, K. V., Baidina, I. A., Morozova, N. B., Kurateva, N. V. & Igumenov, I. K. (2008). J. Struct. Chem. 49, 1098-1103.]); Steyn et al. (2008[Steyn, M., Roodt, A. & Steyl, G. (2008). Acta Cryst. E64, m827.]); Calderazzo et al. (1998[Calderazzo, F., Englert, U., Maichle-Mossmer, C., Marchetti, F., Pampaloni, G., Petroni, D., Pinzino, C., Strahle, J. & Tripepi, G. (1998). Inorg. Chim. Acta, 270, 177-188.]).

[Scheme 1]

Experimental

Crystal data
  • [Hf(C9H6NO)4]·2C7H8

  • Mr = 939.35

  • Triclinic, [P \overline 1]

  • a = 11.3323 (5) Å

  • b = 12.5539 (5) Å

  • c = 15.7126 (7) Å

  • α = 69.746 (2)°

  • β = 69.700 (2)°

  • γ = 75.787 (2)°

  • V = 1946.79 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.73 mm−1

  • T = 100 K

  • 0.22 × 0.10 × 0.04 mm

Data collection
  • Bruker X8 APEXII 4K Kappa CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.585, Tmax = 0.899

  • 22928 measured reflections

  • 8458 independent reflections

  • 7551 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.100

  • S = 1.04

  • 8458 reflections

  • 534 parameters

  • H-atom parameters constrained

  • Δρmax = 1.16 e Å−3

  • Δρmin = −0.81 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C105—H105⋯O1i 0.93 2.56 3.467 (5) 166
Symmetry code: (i) x, y+1, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SIR92 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

This study forms part of an ongoing researh project that investigates the chelating behaviour of O,O'- and O,N-bidentate ligands with hafnium(IV) and zirconium(IV) for possible separation of these two metals (Viljoen et al. 2008, 2009). The total separation of zircon ore(ZrSiO4), which contains traces of hafnium, is of most importance for nucleur aplications. A few hafnium complexes containing β-diketonato ligands have been reported by others (Zherikova et al. (2008); Demakopoulos et al. (1995)). An analogous zirconium complex has been reported by Lewis & Fay (1974).

The title compound [Hf(C9H6NO)4].2(C7H8), where C9H6NO ( Ox-) = 8-hydroxyquinoline and C7H8 = toluene, crystallizes in the form of yellow plate-like crystals of in the triclinic system (P1, Z=2) (Figure 1) with two toluene solvent molecules in the asymmetric unit. The HfIV atom is eight coordinated and surrounded by four chelating β-diketonato Ox- ligands to give a square antiprismatic coordination polyhedron with a slight distortion towards a dodecahedral geometry. The Hf—O and Hf—N bond lengths vary from 2.085 (3) Å to 2.103 (3) Å and 2.391 (3) Å to 2.404 (3) Å, respectivily, and the O—Hf—N bite angles vary from 70.73 (11)° to 71.16 (11)° . The dihedral angle between the two phenyl rings in the quinoline ligands are all less than 1°, indicating a negligible distortion due to coordination or packing. The molecular units are connected by π-π interactions between different quinoline ligands of neighbouring molecules to produce a three dimensional network, with interplaner distances varying between 3.138 (1) Å and 3.208 (2) Å and centroid-to-centroid distances from 3.576 (1) Å and 4.074 (1) Å (see Figure 2). Lastly, a strong C—H···O hydrogen bonding interaction is observed between a solvent molecule and one of the oxygen atoms from a neighbouring metallic molecular group (see Table 1).

Related literature top

For a Zr analogue of the title compound, see: Lewis & Fay (1974). For hafnium and zirconium β-diketonato complexes, see: Viljoen et al. (2008, 2009); Demakopoulos et al. (1995), Zherikova et al. (2005, 2006); Steyn et al. (2008); Calderazzo et al. (1998).

For related literature, see: Zherikova et al. (2008).

Experimental top

Chemicals were purchased from Sigma and Aldrich and used as received except for toluene which was dried by passage over alumina. Syntheses were perfomed using modified Schlenk conditions. OxH (0.369 g, 254 mmol) was added to a suspension of HfCl4 (0.201 g, 0.63 mmol) in toluene (10 ml). The dissolution turned into a slightly yellow solution after 10 min, and after refluxing for ca 20 h, the crude product was filtered and washed with toluene. The filtrate was slowly recrystallized at 253 K at near qauntitative yield. Spectroscopy data: 1H NMR (Benzene-d6;):δ = 6.70 (d, 1H, J = 6 Hz), 7.29 (dd, 2H, J = 7.8 Hz, 6 Hz), 7.36 (t, 2H, J = 7.8 Hz), 8.13 (d, 1H, J = 7.2 Hz); IR (ATR): ν(CO) 1659 cm-1.

Refinement top

The aromatic, methine, and methyl H atoms were placed in geometrically idealized positions (C—H = 0.93–0.98) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) for aromatic and methine, and Uiso(H) = 1.5Ueq(C) for methyl protons. Torsion angles for methyl protons were refined from electron density. The highest residual electron density was located 2.34 Å from H311 and was essentially meaningless.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Representation of the title compound (I), showing the numbering scheme and displacement ellipsoids (50% probability). H atoms omitted for clarity.
[Figure 2] Fig. 2. Graphical illustration of π-π interaction and stacking between different quinoline ligands of neighbouring molecules to produce a three dimensional network (displacement ellipsoids at the 50% probability level, H atoms omitted for clarity). Symmetry codes: (') 1 - x, -y, 1 - z; (") 1 - x, 1 - y, 1 - z.
Tetrakis(quinolin-8-olato-κ2N,O)hafnium(IV) toluene disolvate top
Crystal data top
[Hf(C9H6NO)4]·2C7H8Z = 2
Mr = 939.35F(000) = 944
Triclinic, P1Dx = 1.602 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.3323 (5) ÅCell parameters from 9377 reflections
b = 12.5539 (5) Åθ = 2.6–28.1°
c = 15.7126 (7) ŵ = 2.73 mm1
α = 69.746 (2)°T = 100 K
β = 69.700 (2)°Plate, yellow
γ = 75.787 (2)°0.22 × 0.10 × 0.04 mm
V = 1946.79 (14) Å3
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
8458 independent reflections
Radiation source: fine-focus sealed tube7551 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω and ϕ scansθmax = 27°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1414
Tmin = 0.585, Tmax = 0.899k = 1616
22928 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0618P)2]
where P = (Fo2 + 2Fc2)/3
8458 reflections(Δ/σ)max = 0.002
534 parametersΔρmax = 1.16 e Å3
0 restraintsΔρmin = 0.81 e Å3
Crystal data top
[Hf(C9H6NO)4]·2C7H8γ = 75.787 (2)°
Mr = 939.35V = 1946.79 (14) Å3
Triclinic, P1Z = 2
a = 11.3323 (5) ÅMo Kα radiation
b = 12.5539 (5) ŵ = 2.73 mm1
c = 15.7126 (7) ÅT = 100 K
α = 69.746 (2)°0.22 × 0.10 × 0.04 mm
β = 69.700 (2)°
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
8458 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
7551 reflections with I > 2σ(I)
Tmin = 0.585, Tmax = 0.899Rint = 0.044
22928 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.04Δρmax = 1.16 e Å3
8458 reflectionsΔρmin = 0.81 e Å3
534 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.0301 (4)0.2510 (4)0.5067 (3)0.0187 (9)
H110.06710.31580.46650.022*
C120.0455 (4)0.2069 (4)0.4758 (3)0.0221 (10)
H120.0570.24150.41590.026*
C130.1014 (5)0.1134 (4)0.5345 (3)0.0237 (10)
H130.14980.08290.51390.028*
C140.0872 (4)0.0617 (4)0.6263 (3)0.0184 (9)
C150.1430 (5)0.0332 (4)0.6941 (4)0.0244 (10)
H150.1950.06780.68010.029*
C160.1200 (5)0.0747 (4)0.7813 (3)0.0239 (10)
H160.15730.13760.82560.029*
C170.0420 (4)0.0252 (4)0.8055 (3)0.0200 (9)
H170.02930.05490.86520.024*
C180.0159 (4)0.0675 (3)0.7407 (3)0.0151 (8)
C190.0091 (4)0.1124 (3)0.6511 (3)0.0125 (8)
C210.1816 (4)0.2455 (3)0.8712 (3)0.0158 (9)
H210.25330.19010.86580.019*
C220.1269 (5)0.2752 (4)0.9567 (3)0.0202 (9)
H220.16110.23861.00720.024*
C230.0237 (5)0.3580 (4)0.9650 (3)0.0205 (10)
H230.01150.37911.02090.025*
C240.0297 (4)0.4116 (4)0.8891 (3)0.0168 (9)
C250.1373 (5)0.4969 (4)0.8906 (3)0.0219 (10)
H250.17850.52190.94430.026*
C260.1805 (5)0.5423 (4)0.8124 (3)0.0249 (10)
H260.25150.59840.8140.03*
C270.1215 (4)0.5072 (3)0.7294 (3)0.0177 (9)
H270.15340.54030.67760.021*
C280.0158 (4)0.4235 (3)0.7253 (3)0.0151 (9)
C290.0305 (4)0.3765 (3)0.8060 (3)0.0139 (8)
C310.2648 (4)0.5148 (3)0.5866 (3)0.0148 (8)
H310.18850.53790.57120.018*
C320.3397 (5)0.5985 (4)0.5694 (3)0.0191 (9)
H320.31260.67560.54330.023*
C330.4522 (5)0.5659 (4)0.5911 (3)0.0203 (10)
H330.50250.62070.57960.024*
C340.4924 (4)0.4487 (4)0.6312 (3)0.0157 (9)
C350.6077 (4)0.4046 (4)0.6546 (3)0.0205 (9)
H350.66350.4540.64460.025*
C360.6377 (5)0.2882 (4)0.6923 (3)0.0224 (10)
H360.71370.25980.70790.027*
C370.5553 (4)0.2116 (4)0.7076 (3)0.0199 (9)
H370.57730.13360.7340.024*
C380.4435 (4)0.2497 (3)0.6844 (3)0.0147 (8)
C390.4106 (4)0.3707 (3)0.6462 (3)0.0137 (8)
C410.2922 (4)0.0275 (3)0.6404 (3)0.0124 (8)
H410.26270.04790.70620.015*
C420.3422 (4)0.1154 (3)0.5959 (3)0.0165 (9)
H420.34530.19190.63190.02*
C430.3857 (4)0.0878 (3)0.4999 (3)0.0152 (9)
H430.41850.14530.46980.018*
C440.3809 (4)0.0293 (3)0.4459 (3)0.0136 (8)
C450.4271 (4)0.0700 (3)0.3460 (3)0.0158 (9)
H450.46240.01830.31030.019*
C460.4198 (4)0.1852 (4)0.3018 (3)0.0163 (9)
H460.44870.21050.23610.02*
C470.3701 (4)0.2663 (3)0.3526 (3)0.0159 (9)
H470.36740.34410.32020.019*
C480.3249 (4)0.2319 (3)0.4504 (3)0.0121 (8)
C490.3295 (4)0.1114 (3)0.4969 (3)0.0115 (8)
C1010.4169 (5)0.8733 (4)0.9727 (4)0.0242 (10)
C1020.3554 (5)0.8060 (4)1.0597 (3)0.0287 (11)
H1020.40190.76091.10140.034*
C1030.2263 (5)0.8043 (4)1.0863 (4)0.0286 (11)
H1030.18710.75711.14490.034*
C1040.1550 (5)0.8725 (4)1.0261 (3)0.0233 (10)
H1040.06790.87161.04380.028*
C1050.2150 (5)0.9418 (4)0.9396 (3)0.0233 (10)
H1050.16780.98860.89880.028*
C1060.3449 (5)0.9423 (4)0.9129 (3)0.0197 (9)
H1060.38430.98950.85420.024*
C1070.5587 (5)0.8748 (5)0.9431 (4)0.0414 (14)
H10A0.57950.89760.98790.062*
H10B0.58360.92830.88140.062*
H10C0.60290.79960.94110.062*
C2010.2346 (5)0.6255 (4)0.8215 (3)0.0232 (10)
C2020.2835 (4)0.5123 (4)0.8235 (3)0.0206 (9)
H2020.2480.4740.79940.025*
C2030.3829 (5)0.4553 (4)0.8601 (3)0.0281 (11)
H2030.41450.37960.85990.034*
C2040.4356 (6)0.5098 (5)0.8971 (4)0.0394 (14)
H2040.50340.47120.92150.047*
C2050.3890 (7)0.6201 (5)0.8981 (4)0.0459 (17)
H2050.42390.65650.92420.055*
C2060.2888 (6)0.6785 (4)0.8601 (3)0.0389 (15)
H2060.25780.75420.86070.047*
C2070.1292 (5)0.6861 (4)0.7794 (4)0.0353 (13)
H20A0.16270.71320.71170.053*
H20B0.08670.75010.80390.053*
H20C0.06990.63440.79510.053*
N10.0504 (3)0.2037 (3)0.5909 (2)0.0148 (7)
N20.1342 (3)0.2939 (3)0.7981 (2)0.0140 (7)
N30.2993 (3)0.4043 (3)0.6239 (2)0.0141 (7)
N40.2853 (3)0.0823 (3)0.5933 (2)0.0130 (7)
O10.0910 (3)0.1197 (2)0.75695 (19)0.0144 (6)
O20.0440 (3)0.3817 (2)0.6519 (2)0.0141 (6)
O30.3619 (3)0.1828 (2)0.6929 (2)0.0142 (6)
O40.2786 (3)0.3022 (2)0.5050 (2)0.0134 (6)
Hf0.194221 (16)0.246881 (12)0.651652 (11)0.01143 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.016 (2)0.022 (2)0.018 (2)0.0016 (18)0.0059 (18)0.0054 (17)
C120.018 (3)0.032 (2)0.017 (2)0.000 (2)0.0085 (19)0.0083 (19)
C130.013 (2)0.031 (2)0.035 (3)0.0034 (19)0.013 (2)0.016 (2)
C140.013 (2)0.019 (2)0.027 (2)0.0022 (17)0.0079 (19)0.0091 (18)
C150.017 (3)0.024 (2)0.038 (3)0.0043 (19)0.010 (2)0.012 (2)
C160.020 (3)0.023 (2)0.028 (3)0.0068 (19)0.005 (2)0.0058 (19)
C170.018 (2)0.022 (2)0.018 (2)0.0031 (18)0.0045 (19)0.0058 (18)
C180.012 (2)0.0166 (19)0.016 (2)0.0025 (17)0.0006 (17)0.0075 (16)
C190.008 (2)0.0133 (18)0.016 (2)0.0005 (16)0.0033 (17)0.0050 (16)
C210.015 (2)0.0147 (19)0.018 (2)0.0002 (16)0.0058 (18)0.0057 (16)
C220.023 (3)0.024 (2)0.015 (2)0.0067 (19)0.0075 (19)0.0038 (18)
C230.021 (3)0.026 (2)0.014 (2)0.0077 (19)0.0015 (19)0.0096 (18)
C240.016 (2)0.020 (2)0.014 (2)0.0086 (18)0.0002 (18)0.0039 (17)
C250.022 (3)0.024 (2)0.019 (2)0.0049 (19)0.0013 (19)0.0109 (18)
C260.019 (3)0.024 (2)0.031 (3)0.0039 (19)0.005 (2)0.013 (2)
C270.013 (2)0.019 (2)0.018 (2)0.0046 (17)0.0010 (18)0.0038 (17)
C280.019 (2)0.0137 (18)0.014 (2)0.0060 (17)0.0025 (18)0.0040 (16)
C290.012 (2)0.0146 (19)0.016 (2)0.0055 (16)0.0013 (17)0.0053 (16)
C310.015 (2)0.0174 (19)0.015 (2)0.0035 (17)0.0039 (17)0.0075 (16)
C320.024 (3)0.016 (2)0.016 (2)0.0032 (18)0.0039 (19)0.0054 (17)
C330.026 (3)0.021 (2)0.017 (2)0.0075 (19)0.0012 (19)0.0105 (18)
C340.015 (2)0.021 (2)0.013 (2)0.0083 (17)0.0011 (17)0.0097 (17)
C350.017 (2)0.029 (2)0.021 (2)0.0114 (19)0.0008 (19)0.0129 (19)
C360.015 (2)0.032 (2)0.029 (3)0.0004 (19)0.008 (2)0.018 (2)
C370.019 (2)0.023 (2)0.022 (2)0.0014 (19)0.0065 (19)0.0122 (18)
C380.017 (2)0.0164 (19)0.015 (2)0.0048 (17)0.0049 (18)0.0077 (16)
C390.011 (2)0.020 (2)0.013 (2)0.0042 (17)0.0010 (17)0.0102 (16)
C410.009 (2)0.0159 (18)0.014 (2)0.0028 (16)0.0040 (16)0.0046 (16)
C420.015 (2)0.0141 (19)0.022 (2)0.0016 (17)0.0059 (18)0.0061 (17)
C430.007 (2)0.0175 (19)0.024 (2)0.0026 (16)0.0027 (17)0.0105 (17)
C440.011 (2)0.0152 (19)0.019 (2)0.0030 (16)0.0063 (17)0.0071 (16)
C450.014 (2)0.020 (2)0.018 (2)0.0010 (17)0.0032 (18)0.0129 (17)
C460.012 (2)0.026 (2)0.014 (2)0.0055 (18)0.0057 (17)0.0061 (17)
C470.016 (2)0.0165 (19)0.017 (2)0.0002 (17)0.0076 (18)0.0048 (16)
C480.008 (2)0.0155 (19)0.016 (2)0.0054 (16)0.0030 (16)0.0052 (16)
C490.013 (2)0.0126 (18)0.0120 (19)0.0058 (16)0.0041 (16)0.0036 (15)
C1010.022 (3)0.024 (2)0.029 (3)0.002 (2)0.008 (2)0.012 (2)
C1020.031 (3)0.028 (2)0.021 (3)0.002 (2)0.012 (2)0.002 (2)
C1030.032 (3)0.027 (2)0.021 (2)0.006 (2)0.005 (2)0.0017 (19)
C1040.016 (2)0.023 (2)0.032 (3)0.0052 (19)0.003 (2)0.012 (2)
C1050.029 (3)0.018 (2)0.029 (3)0.0045 (19)0.018 (2)0.0111 (19)
C1060.023 (3)0.017 (2)0.019 (2)0.0089 (18)0.0017 (19)0.0051 (17)
C1070.024 (3)0.051 (3)0.045 (4)0.005 (3)0.005 (3)0.014 (3)
C2010.027 (3)0.021 (2)0.013 (2)0.012 (2)0.0096 (19)0.0033 (17)
C2020.017 (2)0.027 (2)0.019 (2)0.0059 (19)0.0004 (19)0.0112 (18)
C2030.028 (3)0.036 (3)0.018 (2)0.009 (2)0.003 (2)0.006 (2)
C2040.034 (3)0.069 (4)0.017 (3)0.027 (3)0.004 (2)0.006 (3)
C2050.071 (5)0.063 (4)0.020 (3)0.052 (4)0.005 (3)0.009 (3)
C2060.068 (5)0.025 (2)0.020 (3)0.026 (3)0.008 (3)0.009 (2)
C2070.029 (3)0.027 (3)0.027 (3)0.005 (2)0.003 (2)0.001 (2)
N10.0113 (19)0.0180 (17)0.0155 (18)0.0010 (14)0.0043 (15)0.0068 (14)
N20.0152 (19)0.0123 (15)0.0143 (18)0.0064 (14)0.0028 (15)0.0021 (13)
N30.0129 (19)0.0173 (17)0.0130 (17)0.0036 (14)0.0005 (15)0.0076 (14)
N40.0104 (18)0.0131 (16)0.0185 (18)0.0021 (14)0.0061 (15)0.0061 (14)
O10.0159 (16)0.0165 (13)0.0131 (14)0.0052 (12)0.0043 (12)0.0049 (11)
O20.0149 (16)0.0143 (13)0.0139 (15)0.0001 (12)0.0047 (12)0.0059 (11)
O30.0119 (16)0.0149 (13)0.0177 (15)0.0019 (11)0.0042 (12)0.0071 (11)
O40.0143 (16)0.0118 (13)0.0149 (15)0.0054 (11)0.0014 (12)0.0050 (11)
Hf0.01205 (11)0.01173 (10)0.01191 (10)0.00236 (7)0.00353 (7)0.00454 (7)
Geometric parameters (Å, º) top
C11—N11.325 (5)C41—C421.408 (5)
C11—C121.409 (6)C41—H410.93
C11—H110.93C42—C431.357 (6)
C12—C131.356 (7)C42—H420.93
C12—H120.93C43—C441.419 (5)
C13—C141.411 (6)C43—H430.93
C13—H130.93C44—C491.413 (5)
C14—C151.407 (6)C44—C451.417 (6)
C14—C191.423 (6)C45—C461.366 (6)
C15—C161.380 (7)C45—H450.93
C15—H150.93C46—C471.400 (6)
C16—C171.407 (6)C46—H460.93
C16—H160.93C47—C481.383 (6)
C17—C181.382 (6)C47—H470.93
C17—H170.93C48—O41.332 (5)
C18—O11.326 (5)C48—C491.432 (5)
C18—C191.424 (6)C49—N41.363 (5)
C19—N11.360 (5)C101—C1021.377 (7)
C21—N21.328 (5)C101—C1061.386 (6)
C21—C221.409 (6)C101—C1071.513 (7)
C21—H210.93C102—C1031.378 (7)
C22—C231.362 (6)C102—H1020.93
C22—H220.93C103—C1041.382 (7)
C23—C241.411 (6)C103—H1030.93
C23—H230.93C104—C1051.377 (7)
C24—C251.410 (6)C104—H1040.93
C24—C291.413 (6)C105—C1061.385 (7)
C25—C261.367 (6)C105—H1050.93
C25—H250.93C106—H1060.93
C26—C271.410 (6)C107—H10A0.96
C26—H260.93C107—H10B0.96
C27—C281.385 (6)C107—H10C0.96
C27—H270.93C201—C2021.386 (6)
C28—O21.329 (5)C201—C2061.389 (7)
C28—C291.422 (6)C201—C2071.482 (7)
C29—N21.365 (5)C202—C2031.371 (7)
C31—N31.322 (5)C202—H2020.93
C31—C321.407 (6)C203—C2041.371 (7)
C31—H310.93C203—H2030.93
C32—C331.364 (6)C204—C2051.359 (9)
C32—H320.93C204—H2040.93
C33—C341.414 (6)C205—C2061.393 (9)
C33—H330.93C205—H2050.93
C34—C351.409 (6)C206—H2060.93
C34—C391.418 (6)C207—H20A0.96
C35—C361.377 (6)C207—H20B0.96
C35—H350.93C207—H20C0.96
C36—C371.407 (6)N1—Hf2.395 (3)
C36—H360.93N2—Hf2.400 (3)
C37—C381.367 (6)N3—Hf2.391 (3)
C37—H370.93N4—Hf2.404 (3)
C38—O31.340 (5)O1—Hf2.098 (3)
C38—C391.433 (6)O2—Hf2.085 (3)
C39—N31.353 (5)O3—Hf2.103 (3)
C41—N41.317 (5)O4—Hf2.096 (3)
N1—C11—C12122.4 (4)C48—C47—H47119.7
N1—C11—H11118.8C46—C47—H47119.7
C12—C11—H11118.8O4—C48—C47125.2 (4)
C13—C12—C11119.2 (4)O4—C48—C49117.2 (3)
C13—C12—H12120.4C47—C48—C49117.7 (4)
C11—C12—H12120.4N4—C49—C44123.0 (4)
C12—C13—C14121.0 (4)N4—C49—C48115.2 (3)
C12—C13—H13119.5C44—C49—C48121.8 (4)
C14—C13—H13119.5C102—C101—C106118.2 (5)
C15—C14—C13126.1 (4)C102—C101—C107121.5 (5)
C15—C14—C19118.2 (4)C106—C101—C107120.2 (5)
C13—C14—C19115.7 (4)C101—C102—C103121.4 (5)
C16—C15—C14119.6 (4)C101—C102—H102119.3
C16—C15—H15120.2C103—C102—H102119.3
C14—C15—H15120.2C102—C103—C104120.2 (5)
C15—C16—C17122.2 (4)C102—C103—H103119.9
C15—C16—H16118.9C104—C103—H103119.9
C17—C16—H16118.9C105—C104—C103119.0 (5)
C18—C17—C16120.1 (4)C105—C104—H104120.5
C18—C17—H17119.9C103—C104—H104120.5
C16—C17—H17119.9C104—C105—C106120.6 (4)
O1—C18—C17124.5 (4)C104—C105—H105119.7
O1—C18—C19117.4 (4)C106—C105—H105119.7
C17—C18—C19118.1 (4)C105—C106—C101120.6 (4)
N1—C19—C14123.1 (4)C105—C106—H106119.7
N1—C19—C18115.1 (4)C101—C106—H106119.7
C14—C19—C18121.7 (4)C101—C107—H10A109.5
N2—C21—C22122.1 (4)C101—C107—H10B109.5
N2—C21—H21118.9H10A—C107—H10B109.5
C22—C21—H21118.9C101—C107—H10C109.5
C23—C22—C21119.7 (4)H10A—C107—H10C109.5
C23—C22—H22120.1H10B—C107—H10C109.5
C21—C22—H22120.1C202—C201—C206117.1 (5)
C22—C23—C24120.0 (4)C202—C201—C207120.8 (4)
C22—C23—H23120C206—C201—C207122.1 (5)
C24—C23—H23120C203—C202—C201121.8 (4)
C25—C24—C23124.7 (4)C203—C202—H202119.1
C25—C24—C29118.6 (4)C201—C202—H202119.1
C23—C24—C29116.7 (4)C204—C203—C202120.0 (5)
C26—C25—C24119.3 (4)C204—C203—H203120
C26—C25—H25120.4C202—C203—H203120
C24—C25—H25120.4C205—C204—C203120.1 (6)
C25—C26—C27122.5 (4)C205—C204—H204120
C25—C26—H26118.7C203—C204—H204120
C27—C26—H26118.7C204—C205—C206120.0 (5)
C28—C27—C26119.9 (4)C204—C205—H205120
C28—C27—H27120C206—C205—H205120
C26—C27—H27120C201—C206—C205121.0 (5)
O2—C28—C27124.6 (4)C201—C206—H206119.5
O2—C28—C29117.3 (4)C205—C206—H206119.5
C27—C28—C29118.0 (4)C201—C207—H20A109.5
N2—C29—C24122.8 (4)C201—C207—H20B109.5
N2—C29—C28115.4 (4)H20A—C207—H20B109.5
C24—C29—C28121.7 (4)C201—C207—H20C109.5
N3—C31—C32122.3 (4)H20A—C207—H20C109.5
N3—C31—H31118.9H20B—C207—H20C109.5
C32—C31—H31118.9C11—N1—C19118.5 (4)
C33—C32—C31119.6 (4)C11—N1—Hf128.7 (3)
C33—C32—H32120.2C19—N1—Hf112.7 (3)
C31—C32—H32120.2C21—N2—C29118.5 (4)
C32—C33—C34119.9 (4)C21—N2—Hf129.1 (3)
C32—C33—H33120C29—N2—Hf112.2 (3)
C34—C33—H33120C31—N3—C39118.9 (4)
C35—C34—C33125.0 (4)C31—N3—Hf128.1 (3)
C35—C34—C39118.5 (4)C39—N3—Hf112.9 (2)
C33—C34—C39116.4 (4)C41—N4—C49118.0 (3)
C36—C35—C34119.9 (4)C41—N4—Hf129.4 (3)
C36—C35—H35120C49—N4—Hf112.5 (2)
C34—C35—H35120C18—O1—Hf123.2 (3)
C35—C36—C37121.2 (4)C28—O2—Hf123.8 (3)
C35—C36—H36119.4C38—O3—Hf123.4 (2)
C37—C36—H36119.4C48—O4—Hf123.6 (2)
C38—C37—C36121.3 (4)O2—Hf—O494.50 (11)
C38—C37—H37119.4O2—Hf—O197.00 (11)
C36—C37—H37119.4O4—Hf—O1141.84 (10)
O3—C38—C37125.4 (4)O2—Hf—O3142.31 (11)
O3—C38—C39116.5 (4)O4—Hf—O397.89 (11)
C37—C38—C39118.1 (4)O1—Hf—O394.85 (11)
N3—C39—C34122.9 (4)O2—Hf—N378.53 (12)
N3—C39—C38116.0 (4)O4—Hf—N373.74 (11)
C34—C39—C38121.0 (4)O1—Hf—N3144.27 (11)
N4—C41—C42123.1 (4)O3—Hf—N371.16 (11)
N4—C41—H41118.4O2—Hf—N173.68 (11)
C42—C41—H41118.4O4—Hf—N177.94 (11)
C43—C42—C41119.6 (4)O1—Hf—N170.73 (11)
C43—C42—H42120.2O3—Hf—N1143.78 (11)
C41—C42—H42120.2N3—Hf—N1138.19 (12)
C42—C43—C44119.5 (4)O2—Hf—N271.04 (11)
C42—C43—H43120.2O4—Hf—N2145.17 (11)
C44—C43—H43120.2O1—Hf—N272.67 (11)
C49—C44—C45117.8 (4)O3—Hf—N278.70 (11)
C49—C44—C43116.8 (4)N3—Hf—N272.39 (11)
C45—C44—C43125.4 (4)N1—Hf—N2124.51 (12)
C46—C45—C44120.1 (4)O2—Hf—N4142.23 (11)
C46—C45—H45119.9O4—Hf—N470.84 (11)
C44—C45—H45119.9O1—Hf—N477.98 (11)
C45—C46—C47122.0 (4)O3—Hf—N475.31 (11)
C45—C46—H46119N3—Hf—N4126.37 (12)
C47—C46—H46119N1—Hf—N469.32 (11)
C48—C47—C46120.6 (4)N2—Hf—N4138.57 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C105—H105···O1i0.932.563.467 (5)166
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Hf(C9H6NO)4]·2C7H8
Mr939.35
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)11.3323 (5), 12.5539 (5), 15.7126 (7)
α, β, γ (°)69.746 (2), 69.700 (2), 75.787 (2)
V3)1946.79 (14)
Z2
Radiation typeMo Kα
µ (mm1)2.73
Crystal size (mm)0.22 × 0.10 × 0.04
Data collection
DiffractometerBruker X8 APEXII 4K Kappa CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.585, 0.899
No. of measured, independent and
observed [I > 2σ(I)] reflections
22928, 8458, 7551
Rint0.044
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.100, 1.04
No. of reflections8458
No. of parameters534
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.16, 0.81

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SIR92 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C105—H105···O1i0.932.563.467 (5)166.1
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

Financial assistance from the Advanced Metals Initiative (AMI) and the Department of Science and Technology (DST) of South Africa, as well as the New Metals Development Network (NMDN) and the South African Nuclear Energy Corporation Limited (Necsa) is gratefully acknowledged.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalderazzo, F., Englert, U., Maichle-Mossmer, C., Marchetti, F., Pampaloni, G., Petroni, D., Pinzino, C., Strahle, J. & Tripepi, G. (1998). Inorg. Chim. Acta, 270, 177–188.  Web of Science CSD CrossRef CAS Google Scholar
First citationDemakopoulos, I., Klouras, N., Raptopoulou, C. P. & Terzis, A. (1995). Z. Anorg. Allg. Chem. 621, 1761–1766.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLewis, D. F. & Fay, R. C. (1974). J. Chem. Soc. Chem. Commun. pp. 1046–1047.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteyn, M., Roodt, A. & Steyl, G. (2008). Acta Cryst. E64, m827.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationViljoen, J. A., Muller, A. & Roodt, A. (2008). Acta Cryst. E64, m838–m839.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationViljoen, J. A., Visser, H. G., Roodt, A. & Steyn, M. (2009). Acta Cryst. E65, m1367–m1368.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZherikova, K. V., Baidina, I. A., Morozova, N. B., Kurateva, N. V. & Igumenov, I. K. (2008). J. Struct. Chem. 49, 1098–1103.  Web of Science CrossRef CAS Google Scholar
First citationZherikova, K. V., Morozova, N. B., Baidina, I. A., Peresypkina, E. V. & Igumenov, I. K. (2006). J. Struct. Chem. 47, 570–574.  Web of Science CrossRef CAS Google Scholar
First citationZherikova, K. V., Morozova, N. B., Kurateva, N. V., Baidina, I. A., Stabnikov, P. A. & Igumenov, I. K. (2005). J. Struct. Chem. 46, 1039–1046.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1514-m1515
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds