organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-[(2,4-Di­chloro­phen­yl)imino­meth­yl]benzene-1,4-diol monohydrate

aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, TR-55139 Samsun, Turkey, and bDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Samsun, Turkey
*Correspondence e-mail: sgul@omu.edu.tr

(Received 6 October 2009; accepted 28 October 2009; online 7 November 2009)

The title compound, C13H9Cl2NO2·H2O, represents a Schiff base which adopts the phenol–imine tautomeric form in the solid state. The mol­ecule is approximately planar (r.m.s. deviation 0.0818 Å), and the dihedral angle between the two aromatic rings is 7.46 (12)°. An O—H⋯N inter­action generates an S(6) ring. In the crystal, mol­ecules are linked by inter­molecular O—H⋯O hydrogen bonds involving the solvent water mol­ecule, forming chains.

Related literature

For the biological properties of Schiff bases see: Lozier et al. (1975[Lozier, R. H., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J. 15, 955-962.]), Dao et al. (2000[Dao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem. 35, 805-813.]). For the coordination chemistry of Schiff bases see: Kargar et al. (2009[Kargar, H., Jamshidvand, A., Fun, H.-K. & Kia, R. (2009). Acta Cryst. E65, m403-m404.]); Yeap et al. (2009[Yeap, C. S., Kia, R., Kargar, H. & Fun, H.-K. (2009). Acta Cryst. E65, m570-m571.]). For a discussion of Schiff bases tautomerism, see: Şahin et al. (2005[Şahin, O., Albayrak, C., Odabaşoğlu, M. & Büyükgüngör, O. (2005). Acta Cryst. E61, o2859-o2861.]); Hadjoudis et al. (1987[Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, I. (1987). Tetrahedron, 43, 1345-1360.]). For a related structure, see: Zhang (2009[Zhang, X. (2009). Acta Cryst. E65, o513.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9Cl2NO2·H2O

  • Mr = 300.13

  • Monoclinic, P 21 /c

  • a = 4.6899 (2) Å

  • b = 17.4289 (6) Å

  • c = 16.1645 (7) Å

  • β = 95.923 (3)°

  • V = 1314.23 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.50 mm−1

  • T = 296 K

  • 0.90 × 0.56 × 0.25 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.801, Tmax = 0.959

  • 11982 measured reflections

  • 2585 independent reflections

  • 1879 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.098

  • S = 0.97

  • 2585 reflections

  • 188 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1O⋯O2i 0.85 (4) 1.94 (4) 2.774 (3) 170 (3)
O2—H2⋯N1 0.87 (4) 1.77 (3) 2.569 (2) 152 (3)
O3—H2O⋯O1ii 0.82 (4) 2.49 (5) 3.184 (3) 143 (4)
O1—H1⋯O3 0.87 (4) 1.79 (4) 2.659 (3) 171 (3)
Symmetry codes: (i) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x-1, y, z.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Schiff bases often exhibit various biological activities and in many cases were shown to have antibacterial, anticancer, anti-inflammatory and antitoxic properties (Lozier et al., 1975; Dao et al., 2000). Schiff bases have also been used as versatile ligands in coordination chemistry (Kargar et al., 2009; Yeap et al., 2009). There are two types of intramolecular hydrogen bonds in Schiff bases, which may be stabilized either in keto-amine (N—H···O hydrogen bond) (Şahin et al., 2005) or phenol-imine (N···H—O hydrogen bond) tautomeric forms (Hadjoudis et al., 1987). The present X-ray investigation shows that the title compound is a Schiff base and exists in the phenol-imine form in the solid-state.

An ORTEP-3 (Farrugia, 1997) plot and crystal packing of the molecule of the title compound are shown in Figs. 1 and 2, respectively. The molecule is approximately planar. The dihedral angle between the two aromatic rings is 7.46 (12)° and the C1—C7—N1—C8 torsion angle is 178.71 (16)°. All bond lengths are within normal values. An intramolecular O2—H2···N1 hydrogen bond (Table 1) is observed and this hydrogen bond produces S(6) ring. The O2···N1 separation of 2.569 (2) Å is comparable to those observed for analogous hydrogen bonds in 2-bromo-4-chloro-6-[(E)-p-tolylimino-methyl]phenol (Zhang, 2009). Molecules are linked into sheets by a combination of O—H···O hydrogen bonds (Table 1). The combination of O—H···O hydrogen bonds generates a chain of edge-fused R66(22) rings running parallel to the [100] direction (Fig. 2).

Related literature top

For the biological properties of Schiff bases see: Lozier et al. (1975), Dao et al. (2000). For the coordination chemistry of Schiff bases see: Kargar et al. (2009); Yeap et al. (2009). For a discussion of Schiff bases tautomerism, see: Şahin et al. (2005); Hadjoudis et al. (1987). For a related structure, see: Zhang (2009).

Experimental top

The compound (E)-2-[(2,4-(dichloro)phenylimino)methyl]-4-hydroxyphenol monohydrate was prepared by refluxing a solution containing 2,5-dihydroxybenzaldehyde (0.03 g, 0.22 mmol) in ethanol (20 ml) and 2,4-dichloroaniline (0.035 g, 0.22 mmol) in ethanol (20 ml). The reaction mixture was stirred for 1 h under reflux. The crystals of the title hydrate suitable for X-ray analysis were obtained from ethanol by slow evaporation (yield 73%; m.p. 432–435 K).

Refinement top

H atoms bonded to O atoms were located in a difference map and refined freely (distances given in Table 1). All other H atoms were placed in calculated positions and constrained to ride on their parent atoms, with C—H = 0.93 Å and Uiso(H)=1.2Ueq(Carrier C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure, showing the formation R66(22) rings. Hydrogen bonds are indicated by dashed lines. H atoms not involved in these interactions have been omitted for clarity.
(E)-2-[(2,4-Dichlorophenyl)iminomethyl]benzene-1,4-diol monohydrate top
Crystal data top
C13H9Cl2NO2·H2OF(000) = 616
Mr = 300.13Dx = 1.517 Mg m3
Monoclinic, P21/cMelting point: 432 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71069 Å
a = 4.6899 (2) ÅCell parameters from 12355 reflections
b = 17.4289 (6) Åθ = 1.3–27.2°
c = 16.1645 (7) ŵ = 0.50 mm1
β = 95.923 (3)°T = 296 K
V = 1314.23 (9) Å3Prism, brown
Z = 40.90 × 0.56 × 0.25 mm
Data collection top
Stoe IPDS II
diffractometer
2585 independent reflections
Radiation source: fine-focus sealed tube1879 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 1.7°
ω scansh = 55
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 2121
Tmin = 0.801, Tmax = 0.959l = 1919
11982 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.0595P)2]
where P = (Fo2 + 2Fc2)/3
2585 reflections(Δ/σ)max = 0.001
188 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C13H9Cl2NO2·H2OV = 1314.23 (9) Å3
Mr = 300.13Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.6899 (2) ŵ = 0.50 mm1
b = 17.4289 (6) ÅT = 296 K
c = 16.1645 (7) Å0.90 × 0.56 × 0.25 mm
β = 95.923 (3)°
Data collection top
Stoe IPDS II
diffractometer
2585 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
1879 reflections with I > 2σ(I)
Tmin = 0.801, Tmax = 0.959Rint = 0.050
11982 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.14 e Å3
2585 reflectionsΔρmin = 0.29 e Å3
188 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2010 (4)0.11322 (10)0.62421 (11)0.0455 (4)
C20.3504 (4)0.09465 (12)0.54787 (12)0.0540 (5)
H2A0.30240.05020.52070.065*
C30.5665 (4)0.14033 (12)0.51181 (12)0.0556 (5)
C40.6388 (4)0.20661 (11)0.55258 (13)0.0554 (5)
H40.78510.23800.52870.066*
C50.4951 (5)0.22589 (11)0.62805 (13)0.0573 (5)
H50.54610.27020.65500.069*
C60.2748 (4)0.18020 (11)0.66461 (12)0.0510 (4)
C70.0230 (4)0.06279 (11)0.66080 (12)0.0485 (4)
H70.06400.01800.63310.058*
C80.3792 (4)0.03047 (10)0.76835 (11)0.0467 (4)
C90.4933 (4)0.04822 (11)0.84932 (12)0.0512 (4)
C100.7030 (4)0.00366 (12)0.89192 (13)0.0560 (5)
H110.77480.01620.94600.067*
C110.8040 (4)0.05934 (11)0.85325 (12)0.0518 (5)
C120.7014 (4)0.07811 (11)0.77313 (12)0.0547 (5)
H120.77370.12050.74730.066*
C130.4907 (4)0.03366 (11)0.73152 (12)0.0522 (5)
H130.42090.04670.67740.063*
N10.1649 (3)0.07852 (9)0.73022 (9)0.0492 (4)
O10.6995 (5)0.11940 (12)0.43607 (10)0.0909 (6)
H10.848 (8)0.148 (2)0.420 (2)0.121 (12)*
O20.1365 (4)0.20076 (10)0.73902 (10)0.0729 (5)
H20.007 (7)0.166 (2)0.751 (2)0.105 (10)*
O31.1524 (5)0.19928 (14)0.37204 (14)0.0930 (7)
H1O1.167 (7)0.232 (2)0.333 (2)0.112 (11)*
H2O1.317 (10)0.200 (3)0.385 (3)0.154 (17)*
Cl11.06563 (11)0.11630 (3)0.90637 (4)0.06643 (18)
Cl20.36487 (14)0.12696 (4)0.89962 (4)0.0773 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0467 (10)0.0449 (9)0.0457 (10)0.0009 (8)0.0091 (8)0.0010 (7)
C20.0598 (12)0.0552 (10)0.0472 (10)0.0099 (9)0.0062 (9)0.0040 (9)
C30.0594 (12)0.0662 (12)0.0413 (10)0.0084 (10)0.0053 (9)0.0013 (9)
C40.0566 (11)0.0518 (11)0.0582 (12)0.0069 (9)0.0081 (10)0.0098 (9)
C50.0635 (12)0.0437 (10)0.0648 (13)0.0071 (9)0.0073 (10)0.0036 (9)
C60.0541 (11)0.0488 (10)0.0498 (10)0.0028 (9)0.0045 (9)0.0059 (8)
C70.0508 (10)0.0473 (10)0.0477 (10)0.0023 (8)0.0068 (9)0.0016 (8)
C80.0473 (10)0.0477 (10)0.0454 (10)0.0023 (8)0.0065 (8)0.0031 (8)
C90.0502 (10)0.0521 (10)0.0508 (11)0.0012 (8)0.0033 (9)0.0053 (8)
C100.0530 (12)0.0625 (12)0.0507 (11)0.0034 (9)0.0031 (9)0.0027 (9)
C110.0452 (10)0.0530 (10)0.0569 (12)0.0043 (8)0.0030 (9)0.0063 (8)
C120.0592 (12)0.0493 (10)0.0565 (12)0.0044 (9)0.0107 (10)0.0009 (9)
C130.0607 (11)0.0525 (11)0.0432 (10)0.0021 (9)0.0046 (9)0.0015 (8)
N10.0502 (8)0.0501 (9)0.0468 (9)0.0016 (7)0.0034 (7)0.0011 (7)
O10.0986 (13)0.1152 (15)0.0533 (9)0.0486 (12)0.0184 (9)0.0210 (9)
O20.0780 (11)0.0689 (10)0.0678 (10)0.0162 (9)0.0120 (8)0.0241 (8)
O30.0771 (13)0.1106 (15)0.0906 (14)0.0109 (11)0.0047 (11)0.0506 (12)
Cl10.0588 (3)0.0651 (3)0.0733 (4)0.0055 (2)0.0036 (3)0.0112 (2)
Cl20.0850 (4)0.0770 (4)0.0669 (4)0.0199 (3)0.0065 (3)0.0257 (3)
Geometric parameters (Å, º) top
C1—C21.393 (3)C8—C91.397 (3)
C1—C61.398 (3)C8—N11.401 (2)
C1—C71.448 (3)C9—C101.380 (3)
C2—C31.371 (3)C9—Cl21.734 (2)
C2—H2A0.9300C10—C111.372 (3)
C3—O11.365 (3)C10—H110.9300
C3—C41.389 (3)C11—C121.374 (3)
C4—C51.373 (3)C11—Cl11.735 (2)
C4—H40.9300C12—C131.375 (3)
C5—C61.388 (3)C12—H120.9300
C5—H50.9300C13—H130.9300
C6—O21.354 (2)O1—H10.87 (4)
C7—N11.274 (2)O2—H20.87 (4)
C7—H70.9300O3—H1O0.85 (4)
C8—C131.393 (3)O3—H2O0.82 (4)
C2—C1—C6118.80 (17)C13—C8—N1125.12 (17)
C2—C1—C7119.88 (16)C9—C8—N1117.89 (16)
C6—C1—C7121.32 (17)C10—C9—C8121.82 (18)
C3—C2—C1121.61 (18)C10—C9—Cl2118.39 (16)
C3—C2—H2A119.2C8—C9—Cl2119.78 (15)
C1—C2—H2A119.2C11—C10—C9119.00 (19)
O1—C3—C2118.39 (18)C11—C10—H11120.5
O1—C3—C4122.44 (19)C9—C10—H11120.5
C2—C3—C4119.16 (19)C10—C11—C12121.10 (19)
C5—C4—C3120.22 (19)C10—C11—Cl1119.48 (16)
C5—C4—H4119.9C12—C11—Cl1119.42 (16)
C3—C4—H4119.9C11—C12—C13119.40 (18)
C4—C5—C6120.91 (18)C11—C12—H12120.3
C4—C5—H5119.5C13—C12—H12120.3
C6—C5—H5119.5C12—C13—C8121.69 (18)
O2—C6—C5119.58 (18)C12—C13—H13119.2
O2—C6—C1121.12 (18)C8—C13—H13119.2
C5—C6—C1119.30 (18)C7—N1—C8122.99 (16)
N1—C7—C1121.34 (17)C3—O1—H1113 (2)
N1—C7—H7119.3C6—O2—H2106 (2)
C1—C7—H7119.3H1O—O3—H2O100 (4)
C13—C8—C9116.98 (18)
C6—C1—C2—C30.0 (3)N1—C8—C9—C10179.39 (17)
C7—C1—C2—C3179.05 (17)C13—C8—C9—Cl2179.77 (14)
C1—C2—C3—O1178.63 (19)N1—C8—C9—Cl20.9 (2)
C1—C2—C3—C40.2 (3)C8—C9—C10—C110.7 (3)
O1—C3—C4—C5178.8 (2)Cl2—C9—C10—C11179.20 (15)
C2—C3—C4—C50.0 (3)C9—C10—C11—C120.5 (3)
C3—C4—C5—C60.5 (3)C9—C10—C11—Cl1179.49 (14)
C4—C5—C6—O2179.88 (19)C10—C11—C12—C131.0 (3)
C4—C5—C6—C10.7 (3)Cl1—C11—C12—C13178.96 (15)
C2—C1—C6—O2179.87 (18)C11—C12—C13—C80.4 (3)
C7—C1—C6—O20.8 (3)C9—C8—C13—C120.7 (3)
C2—C1—C6—C50.5 (3)N1—C8—C13—C12179.98 (17)
C7—C1—C6—C5178.58 (18)C1—C7—N1—C8178.71 (16)
C2—C1—C7—N1179.43 (17)C13—C8—N1—C79.2 (3)
C6—C1—C7—N11.5 (3)C9—C8—N1—C7171.48 (17)
C13—C8—C9—C101.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O···O2i0.85 (4)1.94 (4)2.774 (3)170 (3)
O2—H2···N10.87 (4)1.77 (3)2.569 (2)152 (3)
O3—H2O···O1ii0.82 (4)2.49 (5)3.184 (3)143 (4)
O1—H1···O30.87 (4)1.79 (4)2.659 (3)171 (3)
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC13H9Cl2NO2·H2O
Mr300.13
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)4.6899 (2), 17.4289 (6), 16.1645 (7)
β (°) 95.923 (3)
V3)1314.23 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.50
Crystal size (mm)0.90 × 0.56 × 0.25
Data collection
DiffractometerStoe IPDS II
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.801, 0.959
No. of measured, independent and
observed [I > 2σ(I)] reflections
11982, 2585, 1879
Rint0.050
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.098, 0.97
No. of reflections2585
No. of parameters188
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.29

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
C6—O21.354 (2)C9—Cl21.734 (2)
C7—N11.274 (2)C11—Cl11.735 (2)
C8—N11.401 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O···O2i0.85 (4)1.94 (4)2.774 (3)170 (3)
O2—H2···N10.87 (4)1.77 (3)2.569 (2)152 (3)
O3—H2O···O1ii0.82 (4)2.49 (5)3.184 (3)143 (4)
O1—H1···O30.87 (4)1.79 (4)2.659 (3)171 (3)
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x1, y, z.
 

Acknowledgements

The authors wish to acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for providing access to the Stoe IPDS II diffractometer (purchased under grant No. F279 of the University Research Fund).

References

First citationDao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem. 35, 805–813.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, I. (1987). Tetrahedron, 43, 1345–1360.  CrossRef CAS Web of Science Google Scholar
First citationKargar, H., Jamshidvand, A., Fun, H.-K. & Kia, R. (2009). Acta Cryst. E65, m403–m404.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLozier, R. H., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J. 15, 955–962.  CrossRef PubMed CAS Web of Science Google Scholar
First citationŞahin, O., Albayrak, C., Odabaşoğlu, M. & Büyükgüngör, O. (2005). Acta Cryst. E61, o2859–o2861.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationYeap, C. S., Kia, R., Kargar, H. & Fun, H.-K. (2009). Acta Cryst. E65, m570–m571.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X. (2009). Acta Cryst. E65, o513.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds