Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-Hydroxy-*N*'-(5-hydroxy-2-nitrobenzylidene)-2-naphthohydrazide

De-Suo Yang

Department of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721007, People's Republic of China Correspondence e-mail: desuoyang@yahoo.com.cn

Received 21 October 2009; accepted 29 October 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.044; wR factor = 0.119; data-to-parameter ratio = 14.2.

The molecule of the title compound, $C_{18}H_{13}N_3O_5$, displays an *E* configuration with respect to the C=N double bond. The dihedral angle between the benzene ring and the naphthyl system is 1.1 (2)°. In the crystal structure, molecules are linked through intermolecular N-H···O and O-H···O hydrogen bonds, forming a three-dimensional network.

Related literature

For the biological and structural chemistry of hydrazone compounds, see: Avaji *et al.* (2009); Charkoudian *et al.* (2007); Cukurovali *et al.* (2006). For related structures, see: Yang (2008*a*,*b*,*c*,*d*,*e*, 2007*a*,*b*,*c*); Yang & Guo (2006).

Experimental

Crystal data C₁₈H₁₃N₃O₅

 $M_r = 351.31$ Monoclinic, $P2_1/n$ a = 10.1588 (3) Å b = 8.2562 (2) Å

c = 19.5268 (5) Å
$\beta = 104.867 \ (1)^{\circ}$
V = 1582.95 (7) Å
Z = 4
Mo $K\alpha$ radiation

 $0.23 \times 0.20 \times 0.20$ mm

 $R_{\rm int} = 0.028$

refinement

 $\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.19$ e Å⁻³

9168 measured reflections

3425 independent reflections

2436 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

 $\mu = 0.11 \text{ mm}^{-1}$ T = 298 K

Data collection

Bruker SMART CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.975, T_{max} = 0.978$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.119$ S = 1.043425 reflections 241 parameters 1 restraint

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
$O2-H2 \cdot \cdot \cdot O1$	0.82	1.88	2.5987 (18)	146
$N1 - H1 \cdots O4^{i}$	0.898 (9)	2.144 (10)	3.0361 (19)	172.8 (18)
$O5-H5\cdots O1^{ii}$	0.82	1.88	2.6889 (17)	168
Symmetry codes: (i) -x + 2, -y + 1	$-z;$ (ii) $-x + \frac{5}{2},$	$y - \frac{1}{2}, -z + \frac{1}{2}.$	

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve

(Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The author acknowledges Baoji University of Arts and Sciences for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2256).

References

- Avaji, P. G., Vinod Kumar, C. H., Patil, S. A., Shivananda, K. N. & Nagaraju, C. (2009). Eur. J. Med. Chem. 44, 3552–3559.
- Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Charkoudian, L. K., Pham, D. M., Kwon, A. M., Vangeloff, A. D. & Franz, K. J. (2007). J. Chem. Soc. Dalton Trans. pp. 5031–5042.
- Cukurovali, A., Yilmaz, I., Gur, S. & Kazaz, C. (2006). Eur. J. Med. Chem. 41, 201–207.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Yang, D.-S. (2007a). J. Chem. Crystallogr. 37, 343-348.
- Yang, D.-S. (2007b). Acta Cryst. E63, 03738.
- Yang, D.-S. (2007c). Acta Cryst. E63, 03739.
- Yang, D.-S. (2008a). Acta Cryst. E64, o1758.
- Yang, D.-S. (2008b). Acta Cryst. E64, 01759.
- Yang, D.-S. (2008c). Acta Cryst. E64, o1849.
- Yang, D.-S. (2008d). Acta Cryst. E64, o1850.
- Yang, D.-S. & Guo, J.-B. (2006). Acta Cryst. E62, 04414-04415.

supporting information

Acta Cryst. (2009). E65, o2978 [doi:10.1107/S1600536809045279]

3-Hydroxy-N'-(5-hydroxy-2-nitrobenzylidene)-2-naphthohydrazide

De-Suo Yang

S1. Comment

Hydrazone compounds have been of great interest for their versatile biological and structural chemistry (Avaji *et al.*, 2009; Charkoudian *et al.*, 2007; Cukurovali *et al.*, 2006). Recently, we have reported a few hydrazone compounds (Yang, 2008*a*,*b*,*c*,*d*,*e*, 2007*a*,*b*,*c*; Yang & Guo, 2006). As a further investigation of this work, the crystal structure of the title new hydrazone compound is reported.

In the title compound (Fig. 1), the molecule displays an *E* configuration with respect to the C=N double bond. The C13···C18 benzene ring forms dihedral angles of 28.6 (2) and 1.1 (2)°, respectively, with the O3—N3—O4 nitro group and the C1···C10 naphthyl ring. All bond lengths are within normal ranges. The C12=N2 bond length of 1.266 (2) Å, conforms to the value for a formal double bond. The bond length of 1.341 (2) Å between atoms C11 and N1 is intermediate between a C—N single bond and a C=N double bond, because of conjugation effects in the molecule.

In the crystal structure, molecules are linked through intermolecular N—H…O and O—H…O hydrogen bonds (Table 1), forming a three-dimensional network (Fig. 2).

S2. Experimental

5-Hydroxy-2-nitrobenzaldehyde (0.1 mmol, 16.7 mg) and 3-hydroxy-2-naphthohydrazide (0.1 mmol, 20.2 mg) were dissolved in CHCl₃ (10 ml). The mixture was stirred at room temperature to give a clear colorless solution. Crystals of the title compound were formed by gradual evaporation of the solvent over a period of 3 days, at room temperature.

S3. Refinement

Atom H1 was located in a difference map and refined isotropically, with N—H distance restrained to 0.90 (1) Å. Other H atoms were placed in idealized positions and constrained to ride on their parent atoms, with O—H distances of 0.82 Å, C —H distances of 0.93 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$ and $1.5U_{eq}(O)$.

Figure 1

The structure of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bond is shown as a dashed line.

Figure 2

Molecular packing as viewed along the b axis. Hydrogen bonds are shown as dashed lines.

3-Hydroxy-N'-(5-hydroxy-2-nitrobenzylidene)-2-naphthohydrazide

Crystal data	
C ₁₈ H ₁₃ N ₃ O ₅	F(000) = 728
$M_r = 351.31$	$D_{\rm x} = 1.474 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 2463 reflections
a = 10.1588 (3) Å	$\theta = 2.5 - 26.6^{\circ}$
b = 8.2562 (2) Å	$\mu = 0.11 \text{ mm}^{-1}$
c = 19.5268 (5) Å	T = 298 K
$\beta = 104.867 (1)^{\circ}$	Block, colorless
V = 1582.95 (7) Å ³	$0.23 \times 0.20 \times 0.20$ mm
Z = 4	

Data collection

Bruker SMART CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{min} = 0.975, T_{max} = 0.978$ <i>Refinement</i>	9168 measured reflections 3425 independent reflections 2436 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$ $\theta_{max} = 27.0^{\circ}, \ \theta_{min} = 2.1^{\circ}$ $h = -12 \rightarrow 12$ $k = -10 \rightarrow 10$ $l = -24 \rightarrow 16$
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.044$	Hydrogen site location: inferred from
$wR(F^2) = 0.119$	neighbouring sites
S = 1.04	H atoms treated by a mixture of independent
3425 reflections	and constrained refinement
241 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0503P)^2 + 0.3232P]$
1 restraint	where $P = (F_o^2 + 2F_c^2)/3$
0 constraints	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.19 \text{ e } \text{Å}^{-3}$
direct methods	$\Delta\rho_{min} = -0.19 \text{ e } \text{Å}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
N1	0.88109 (14)	0.92607 (17)	0.05530 (7)	0.0462 (4)
N2	1.00455 (13)	0.88709 (16)	0.10140 (7)	0.0446 (3)
N3	1.20940 (14)	0.48961 (18)	0.04801 (7)	0.0461 (3)
01	0.86564 (13)	1.16125 (15)	0.11112 (6)	0.0575 (4)
O2	0.63397 (15)	1.31345 (18)	0.08033 (7)	0.0689 (4)
H2	0.7084	1.2854	0.1052	0.103*
O3	1.13711 (14)	0.56430 (16)	-0.00173 (6)	0.0612 (4)
O4	1.24674 (14)	0.34954 (16)	0.04217 (7)	0.0695 (4)
05	1.38574 (15)	0.75885 (19)	0.31532 (6)	0.0721 (4)
Н5	1.4565	0.7160	0.3377	0.108*
C1	0.69456 (16)	1.10569 (19)	0.00579 (8)	0.0407 (4)
C2	0.60609 (17)	1.2299 (2)	0.01840 (9)	0.0485 (4)
C3	0.49048 (18)	1.2674 (3)	-0.03235 (10)	0.0601 (5)
Н3	0.4332	1.3482	-0.0234	0.072*
C4	0.45611 (17)	1.1865 (3)	-0.09781 (10)	0.0582 (5)
C5	0.3359 (2)	1.2237 (3)	-0.15133 (13)	0.0833 (8)
H5A	0.2756	1.3013	-0.1428	0.100*
C6	0.3090 (3)	1.1465 (4)	-0.21477 (15)	0.1025 (11)
H6	0.2299	1.1717	-0.2493	0.123*
C7	0.3980 (3)	1.0294 (3)	-0.22928 (13)	0.1001 (10)
H7	0.3782	0.9787	-0.2733	0.120*
C8	0.5134 (2)	0.9896 (3)	-0.17908 (11)	0.0769 (7)
H8	0.5721	0.9116	-0.1889	0.092*
С9	0.54456 (19)	1.0664 (2)	-0.11211 (9)	0.0541 (5)
C10	0.66309 (18)	1.0299 (2)	-0.05915 (9)	0.0477 (4)

H10	0.7224	0.9519	-0.0683	0.057*	
C11	0.81986 (16)	1.06728 (19)	0.06131 (8)	0.0417 (4)	
C12	1.04643 (17)	0.7455 (2)	0.09371 (9)	0.0468 (4)	
H12	0.9935	0.6774	0.0596	0.056*	
C13	1.17752 (16)	0.68736 (18)	0.13789 (8)	0.0398 (4)	
C14	1.25482 (16)	0.56598 (18)	0.11681 (8)	0.0381 (3)	
C15	1.37767 (16)	0.51385 (19)	0.16009 (9)	0.0429 (4)	
H15	1.4276	0.4342	0.1443	0.051*	
C16	1.42572 (16)	0.5796 (2)	0.22626 (8)	0.0440 (4)	
H16	1.5094	0.5471	0.2550	0.053*	
C17	1.34847 (18)	0.6951 (2)	0.24990 (8)	0.0466 (4)	
C18	1.22688 (17)	0.7487 (2)	0.20549 (8)	0.0481 (4)	
H18	1.1772	0.8280	0.2216	0.058*	
H1	0.8395 (18)	0.8513 (19)	0.0237 (8)	0.066 (6)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	<i>U</i> ¹²	<i>U</i> ¹³	U ²³
N1	0.0433 (8)	0.0423 (8)	0.0426 (8)	0.0066 (6)	-0.0077 (6)	-0.0034 (6)
N2	0.0416 (7)	0.0449 (8)	0.0399 (7)	0.0064 (6)	-0.0033 (6)	0.0013 (6)
N3	0.0441 (8)	0.0456 (8)	0.0486 (8)	-0.0067 (6)	0.0117 (7)	-0.0072 (7)
01	0.0632 (8)	0.0469 (7)	0.0482 (7)	0.0076 (6)	-0.0119 (6)	-0.0087 (6)
O2	0.0754 (10)	0.0743 (10)	0.0563 (8)	0.0261 (8)	0.0159 (7)	-0.0026 (7)
O3	0.0687 (9)	0.0642 (9)	0.0433 (7)	-0.0101 (7)	0.0007 (6)	-0.0002 (6)
O4	0.0683 (9)	0.0559 (8)	0.0786 (9)	0.0076 (7)	0.0085 (7)	-0.0274 (7)
O5	0.0725 (10)	0.0899 (11)	0.0412 (7)	0.0308 (8)	-0.0088 (6)	-0.0124 (7)
C1	0.0390 (8)	0.0370 (8)	0.0416 (8)	-0.0019 (7)	0.0022 (7)	0.0075 (7)
C2	0.0475 (10)	0.0517 (10)	0.0469 (10)	0.0047 (8)	0.0133 (8)	0.0101 (8)
C3	0.0431 (10)	0.0710 (13)	0.0687 (13)	0.0150 (9)	0.0189 (9)	0.0243 (11)
C4	0.0378 (9)	0.0711 (13)	0.0591 (12)	-0.0109 (9)	0.0004 (8)	0.0282 (10)
C5	0.0427 (11)	0.1106 (19)	0.0836 (16)	-0.0086 (12)	-0.0074 (11)	0.0461 (15)
C6	0.0652 (15)	0.120 (2)	0.0910 (19)	-0.0332 (16)	-0.0366 (14)	0.0452 (18)
C7	0.113 (2)	0.0834 (18)	0.0686 (15)	-0.0412 (17)	-0.0400 (15)	0.0161 (13)
C8	0.0945 (16)	0.0613 (13)	0.0542 (12)	-0.0199 (12)	-0.0187 (11)	0.0049 (10)
C9	0.0536 (11)	0.0486 (10)	0.0485 (10)	-0.0154 (9)	-0.0080 (8)	0.0144 (8)
C10	0.0518 (10)	0.0375 (8)	0.0459 (9)	-0.0020 (8)	-0.0022 (8)	0.0045 (7)
C11	0.0437 (9)	0.0382 (8)	0.0384 (8)	0.0000 (7)	0.0016 (7)	0.0026 (7)
C12	0.0455 (9)	0.0440 (9)	0.0434 (9)	0.0023 (8)	-0.0022 (7)	-0.0052 (7)
C13	0.0403 (8)	0.0366 (8)	0.0387 (8)	0.0020 (7)	0.0031 (7)	0.0030 (7)
C14	0.0422 (8)	0.0333 (8)	0.0376 (8)	-0.0044 (7)	0.0082 (7)	0.0001 (6)
C15	0.0438 (9)	0.0363 (8)	0.0497 (9)	0.0043 (7)	0.0141 (8)	0.0035 (7)
C16	0.0409 (9)	0.0443 (9)	0.0430 (9)	0.0060 (7)	0.0038 (7)	0.0090 (7)
C17	0.0506 (10)	0.0494 (10)	0.0350 (8)	0.0053 (8)	0.0022 (7)	0.0009 (7)
C18	0.0499 (10)	0.0462 (9)	0.0436 (9)	0.0140 (8)	0.0037 (8)	-0.0029 (7)
C18	0.0499 (10)	0.0462 (9)	0.0436 (9)	0.0140 (8)	0.0037 (8)	-0.0029 (7)

Geometric parameters (Å, °)

N1-C11	1.341 (2)	C5—H5A	0.9300
N1—N2	1.3812 (18)	C6—C7	1.402 (4)
N1—H1	0.898 (9)	С6—Н6	0.9300
N2-C12	1.266 (2)	С7—С8	1.362 (3)
N3—O3	1.2235 (18)	С7—Н7	0.9300
N3—O4	1.2315 (18)	С8—С9	1.414 (3)
N3—C14	1.448 (2)	C8—H8	0.9300
01—C11	1.2378 (18)	C9—C10	1.404 (2)
O2—C2	1.357 (2)	C10—H10	0.9300
O2—H2	0.8200	C12—C13	1.469 (2)
O5—C17	1.343 (2)	C12—H12	0.9300
О5—Н5	0.8200	C13—C18	1.382 (2)
C1—C10	1.376 (2)	C13—C14	1.399 (2)
C1-C2	1.426 (2)	C14—C15	1.384 (2)
C1-C11	1.479 (2)	C15—C16	1.371 (2)
C2—C3	1.364 (2)	C15—H15	0.9300
C3—C4	1.405 (3)	C16—C17	1.387 (2)
С3—Н3	0.9300	C16—H16	0.9300
C4—C9	1.414 (3)	C17—C18	1.387 (2)
C4—C5	1.422 (3)	C18—H18	0.9300
C5—C6	1.357 (4)		
C11—N1—N2	120.64 (13)	С9—С8—Н8	119.8
C11—N1—H1	120.7 (13)	C10—C9—C4	118.26 (17)
N2—N1—H1	118.4 (13)	C10—C9—C8	122.1 (2)
C12—N2—N1	114.48 (14)	C4—C9—C8	119.63 (18)
O3—N3—O4	122.43 (14)	C1—C10—C9	122.28 (17)
O3—N3—C14	120.03 (14)	C1—C10—H10	118.9
O4—N3—C14	117.54 (14)	C9—C10—H10	118.9
С2—О2—Н2	109.5	01—C11—N1	121.64 (14)
С17—О5—Н5	109.5	O1—C11—C1	121.38 (15)
C10—C1—C2	118.58 (15)	N1-C11-C1	116.98 (14)
C10-C1-C11	122.05 (15)	N2—C12—C13	120.90 (15)
C2—C1—C11	119.31 (14)	N2—C12—H12	119.5
O2—C2—C3	118.43 (17)	C13—C12—H12	119.5
O2—C2—C1	121.50 (15)	C18—C13—C14	116.75 (14)
C3—C2—C1	120.07 (17)	C18—C13—C12	119.55 (15)
C2—C3—C4	121.34 (18)	C14—C13—C12	123.64 (14)
С2—С3—Н3	119.3	C15—C14—C13	121.96 (14)
С4—С3—Н3	119.3	C15—C14—N3	116.99 (14)
C3—C4—C9	119.42 (16)	C13—C14—N3	121.04 (14)
C3—C4—C5	122.1 (2)	C16—C15—C14	119.98 (15)
C9—C4—C5	118.4 (2)	C16—C15—H15	120.0
C6—C5—C4	120.2 (3)	C14—C15—H15	120.0
С6—С5—Н5А	119.9	C15—C16—C17	119.39 (15)
C4—C5—H5A	119.9	C15—C16—H16	120.3

C5—C6—C7	121.3 (2)	C17—C16—H16	120.3
С5—С6—Н6	119.4	O5-C17-C16	122.72 (15)
С7—С6—Н6	119.4	O5-C17-C18	117.25 (16)
C8—C7—C6	120.1 (3)	C16—C17—C18	120.03 (15)
С8—С7—Н7	119.9	C13—C18—C17	121.79 (16)
С6—С7—Н7	119.9	C13—C18—H18	119.1
C7—C8—C9	120.3 (3)	C17—C18—H18	119.1
С7—С8—Н8	119.8		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
O2—H2…O1	0.82	1.88	2.5987 (18)	146
N1— $H1$ ···O4 ⁱ	0.90(1)	2.14 (1)	3.0361 (19)	173 (2)
O5—H5…O1 ⁱⁱ	0.82	1.88	2.6889 (17)	168

Symmetry codes: (i) -*x*+2, -*y*+1, -*z*; (ii) -*x*+5/2, *y*-1/2, -*z*+1/2.