organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-2-Acetamido-3-(4-chloro­phen­yl)acrylic acid

aKey Laboratory of Hunan Forest Products and, Chemical Industry Engineering, Jishou University, Jishou 416000, People's Republic of China
*Correspondence e-mail: shenyangzhou@163.com

(Received 27 October 2009; accepted 12 November 2009; online 18 November 2009)

In the title compound, C11H10ClNO3, the mol­ecule consists of a benzene ring and an acetamido­acrylic acid unit on opposite sides of the C=C double bond. In the crystal, inter­molecular O—H⋯O and N—H⋯O hydrogen bonds assemble the mol­ecules into infinite two-dimensional ribbons. These ribbons are linked into a network by inter­molecular C—H⋯π contacts.

Related literature

Derivatives of 2-acetamido-3-phenyl­acrylic acid are key inter­mates in the preparations of tanshinol (Wong et al. 1992[Wong, H. N. C., Le, X. Z., Hson, M. C. & Chi, M. L. (1992). Synthesis, 8, 793-797.]; Xiao, et al. 2008a[Xiao, Z.-P., Li, H.-Q., Xue, J.-Y., Shi, L. & Zhu, H.-L. (2008a). Synth. Commun. 38, 525-529.]), diaryl-3-hydr­oxy-2(5H)-furan­ones (Weber et al. 2002[Weber, V., Coudert, P., Rubat, C., Duroux, E., Vallee-Goyet, D., Gardette, D., Bria, M., Albuisson, E., Leal, F., Gramain, J.-C., Couquelet, J. & Madesclaire, M. (2002). Bioorg. Med. Chem. 10, 1647-1658.]; Xiao et al. 2008b[Xiao, Z.-P., Li, H.-Q., Shi, L., Lv, P.-C., Song, Z.-C. & Zhu, H.-L. (2008b). ChemMedChem, 3, 1077-1083.]) and benzyl­azauracil (Chen et al. 1993[Chen, Y.-L., Chen, S.-J., Lee, K.-H., Huang, B.-R. & Tzeng, C.-C. (1993). Nucleosides Nucleotides Nucleic Acids, 12, 925-940.]; Xiao, et al. 2008c[Xiao, Z.-P., Lv, P.-C., Xu, S.-P., Zhu, T.-T. & Zhu, H.-L. (2008c). ChemMedChem, 3, 1516-1519.]), which show anti-platelet aggregation, anti­fungal and anti­viral activities, respectively.

[Scheme 1]

Experimental

Crystal data
  • C11H10ClNO3

  • Mr = 239.65

  • Monoclinic, P 21

  • a = 6.2440 (12) Å

  • b = 7.5450 (15) Å

  • c = 11.813 (2) Å

  • β = 100.47 (3)°

  • V = 547.26 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 298 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.935, Tmax = 0.967

  • 1160 measured reflections

  • 1060 independent reflections

  • 895 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.229

  • S = 1.01

  • 1060 reflections

  • 148 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.09 2.933 (7) 165
O2—H2A⋯O3ii 0.82 1.86 2.606 (7) 152
C3—H3⋯Cg1iii 0.93 2.85 3.523 (8) 130
Symmetry codes: (i) x-1, y, z; (ii) [-x+1, y-{\script{1\over 2}}, -z]; (iii) [-x, y+{\script{1\over 2}}, -z+1]. Cg1 is the centroid of the C1–C6 ring.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Derivatives of 2-acetamido-3-phenylacrylic acid are key intermates for tanshinol (Wong et al. 1992; Xiao, et al. 2008a), diaryl-3-hydroxy-2(5H)-furanones (Weber et al. 2002; Xiao et al. 2008b) and benzylazauracil (Chen et al. 1993; Xiao, et al. 2008c), which show anti-platelet aggregation, antifungal and antiviral activities, respectively. In the course of our work on screening for anticancers, we synthesized the title compound and herein reported its crystal structure.

In the title compound (I), the plane of benzene ring (with mean dieviation deviation of 0.0053 Å) and the plane of hydroxy acrylic moiety (with mean deviation of 0.0049 Å) make a dihedral angle of 18.001 (97) Å. The benzene ring and the carboxy group occur on opposite side of the C8C9 double bond with torsion angle of 179.8 (4) ° (Fig. 1). Intermolecular O—H···O and N—H···O hydrogen bonds (Table 1) assemble the molecules into an infinite two-dimensional ribbon. This ribbons further form a network via C—H···pi contact (Fig. 2).

Related literature top

Derivatives of 2-acetamido-3-phenylacrylic acid are key intermates for tanshinol (Wong et al. 1992; Xiao, et al. 2008a), diaryl-3-hydroxy-2(5H)-furanones (Weber et al. 2002; Xiao et al. 2008b) and benzylazauracil (Chen et al. 1993; Xiao, et al. 2008c), which show anti-platelet aggregation, antifungal and antiviral activities, respectively. Cg1 is the centroid of the C1–C6 ring.

Experimental top

The mixture of alpha-acetoaminocinnamic acid (2.35 g, 10 mmol) in 0.5M HCl (60 mL) was refluxed for 3 h. The resulting mixture was allowed to cool to room temperature and the resulting precipitate was collected by filtration. The crude product was dissolved in EtOAc and twofold volume of petroleum was added carefully. Colorless blocks of (I) suitable for single-crystal structure determination was furnished after 2 d.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H of 0.93 Å for the aromatic atoms and =CH groups, 0.96 Å for the CH3 groups, 0.82 Å for the OH groups and 0.86 Å for the NH groups. Uiso(H) values were set at 1.2 times Ueq(C) for aromatic C double bond C groups, 1.5 times Ueq(C) for CH3 and 1.5 times Ueq(O) for O—H groups. Because the absolute structure parameter is meaningless with a rather poor accuracy, the chemical absolute configuration could not be determined unambiguously

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I), with the atom-numbering scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. An infinite two-dimensional ribbon is formed through intermolecular O—H···O hydrogen bonds. Dashed lines indicate hydrogen bonds and solid dashed lines indicate C—H···π contacts.
(Z)-2-Acetamido-3-(4-chlorophenyl)acrylic acid top
Crystal data top
C11H10ClNO3F(000) = 248
Mr = 239.65Dx = 1.454 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 775 reflections
a = 6.2440 (12) Åθ = 1.9–24.7°
b = 7.5450 (15) ŵ = 0.34 mm1
c = 11.813 (2) ÅT = 298 K
β = 100.47 (3)°Block, colorless
V = 547.26 (19) Å30.20 × 0.10 × 0.10 mm
Z = 2
Data collection top
Bruker SMART APEX area-detector
diffractometer
1060 independent reflections
Radiation source: fine-focus sealed tube895 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 25.2°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 07
Tmin = 0.935, Tmax = 0.967k = 09
1160 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.229H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
1060 reflections(Δ/σ)max = 0.001
148 parametersΔρmax = 0.32 e Å3
1 restraintΔρmin = 0.35 e Å3
Crystal data top
C11H10ClNO3V = 547.26 (19) Å3
Mr = 239.65Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.2440 (12) ŵ = 0.34 mm1
b = 7.5450 (15) ÅT = 298 K
c = 11.813 (2) Å0.20 × 0.10 × 0.10 mm
β = 100.47 (3)°
Data collection top
Bruker SMART APEX area-detector
diffractometer
1060 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
895 reflections with I > 2σ(I)
Tmin = 0.935, Tmax = 0.967Rint = 0.036
1160 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0521 restraint
wR(F2) = 0.229H-atom parameters constrained
S = 1.01Δρmax = 0.32 e Å3
1060 reflectionsΔρmin = 0.35 e Å3
148 parameters
Special details top

Experimental. We have re-refined our data by using 'MERG 1' instruction to avoid Friedel opposites being merged. The absolute structure parameter is still meaningless, though the data/parameter (985/148) is higher than the former (895/148).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.0425 (4)0.7267 (4)0.74675 (17)0.0628 (8)
C10.3337 (10)0.6719 (8)0.4546 (5)0.0297 (14)
N10.2032 (8)0.7163 (9)0.1907 (4)0.0333 (13)
H10.08600.67150.20710.06 (3)*
O10.7621 (7)0.6067 (9)0.2131 (5)0.0529 (16)
C20.1323 (11)0.7587 (9)0.4407 (6)0.0360 (16)
H20.07260.80450.36880.043*
O20.4735 (8)0.5437 (10)0.0782 (5)0.0579 (17)
H2A0.56570.51930.03930.087*
C30.0201 (13)0.7786 (10)0.5294 (6)0.0422 (18)
H30.11340.83680.51770.051*
O30.3510 (8)0.9179 (9)0.0890 (4)0.0496 (15)
C40.1089 (13)0.7102 (11)0.6378 (6)0.0436 (18)
C50.3095 (13)0.6317 (12)0.6558 (6)0.0480 (19)
H50.37010.59150.72910.058*
C60.4220 (11)0.6116 (11)0.5683 (6)0.0424 (18)
H60.55820.55770.58250.051*
C70.4613 (10)0.6378 (10)0.3662 (6)0.0337 (14)
H70.60120.59500.39240.040*
C80.4067 (10)0.6591 (10)0.2525 (6)0.0352 (15)
C90.5701 (10)0.6022 (10)0.1796 (6)0.0372 (16)
C100.1874 (11)0.8392 (10)0.1065 (5)0.0363 (15)
C110.0380 (12)0.8731 (13)0.0403 (6)0.050 (2)
H11A0.02950.94620.02520.075*
H11B0.12270.93230.08910.075*
H11C0.10590.76240.01490.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0756 (15)0.0751 (15)0.0438 (10)0.0037 (13)0.0266 (10)0.0043 (11)
C10.028 (3)0.032 (3)0.026 (3)0.003 (3)0.001 (2)0.002 (2)
N10.027 (3)0.045 (3)0.032 (2)0.000 (3)0.016 (2)0.004 (3)
O10.025 (2)0.077 (4)0.057 (3)0.003 (3)0.005 (2)0.000 (3)
C20.041 (4)0.033 (4)0.034 (3)0.008 (3)0.006 (3)0.004 (3)
O20.033 (2)0.084 (4)0.058 (3)0.001 (3)0.012 (2)0.034 (4)
C30.037 (4)0.046 (4)0.045 (4)0.004 (3)0.011 (3)0.000 (3)
O30.047 (3)0.063 (4)0.041 (3)0.013 (3)0.015 (2)0.014 (3)
C40.051 (4)0.038 (4)0.040 (4)0.008 (4)0.003 (3)0.002 (3)
C50.059 (5)0.054 (5)0.030 (3)0.005 (4)0.005 (3)0.006 (3)
C60.038 (4)0.046 (4)0.039 (4)0.012 (3)0.004 (3)0.008 (3)
C70.027 (3)0.035 (3)0.040 (3)0.002 (3)0.006 (2)0.002 (3)
C80.029 (3)0.034 (3)0.045 (4)0.000 (3)0.014 (3)0.003 (3)
C90.033 (3)0.044 (4)0.041 (4)0.004 (3)0.022 (3)0.002 (3)
C100.040 (3)0.044 (4)0.029 (3)0.005 (3)0.016 (3)0.003 (3)
C110.054 (4)0.057 (5)0.034 (3)0.011 (4)0.006 (3)0.006 (4)
Geometric parameters (Å, º) top
Cl—C41.734 (8)C3—H30.9300
C1—C21.401 (9)O3—C101.231 (9)
C1—C61.430 (9)C4—C51.367 (12)
C1—C71.446 (9)C5—C61.360 (11)
N1—C101.350 (9)C5—H50.9300
N1—C81.413 (9)C6—H60.9300
N1—H10.8600C7—C81.334 (11)
O1—C91.193 (8)C7—H70.9300
C2—C31.370 (11)C8—C91.512 (8)
C2—H20.9300C10—C111.502 (10)
O2—C91.316 (9)C11—H11A0.9600
O2—H2A0.8200C11—H11B0.9600
C3—C41.398 (11)C11—H11C0.9600
C2—C1—C6116.3 (6)C5—C6—H6119.5
C2—C1—C7126.8 (6)C1—C6—H6119.5
C6—C1—C7116.9 (6)C8—C7—C1129.2 (6)
C10—N1—C8121.9 (6)C8—C7—H7115.4
C10—N1—H1119.0C1—C7—H7115.4
C8—N1—H1119.0C7—C8—N1126.8 (6)
C3—C2—C1122.3 (6)C7—C8—C9117.6 (6)
C3—C2—H2118.8N1—C8—C9115.4 (6)
C1—C2—H2118.8O1—C9—O2125.3 (6)
C9—O2—H2A109.5O1—C9—C8123.0 (6)
C4—C3—C2119.2 (7)O2—C9—C8111.7 (5)
C4—C3—H3120.4O3—C10—N1120.2 (6)
C2—C3—H3120.4O3—C10—C11123.9 (7)
C3—C4—C5120.1 (7)N1—C10—C11115.9 (6)
C3—C4—Cl118.3 (6)C10—C11—H11A109.5
C5—C4—Cl121.6 (6)C10—C11—H11B109.5
C4—C5—C6121.0 (7)H11A—C11—H11B109.5
C4—C5—H5119.5C10—C11—H11C109.5
C6—C5—H5119.5H11A—C11—H11C109.5
C5—C6—C1121.0 (6)H11B—C11—H11C109.5
C6—C1—C2—C32.8 (10)C6—C1—C7—C8170.8 (8)
C7—C1—C2—C3177.5 (7)C1—C7—C8—N12.2 (13)
C1—C2—C3—C40.0 (11)C1—C7—C8—C9176.5 (7)
C2—C3—C4—C52.9 (12)C10—N1—C8—C7134.8 (8)
C2—C3—C4—Cl176.7 (6)C10—N1—C8—C950.8 (9)
C3—C4—C5—C62.9 (13)C7—C8—C9—O130.5 (11)
Cl—C4—C5—C6176.6 (6)N1—C8—C9—O1154.6 (8)
C4—C5—C6—C10.0 (12)C7—C8—C9—O2147.7 (8)
C2—C1—C6—C52.8 (11)N1—C8—C9—O227.2 (10)
C7—C1—C6—C5177.5 (7)C8—N1—C10—O37.2 (11)
C2—C1—C7—C89.5 (12)C8—N1—C10—C11174.0 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.092.933 (7)165
O2—H2A···O3ii0.821.862.606 (7)152
C3—H3···Cg1iii0.932.853.523 (8)130
Symmetry codes: (i) x1, y, z; (ii) x+1, y1/2, z; (iii) x, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC11H10ClNO3
Mr239.65
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)6.2440 (12), 7.5450 (15), 11.813 (2)
β (°) 100.47 (3)
V3)547.26 (19)
Z2
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.935, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
1160, 1060, 895
Rint0.036
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.229, 1.01
No. of reflections1060
No. of parameters148
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.35

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.092.933 (7)165.0
O2—H2A···O3ii0.821.862.606 (7)151.7
C3—H3···Cg1iii0.932.853.523 (8)130.0
Symmetry codes: (i) x1, y, z; (ii) x+1, y1/2, z; (iii) x, y+1/2, z+1.
 

Acknowledgements

This research was supported financially by the Key Laboratory of Hunan Forest Products and Chemical Industry Engineering of Hunan Province (grant No. JDZ200905).

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y.-L., Chen, S.-J., Lee, K.-H., Huang, B.-R. & Tzeng, C.-C. (1993). Nucleosides Nucleotides Nucleic Acids, 12, 925–940.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeber, V., Coudert, P., Rubat, C., Duroux, E., Vallee-Goyet, D., Gardette, D., Bria, M., Albuisson, E., Leal, F., Gramain, J.-C., Couquelet, J. & Madesclaire, M. (2002). Bioorg. Med. Chem. 10, 1647–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWong, H. N. C., Le, X. Z., Hson, M. C. & Chi, M. L. (1992). Synthesis, 8, 793–797.  CrossRef Web of Science Google Scholar
First citationXiao, Z.-P., Li, H.-Q., Shi, L., Lv, P.-C., Song, Z.-C. & Zhu, H.-L. (2008b). ChemMedChem, 3, 1077–1083.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXiao, Z.-P., Li, H.-Q., Xue, J.-Y., Shi, L. & Zhu, H.-L. (2008a). Synth. Commun. 38, 525–529.  Web of Science CrossRef CAS Google Scholar
First citationXiao, Z.-P., Lv, P.-C., Xu, S.-P., Zhu, T.-T. & Zhu, H.-L. (2008c). ChemMedChem, 3, 1516–1519.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds