

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-(Hydrazonomethyl)phenol

Yan-Fang Shang,^a* Qing-Ming Wang,^b Miao-Li Zhu^b and Yue-Hua Zhang^a

^aSchool of Chemistry and Chemical Engineering, Nantong University, Nantong, JiangSu 226000, People's Republic of China, and ^bInstitute of Molecular Science, Key Laboratory of Chemical Biology and Molecular, Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China Correspondence e-mail: shangyanfang@ntu.edu.cn

Received 23 October 2009; accepted 29 October 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.036; wR factor = 0.110; data-to-parameter ratio = 12.9.

The conformation of the title compound, $C_7H_8N_2O$, is stabilized by an intramolecular $O-H\cdots N$ hydrogen bond. The crystal structure shows intermolecular $N-H\cdots O$ hydrogen bonds.

Related literature

For Schiff bases as mixed-donor ligands in coordination chemistry, see: Lee *et al.* (2005). For the pharmaceutical and medicinal activity of Schiff bases, see: Sriram *et al.* (2006); Hao (2009); Bedia *et al.* (2006).

Experimental

Crystal data

 $C_7H_8N_2O$ $M_r = 136.15$ Monoclinic, $P2_1/c$ a = 14.1010 (11) Å b = 6.0062 (5) Å c = 8.1979 (6) Å $\beta = 102.5250 (10)^{\circ}$ $V = 677.78 (9) \text{ Å}^3$ Z = 4Mo K α radiation $0.46 \times 0.45 \times 0.35 \ \text{mm}$

 $\mu = 0.09 \text{ mm}^{-1}$ T = 296 K

Data collection

Bruker SMART CCD area-detector	3351 measured reflections
diffractometer	1203 independent reflections
Absorption correction: multi-scan	1081 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2000)	$R_{\rm int} = 0.013$
$T_{\rm min} = 0.959, T_{\rm max} = 0.968$	

Refinement

93 parameters
$\Delta \rho_{\rm max} = 0.33 \text{ e} \text{ \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2A\cdotsO1^{i}$ $N2-H2B\cdotsO1^{ii}$ $O1-H1\cdotsN1$	0.86	2.56	3.3076 (17)	145
	0.86	2.23	3.0530 (16)	160
	0.82	1.89	2.6109 (15)	147

Symmetry codes: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) -x, -y, -z.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *XP* (Sheldrick, 2008); software used to prepare material for publication: *publCIF* (Westrip, 2009).

Y-FS acknowledges financial support from the Natural Science Foundation of Nantong University in China (grant No. 07z025).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5112).

References

- Bedia, K. K., Elcin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). *Eur. J. Med. Chem.* **41**, 1253–1261.
- Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hao, Y. M. (2009). Acta Cryst. E65, o2600.
- Lee, B. Y., Kwon, H. Y., Lee, S. Y., Na, S. J., Han, S. I., Yun, H., Lee, H. & Park, Y. W. (2005). *J. Am. Chem. Soc.* **127**, 3031–3037.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127–2129.
- Westrip, S. P. (2009). publCIF. In preparation.

supporting information

Acta Cryst. (2009). E65, o3023 [doi:10.1107/S1600536809045504]

2-(Hydrazonomethyl)phenol

Yan-Fang Shang, Qing-Ming Wang, Miao-Li Zhu and Yue-Hua Zhang

S1. Comment

Schiff bases are one of the most prevalent and important mixed-donor ligand in coordination chemistry (Lee *et al.*, 2005). Recently, the synthesis, structure and properties of Schiff base complexes have stimulated much more interest for their noteworthy contributions in pharmaceutical and medicinal activity (Sriram *et al.*, 2006; Hao 2009; Bedia *et al.*, 2006).

The X-ray structural analysis confirmed the assignment of the structure of the title compound(I). The molecular structure is depicted in Fig. 1, and the crystal packing of the title compound(I) is depicted in Fig. 2. In the crystal structure, intermolecular N—H…O, N—H…N and intramolecular O—H…N hydrogen bonds contribute to form the title compound(I).

S2. Experimental

35% of hydrazine hydrate (0.50 mL, 10 mmol) and salicylidence (0.52 mL, 5 mmol) were mixed in 50.0 mL ethanol and refluxed for 3 h. When the solution was cooled to room temperature, a light yellow solid was obtained, and light yellow block shaped crystals were formed from the filtrate by slow evaporation of the solution in air after a few days. The yield of the isolated yellow solid was 0.62 g.(90%).

S3. Refinement

H atoms attached to C were placed in geometrically idealized positions with Csp^2 —H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. H atoms bonded to N and O were located in a difference map. They were refined using a riding model with O—H = 0.82 Å and N—H = 0.86 Å and $U_{iso}(H) = 1.2U_{eq}(N)$ or $1.5U_{eq}(O)$.

Figure 1

A view of the title compound with displacement ellipsoids drawn at the 30% probability level. Dashed line indicates hydrogen bonding interactions.

2-(Hydrazonomethyl)phenol

Crystal data

C₇H₈N₂O $M_r = 136.15$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 14.1010 (11) Å b = 6.0062 (5) Å c = 8.1979 (6) Å $\beta = 102.525 (1)^{\circ}$ $V = 677.78 (9) \text{ Å}^3$ Z = 4

Data collection

Bruker SMART CCD area-detector
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\min} = 0.959, \ T_{\max} = 0.968$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.110$ S = 1.061203 reflections 93 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 288 $D_x = 1.334 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2298 reflections $\theta = 3.0-28.4^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 296 KBlock, yellow $0.46 \times 0.45 \times 0.35 \text{ mm}$

3351 measured reflections 1203 independent reflections 1081 reflections with $I > 2\sigma(I)$ $R_{int} = 0.013$ $\theta_{max} = 25.1^{\circ}, \theta_{min} = 3.0^{\circ}$ $h = -15 \rightarrow 16$ $k = -6 \rightarrow 7$ $l = -9 \rightarrow 8$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites $w = 1/[\sigma^2(F_o^2) + (0.0587P)^2 + 0.1774P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.33$ e Å⁻³ $\Delta\rho_{min} = -0.29$ e Å⁻³ Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc*=kFc[1+0.001xFc²\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.129 (12)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.22022 (10)	-0.1162 (2)	0.13139 (16)	0.0374 (4)
C2	0.27892 (11)	-0.2576 (3)	0.24310 (18)	0.0462 (4)
H2	0.2554	-0.3958	0.2670	0.055*

C3	0.37226 (12)	-0.1944 (3)	0.3192 (2)	0.0546 (5)	
H3	0.4111	-0.2898	0.3948	0.065*	
C4	0.40836 (11)	0.0097 (3)	0.2837 (2)	0.0568 (5)	
H4	0.4715	0.0513	0.3339	0.068*	
C5	0.34970 (11)	0.1512 (3)	0.17277 (19)	0.0487 (4)	
H5	0.3743	0.2881	0.1487	0.058*	
C6	0.25465 (9)	0.0945 (2)	0.09582 (16)	0.0372 (4)	
C7	0.19290 (10)	0.2536 (2)	-0.01248 (16)	0.0392 (4)	
H7	0.2190	0.3883	-0.0376	0.047*	
N1	0.10354 (8)	0.21085 (19)	-0.07344 (14)	0.0407 (3)	
N2	0.04759 (9)	0.3659 (2)	-0.17427 (15)	0.0507 (4)	
H2A	0.0693	0.4889	-0.2059	0.061*	
H2B	-0.0089	0.3460	-0.1530	0.061*	
01	0.12928 (7)	-0.18636 (16)	0.05811 (13)	0.0476 (3)	
H1	0.0993	-0.0840	0.0039	0.071*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0428 (8)	0.0355 (7)	0.0358 (7)	-0.0005 (6)	0.0127 (6)	-0.0036 (5)
C2	0.0587 (9)	0.0381 (8)	0.0439 (8)	0.0040 (6)	0.0157 (7)	0.0026 (6)
C3	0.0576 (10)	0.0566 (10)	0.0467 (9)	0.0148 (8)	0.0050 (7)	0.0038 (7)
C4	0.0439 (8)	0.0645 (11)	0.0574 (10)	0.0009 (8)	0.0007 (7)	-0.0041 (8)
C5	0.0468 (8)	0.0447 (8)	0.0543 (9)	-0.0070 (6)	0.0106 (7)	-0.0034 (7)
C6	0.0418 (7)	0.0351 (7)	0.0363 (7)	-0.0016 (6)	0.0118 (5)	-0.0038 (5)
C7	0.0471 (8)	0.0323 (7)	0.0399 (7)	-0.0060 (6)	0.0130 (6)	0.0003 (6)
N1	0.0468 (7)	0.0364 (6)	0.0385 (6)	-0.0013 (5)	0.0083 (5)	0.0020 (5)
N2	0.0523 (8)	0.0466 (8)	0.0522 (8)	0.0037 (6)	0.0092 (6)	0.0140 (6)
01	0.0451 (6)	0.0353 (6)	0.0607 (7)	-0.0054 (4)	0.0078 (5)	0.0039 (5)

Geometric parameters (Å, °)

C1—01	1.3597 (16)	C5—C6	1.3941 (19)
C1—C2	1.384 (2)	С5—Н5	0.9300
C1—C6	1.409 (2)	C6—C7	1.4574 (19)
C2—C3	1.382 (2)	C7—N1	1.2768 (18)
С2—Н2	0.9300	С7—Н7	0.9300
C3—C4	1.382 (2)	N1—N2	1.3749 (16)
С3—Н3	0.9300	N2—H2A	0.8604
C4—C5	1.381 (2)	N2—H2B	0.8604
C4—H4	0.9300	O1—H1	0.8200
O1—C1—C2	118.26 (12)	С4—С5—Н5	119.1
O1—C1—C6	121.42 (12)	С6—С5—Н5	119.1
C2—C1—C6	120.32 (13)	C5—C6—C1	117.79 (13)
C3—C2—C1	120.28 (14)	C5—C6—C7	120.29 (13)
С3—С2—Н2	119.9	C1—C6—C7	121.88 (12)
С1—С2—Н2	119.9	N1—C7—C6	121.00 (12)

C2—C3—C4	120.46 (15)	N1—C7—H7	119.5
С2—С3—Н3	119.8	С6—С7—Н7	119.5
С4—С3—Н3	119.8	C7—N1—N2	119.21 (12)
C5—C4—C3	119.27 (15)	N1—N2—H2A	124.6
С5—С4—Н4	120.4	N1—N2—H2B	102.7
C3—C4—H4	120.4	H2A—N2—H2B	125.9
C4—C5—C6	121.86 (14)	C1	109.5
O1—C1—C2—C3	179.29 (13)	O1—C1—C6—C5	-178.27 (12)
C6—C1—C2—C3	-0.8 (2)	C2-C1-C6-C5	1.82 (19)
C1—C2—C3—C4	-0.5 (2)	O1—C1—C6—C7	4.02 (19)
C2—C3—C4—C5	0.8 (2)	C2-C1-C6-C7	-175.89 (12)
C3—C4—C5—C6	0.3 (2)	C5—C6—C7—N1	-174.54 (13)
C4—C5—C6—C1	-1.6 (2)	C1-C6-C7-N1	3.1 (2)
C4—C5—C6—C7	176.17 (13)	C6-C7-N1-N2	179.61 (11)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D··· A	D—H···A
N2—H2A····O1 ⁱ	0.86	2.56	3.3076 (17)	145
N2—H2 <i>B</i> ····O1 ⁱⁱ	0.86	2.23	3.0530 (16)	160
O1—H1…N1	0.82	1.89	2.6109 (15)	147

Symmetry codes: (i) x, -y+1/2, z-1/2; (ii) -x, -y, -z.