Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-(2-Aminoethyl)-2-anilinoguinazolin-4(3H)-one methanol hemisolvate

Tao Gao,^a Yuan-Hong Jiao^b and Seik Weng Ng^c*

^aFaculty of Chemistry and Life Science, Xianning University, Xianning 437100, People's Republic of China, ^bSchool of Chemistry and Material Engineering, Huangshi Institute of Technology, Huangshi 435003, People's Republic of China, and ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.mv

Received 28 October 2009; accepted 29 October 2009

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; disorder in solvent or counterion; R factor = 0.062; wR factor = 0.186; data-toparameter ratio = 16.2

The title methanol hemisolvated quinazolin-(3H)-one, C₁₆H₁₆N₄O·0.5CH₃OH, has an anilino substituent in the 2position and an aminoethyl substituent in the 3-position of the planar fused-ring system (r.m.s. deviation = 0.019 Å). The anilino N atom donates an intramolecular hydrogen bond to the aminoethyl N atom. The molecule and the solvent methanol molecule are linked by $N-H \cdots N$, $N-H \cdots O$ and O-H···O hydrogen bonds. The methanol molecule is disordered over two equally occupied positions about a twofold rotation axis.

Related literature

For the synthesis of this class of compounds, see: Yang et al. (2008). For the crystal structure of a chlorine-substituted derivative, see: Yang et al. (2009).

3399 independent reflections

 $R_{\rm int} = 0.073$

2377 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

C ₁₆ H ₁₆ N ₄ O·0.5CH ₄ O	V = 2994.9 (3) Å ³
$M_r = 296.35$	Z = 8
Monoclinic, $C2/c$	Mo $K\alpha$ radiation
a = 19.5972 (11) Å	$\mu = 0.09 \text{ mm}^{-1}$
b = 12.2035 (7) Å	T = 295 K
c = 12.8681 (8) Å	$0.30 \times 0.20 \times 0.10 \text{ mm}$
$\beta = 103.301 \ (1)^{\circ}$	

Data collection

Bruker APEXII diffractometer Absorption correction: none 14007 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.062$ wR(F²) = 0.186 13 restraints H-atom parameters constrained S = 1.09 $\Delta \rho_{\rm max} = 0.55 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -0.29$ e Å⁻³ 3399 reflections 210 parameters

Table 1

Hydrogen-bond geometry (Å, °).

	$-H \cdots A$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	46 68 47

Symmetry code: (i) $x, -y + 1, z - \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2007): cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

We thank Xianning University, Huangshi Institute of Technology and the University of Malava for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5121).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2009). publCIF. In preparation.

Yang, X.-H., Chen, X.-B. & Zhou, S.-X. (2009). Acta Cryst. E65, 0185-0186.

Yang, X.-H., Wu, M.-H., Sun, S.-F., Ding, M.-W., Xie, J.-L. & Xia, Q.-H. (2008). J. Heterocycl. Chem. 45, 1365-1369.

supporting information

Acta Cryst. (2009). E65, o2989 [doi:10.1107/S1600536809045516]

3-(2-Aminoethyl)-2-anilinoquinazolin-4(3H)-one methanol hemisolvate

Tao Gao, Yuan-Hong Jiao and Seik Weng Ng

S1. Experimental

To a THF (10 ml) solution of 2-ethoxycarbonyliminophosphorane (1.27 g, 3.0 mmol) was added phenylisocyanate (0.36 g, 3.0 mmol). The solution was set aside undisturbed for 6 h at 273 K. To this solution was added ethanolamine (0.18 g, 3 mmol) in THF (5 ml). The mixture was stirred overnight. The solvent was removed and the solid recrystallized from a chloroform/methanol (1/1) mixture to give colorless crystals in 80% yield; m.p. 433–434 K.

S2. Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C). The amino and hydroxy H atoms were similarly generated.

The methanol molecule is disordered over two equally occupied positions about a two-fold rotation axis. The C–O distance was restrained to 1.500 ± 0.002 Å. The anisotropic displacemnt parameters of the methanolic O and C atoms were restrained to be nearly isotropic.

Figure 1

Anisotropic displacement ellipsoid plot (Barbour, 2001) of the title compound at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

3-(2-Aminoethyl)-2-anilinoquinazolin-4(3H)-one methanol hemisolvate

Crystal data

C₁₆H₁₆N₄O·0.5CH₄O $M_r = 296.35$ Monoclinic, C2/c Hall symbol: -C 2yc a = 19.5972 (11) Å b = 12.2035 (7) Å c = 12.8681 (8) Å $\beta = 103.301$ (1)° V = 2994.9 (3) Å³ Z = 8

Data collection

Bruker APEXII diffractometer	2377 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.073$
Radiation source: fine-focus sealed tube	$\theta_{\rm max} = 27.5^{\circ}, \theta_{\rm min} = 2.0^{\circ}$
Graphite monochromator	$h = -17 \rightarrow 25$
ω scans	$k = -15 \rightarrow 14$
14007 measured reflections	$l = -16 \rightarrow 16$
3399 independent reflections	
Refinement	

F(000) = 1256

 $\theta = 2.4 - 25.9^{\circ}$

 $\mu = 0.09 \text{ mm}^{-1}$ T = 295 K

Block, colorless

 $0.30 \times 0.20 \times 0.10 \text{ mm}$

 $D_{\rm x} = 1.314 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3816 reflections

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.062$	Hydrogen site location: inferred from
$wR(F^2) = 0.186$	neighbouring sites
S = 1.09	H-atom parameters constrained
3399 reflections	$w = 1/[\sigma^2(F_o^2) + (0.1044P)^2 + 0.1504P]$
210 parameters	where $P = (F_o^2 + 2F_c^2)/3$
13 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.55 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
01	0.68958 (7)	0.41303 (12)	0.81309 (11)	0.0573 (4)	
N1	0.73674 (8)	0.41620 (12)	0.66714 (11)	0.0424 (4)	
N2	0.84958 (8)	0.34284 (13)	0.67038 (11)	0.0458 (4)	
N3	0.77752 (9)	0.40366 (13)	0.51241 (12)	0.0498 (4)	
H31	0.7345	0.4239	0.4817	0.060*	
N4	0.63136 (9)	0.37965 (16)	0.44490 (14)	0.0632 (5)	
H41	0.6131	0.4263	0.3939	0.076*	
H42	0.6131	0.3143	0.4284	0.076*	
C1	0.80430 (10)	0.34133 (14)	0.83148 (13)	0.0414 (4)	
C2	0.81360 (11)	0.31401 (16)	0.93932 (14)	0.0503 (5)	
H2	0.7782	0.3290	0.9746	0.060*	
C3	0.87449 (12)	0.26533 (18)	0.99341 (15)	0.0576 (6)	
H3	0.8804	0.2465	1.0650	0.069*	
C4	0.92707 (11)	0.24457 (19)	0.94030 (15)	0.0589 (6)	

H4	0.9684	0.2115	0.9767	0.071*	
C5	0.91908 (11)	0.27202 (19)	0.83510 (16)	0.0573 (6)	
Н5	0.9552	0.2579	0.8011	0.069*	
C6	0.85720 (10)	0.32115 (15)	0.77791 (13)	0.0427 (5)	
C7	0.73916 (10)	0.39143 (15)	0.77321 (14)	0.0437 (5)	
C8	0.79099 (10)	0.38642 (15)	0.61962 (14)	0.0414 (4)	
C9	0.82431 (10)	0.39287 (14)	0.44502 (14)	0.0426 (5)	
C10	0.79487 (10)	0.36669 (15)	0.33875 (14)	0.0462 (5)	
H10	0.7472	0.3515	0.3175	0.055*	
C11	0.83579 (12)	0.36311 (17)	0.26507 (15)	0.0530 (5)	
H11	0.8154	0.3462	0.1942	0.064*	
C12	0.90627 (13)	0.38417 (19)	0.29508 (18)	0.0614 (6)	
H12	0.9338	0.3820	0.2451	0.074*	
C13	0.93592 (12)	0.40868 (19)	0.40098 (18)	0.0616 (6)	
H13	0.9838	0.4225	0.4220	0.074*	
C14	0.89551 (11)	0.41293 (17)	0.47595 (16)	0.0534 (5)	
H14	0.9161	0.4292	0.5468	0.064*	
C15	0.67613 (10)	0.48235 (17)	0.61029 (15)	0.0516 (5)	
H15A	0.6922	0.5335	0.5634	0.062*	
H15B	0.6587	0.5248	0.6624	0.062*	
C16	0.61626 (11)	0.41579 (18)	0.54480 (17)	0.0586 (6)	
H16A	0.6080	0.3524	0.5857	0.070*	
H16B	0.5739	0.4599	0.5298	0.070*	
O2	0.5495 (3)	0.4637 (6)	0.7850 (7)	0.176 (3)	0.50
H2O	0.5856	0.4244	0.8006	0.211*	0.50
C17	0.4883 (4)	0.3949 (6)	0.7344 (11)	0.101 (3)	0.50
H17A	0.4553	0.3937	0.7792	0.152*	0.50
H17B	0.5037	0.3216	0.7254	0.152*	0.50
H17C	0.4662	0.4250	0.6660	0.152*	0.50

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0468 (8)	0.0701 (10)	0.0607 (8)	0.0019 (7)	0.0243 (7)	-0.0043 (6)
N1	0.0402 (9)	0.0437 (9)	0.0438 (8)	0.0002 (7)	0.0110 (7)	-0.0028 (6)
N2	0.0417 (9)	0.0570 (10)	0.0402 (8)	0.0011 (7)	0.0130 (7)	-0.0002 (6)
N3	0.0430 (9)	0.0665 (11)	0.0405 (8)	0.0019 (8)	0.0107 (7)	0.0053 (7)
N4	0.0614 (12)	0.0661 (12)	0.0558 (10)	0.0053 (9)	0.0006 (9)	-0.0015 (8)
C1	0.0435 (10)	0.0412 (10)	0.0411 (9)	-0.0070 (8)	0.0128 (8)	-0.0050 (7)
C2	0.0578 (13)	0.0540 (12)	0.0437 (10)	-0.0063 (10)	0.0214 (9)	-0.0038 (8)
C3	0.0697 (14)	0.0649 (13)	0.0384 (9)	-0.0019 (11)	0.0128 (10)	0.0028 (9)
C4	0.0490 (12)	0.0744 (15)	0.0494 (11)	0.0035 (11)	0.0035 (10)	0.0062 (9)
C5	0.0446 (12)	0.0782 (15)	0.0510 (11)	0.0058 (10)	0.0152 (9)	0.0035 (10)
C6	0.0424 (10)	0.0490 (11)	0.0378 (9)	-0.0038 (8)	0.0112 (8)	-0.0014 (7)
C7	0.0443 (11)	0.0438 (10)	0.0459 (10)	-0.0063 (8)	0.0164 (8)	-0.0070 (7)
C8	0.0413 (10)	0.0424 (10)	0.0415 (9)	-0.0040 (8)	0.0112 (8)	-0.0027 (7)
C9	0.0445 (11)	0.0432 (10)	0.0411 (9)	-0.0007 (8)	0.0122 (8)	0.0067 (7)
C10	0.0482 (11)	0.0448 (11)	0.0440 (9)	-0.0001 (8)	0.0072 (8)	0.0011 (7)

supporting information

C11	0.0636 (14)	0.0570 (12)	0.0404 (9)	0.0007 (10)	0.0159 (9)	-0.0006 (8)
C12	0.0654 (15)	0.0711 (15)	0.0554 (12)	0.0043 (11)	0.0293 (11)	0.0041 (10)
C13	0.0466 (12)	0.0792 (16)	0.0620 (13)	-0.0042 (10)	0.0187 (10)	0.0085 (10)
C14	0.0490 (12)	0.0683 (14)	0.0423 (10)	-0.0097 (10)	0.0091 (9)	0.0032 (9)
C15	0.0507 (12)	0.0492 (12)	0.0548 (11)	0.0090 (9)	0.0119 (9)	-0.0007 (8)
C16	0.0445 (12)	0.0671 (14)	0.0618 (13)	0.0074 (10)	0.0071 (10)	0.0025 (10)
02	0.109 (4)	0.189 (6)	0.231 (6)	-0.017 (4)	0.043 (4)	-0.115 (5)
C17	0.044 (6)	0.143 (5)	0.117 (8)	0.021 (4)	0.017 (5)	0.021 (5)

Geometric parameters (Å, °)

O1—C7	1.227 (2)	С5—Н5	0.9300
N1—C7	1.388 (2)	C9—C14	1.382 (3)
N1—C8	1.391 (2)	C9—C10	1.394 (2)
N1—C15	1.482 (2)	C10—C11	1.376 (3)
N2—C8	1.297 (2)	C10—H10	0.9300
N2—C6	1.383 (2)	C11—C12	1.370 (3)
N3—C8	1.360 (2)	C11—H11	0.9300
N3—C9	1.406 (2)	C12—C13	1.386 (3)
N3—H31	0.8800	C12—H12	0.9300
N4—C16	1.453 (3)	C13—C14	1.383 (3)
N4—H41	0.8800	С13—Н13	0.9300
N4—H42	0.8800	C14—H14	0.9300
C1—C6	1.393 (3)	C15—C16	1.514 (3)
C1—C2	1.398 (2)	C15—H15A	0.9700
C1—C7	1.458 (3)	C15—H15B	0.9700
C2—C3	1.371 (3)	C16—H16A	0.9700
С2—Н2	0.9300	C16—H16B	0.9700
C3—C4	1.385 (3)	O2—C17	1.486 (2)
С3—Н3	0.9300	O2—H2O	0.8400
C4—C5	1.368 (3)	C17—H17A	0.9600
C4—H4	0.9300	C17—H17B	0.9600
C5—C6	1.400 (3)	C17—H17C	0.9600
	101.00 (15)		
C/—NI—C8	121.23 (15)	N2	124.28 (16)
C/-NI-CI5	116.50 (15)	N3-C8-N1	114.57 (16)
$C_8 - N_1 - C_{15}$	122.13 (15)	C14 - C9 - C10	119.07 (18)
C8 - N2 - C6	117.49 (16)	C14 - C9 - N3	124.37 (17)
C8 - N3 - C9	127.54 (17)	C10-C9-N3	116.44 (17)
C8 - N3 - H31	116.2	C11 - C10 - C9	120.53 (19)
C9—N3—H31	116.2	C11—C10—H10	119.7
C16—N4—H41	109.5	C9—C10—H10	119.7
C16—N4—H42	109.5	C12—C11—C10	120.61 (19)
H41—N4—H42	109.5	CI2—CII—HII	119.7
C6-C1-C2	120.49 (17)	C10—C11—H11	119.7
C6-C1-C7	118.89 (16)	C11—C12—C13	119.0 (2)
C2—C1—C7	120.62 (18)	C11—C12—H12	120.5
C3—C2—C1	120.45 (19)	C13—C12—H12	120.5

С3—С2—Н2	119.8	C14—C13—C12	121.1 (2)
C1—C2—H2	119.8	C14—C13—H13	119.5
C2—C3—C4	119.24 (17)	С12—С13—Н13	119.5
С2—С3—Н3	120.4	C9—C14—C13	119.66 (19)
С4—С3—Н3	120.4	C9—C14—H14	120.2
C5—C4—C3	120.99 (19)	C13—C14—H14	120.2
C5—C4—H4	119.5	N1-C15-C16	114.39 (17)
C3—C4—H4	119.5	N1—C15—H15A	108.7
C4—C5—C6	120.9 (2)	C16—C15—H15A	108.7
C4—C5—H5	119.6	N1—C15—H15B	108.7
С6—С5—Н5	119.6	C16—C15—H15B	108.7
N2-C6-C1	122.70 (17)	H15A—C15—H15B	107.6
N2—C6—C5	119.27 (17)	N4-C16-C15	111.46 (19)
C1—C6—C5	117.96 (16)	N4—C16—H16A	109.3
O1—C7—N1	120.87 (17)	C15—C16—H16A	109.3
O1—C7—C1	123.97 (17)	N4—C16—H16B	109.3
N1—C7—C1	115.15 (16)	C15—C16—H16B	109.3
N2—C8—N3	121.13 (18)	H16A—C16—H16B	108.0
C6—C1—C2—C3	-1.1 (3)	C6—N2—C8—N3	-175.64 (16)
C7—C1—C2—C3	178.97 (17)	C6—N2—C8—N1	2.5 (3)
C1—C2—C3—C4	0.7 (3)	C9—N3—C8—N2	-9.1 (3)
C2—C3—C4—C5	0.1 (3)	C9—N3—C8—N1	172.63 (16)
C3—C4—C5—C6	-0.5 (4)	C7—N1—C8—N2	-6.1 (3)
C8—N2—C6—C1	1.8 (3)	C15—N1—C8—N2	169.49 (18)
C8—N2—C6—C5	178.68 (18)	C7—N1—C8—N3	172.12 (15)
C2-C1-C6-N2	177.50 (16)	C15—N1—C8—N3	-12.3 (2)
C7—C1—C6—N2	-2.5 (3)	C8—N3—C9—C14	-31.8 (3)
C2-C1-C6-C5	0.6 (3)	C8—N3—C9—C10	152.29 (18)
C7—C1—C6—C5	-179.41 (17)	C14—C9—C10—C11	-1.4 (3)
C4—C5—C6—N2	-176.84 (19)	N3-C9-C10-C11	174.75 (17)
C4—C5—C6—C1	0.2 (3)	C9-C10-C11-C12	0.6 (3)
C8—N1—C7—O1	-176.29 (16)	C10-C11-C12-C13	0.3 (3)
C15—N1—C7—O1	7.9 (3)	C11—C12—C13—C14	-0.5 (3)
C8—N1—C7—C1	4.9 (2)	C10-C9-C14-C13	1.2 (3)
C15—N1—C7—C1	-170.91 (15)	N3—C9—C14—C13	-174.6 (2)
C6—C1—C7—O1	-179.64 (17)	C12—C13—C14—C9	-0.3 (3)
C2-C1-C7-O1	0.3 (3)	C7—N1—C15—C16	-96.6 (2)
C6-C1-C7-N1	-0.9 (2)	C8—N1—C15—C16	87.6 (2)
C2-C1-C7-N1	179.07 (16)	N1-C15-C16-N4	-77.5 (2)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N3—H31…N4	0.88	2.04	2.811 (3)	146

N4—H41···O2ⁱ 0.88 2.13 2.990 (6) 168 O2—H2O···O1 0.84 2.01 2.755 (6) 147

Symmetry code: (i) x, -y+1, z-1/2.