metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1519-m1520

catena-Poly[[[aqua­silver(I)]-μ-1,1′-(butane-1,4-di­yl)di-1H-imidazole-κ2N3:N3′] hemi(bi­phenyl-4,4′-di­carboxyl­ate) dihydrate]

aDepartment of Chemistry, Baicheng Normal College, Baicheng 137000, People's Republic of China
*Correspondence e-mail: chemzyzhang@yahoo.cn

(Received 13 October 2009; accepted 1 November 2009; online 7 November 2009)

In the title compound, {[Ag(C10H14N4)(H2O)](C14H8O4)0.5·2H2O}n, the AgI ion is three-coordinated by two N atoms from two independent 1,1′-(butane-1,4-di­yl)di-1H-imidazole (BBI) ligands and one water O atom in a distorted T-shaped coordination geometry. The biphenyl-4,4′-dicarboxyl­ate (BPDC) dianions do not coordinate to AgI ions but act as counter-ions. The AgI ions are linked by BBI ligands, forming a zigzag chain. These chains are linked into a two-dimensional supra­molecular architecture by O—H⋯O hydrogen-bonding inter­actions between water mol­ecules and carboxyl­ate O atoms of the BPDC dianions.

Related literature

For general background to the design and construction of metal-organic frameworks, see: Kitagawa et al. (2004[Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]); Ma et al. (2009[Ma, L. F., Wang, Y. Y., Liu, J. Q., Yang, G. P., Du, M. & Wang, L. Y. (2009). Eur. J. Inorg. Chem. pp. 147-254.]); Li et al. (2005[Li, F. F., Ma, J. F., Song, S. Y., Yang, J., Liu, Y. Y. & Su, Z. M. (2005). Inorg. Chem. 44, 9374-9383.]). For a related structure, see: Ma et al. (2005[Ma, J. F., Yang, J., Li, S. L. & Song, S. Y. (2005). Cryst. Growth Des. 5, 807-812.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C10H14N4)(H2O)](C14H8O4)0.5·2H2O

  • Mr = 472.27

  • Triclinic, [P \overline 1]

  • a = 9.7685 (6) Å

  • b = 10.0659 (6) Å

  • c = 10.9224 (7) Å

  • α = 80.190 (1)°

  • β = 68.898 (1)°

  • γ = 74.775 (1)°

  • V = 963.36 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.08 mm−1

  • T = 293 K

  • 0.23 × 0.16 × 0.14 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.81, Tmax = 0.86

  • 5289 measured reflections

  • 3569 independent reflections

  • 3422 reflections with I > 2σ(I)

  • Rint = 0.011

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.058

  • S = 1.06

  • 3569 reflections

  • 267 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Selected bond lengths (Å)

Ag1—N1 2.1209 (17)
Ag1—O1W 2.6611 (12)
Ag1—N3 2.1237 (16)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2W—H2A⋯O1i 0.86 (2) 1.99 (2) 2.833 (2) 166 (3)
O2W—H2B⋯O1ii 0.84 (2) 1.95 (2) 2.779 (2) 169 (3)
O3W—H3B⋯O1iii 0.86 (2) 2.05 (2) 2.877 (2) 160 (2)
O3W—H3A⋯O1W 0.86 (2) 2.02 (2) 2.852 (2) 161 (2)
O1W—H1A⋯O2Wiv 0.84 (2) 2.03 (2) 2.802 (2) 153 (2)
Symmetry codes: (i) x, y+1, z-1; (ii) -x, -y+1, -z+1; (iii) -x+1, -y, -z+1; (iv) x+1, y-1, z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Design of effective ligands and the proper choice of metal centers are the keys to design and construct novel metal-organic frameworks (Kitagawa et al., 2004; Ma et al., 2009). These complexes can be specially designed by careful selection of metal cations with preferred coordination geometries, nature of the anions, structures of connecting ligands, and the reaction conditions (Li et al., 2005). In this contribution, we selected biphenyl-4,4'-dicarboxylic acid (H2BPDC) as an organic carboxylate anion and 1,1'-(butane-1,4-diyl)di-1H-imidazole (BBI) as a N-donor neutral ligand, generating a coordination compound, [Ag(BPDC)0.5(H2O)(BBI)].2H2O, which is reported here.

In the title compound, each AgI ion is three-coordinated by two N atoms from two independent half-units of the BBI ligands and one water molecule in a distorted T-shaped coordination geometry. The Ag—N and Ag—O distances are comparable to those found in other crystallographically characterized AgI complexes (Ma et al., 2005). The adjacent AgI ions are linked by BBI ligands to give a one-dimensional zigzag chain. Biphenyl-4,4'-dicarboxylate anions, acting as counterions, have no contribution to the formation of the final structure (Fig. 1). However, there are intermolecular O—H···O hydrogen bonding interactions among water molecules and BPDC anions. These hydrogen bonds extend zigzag chains into a two-dimensional supramolecular architecture.

Related literature top

For general background to the design and construction of metal-organic frameworks, see: Kitagawa et al. (2004); Ma et al. (2009); Li et al. (2005). For a related structure, see: Ma et al. (2005).

Experimental top

To a mixture of biphenyl-4,4'-dicarboxylic acid (0.0484 g, 0.2 mmol) and Ag2CO3 (0.0275 g, 0.1 mmol) in water was added 1,1'-(butane-1,4-diyl)di-1H-imidazole (0.2 mmol, 0.038 g) with constant stirring. After the sample was stirred for 10 min, the precipitate was dissolved by dropwise addition of aqueous NH3 solution. Colourless crystals were obtained from the filtrate by slow evaporation after standing in the dark for several days.

Refinement top

Independent atom C5 of the butyl linkage is disordered over two positions with occupancies of 0.852 (8) and 0.148 (8). H atoms of the water molecules were located in a difference Fourier map and refined with an O—H distance restraint of 0.85 (2) Å and with Uiso(H) = 1.5Ueq(O). H atoms on C atoms were generated geometrically and refined as riding atoms with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Constituent units of the title compound. Displacement ellipsoids are drawn at the 30% probability level. Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 3 - x, 1 - y, -z; (iii) 1 - x, -y, 2 - z.
catena-Poly[[[aquasilver(I)]-µ-1,1'-(butane-1,4-diyl)di-1H- imidazole-κ2N3:N3'] hemi(biphenyl-4,4'-dicarboxylate) dihydrate] top
Crystal data top
[Ag(C10H14N4)(H2O)](C14H8O4)0.5·2H2OZ = 2
Mr = 472.27F(000) = 482
Triclinic, P1Dx = 1.628 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.7685 (6) ÅCell parameters from 3658 reflections
b = 10.0659 (6) Åθ = 2.0–25.7°
c = 10.9224 (7) ŵ = 1.08 mm1
α = 80.190 (1)°T = 293 K
β = 68.898 (1)°Block, colourless
γ = 74.775 (1)°0.23 × 0.16 × 0.14 mm
V = 963.36 (10) Å3
Data collection top
Bruker APEX CCD area-detector
diffractometer
3569 independent reflections
Radiation source: fine-focus sealed tube3422 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.011
ϕ and ω scansθmax = 25.7°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.81, Tmax = 0.86k = 1211
5289 measured reflectionsl = 1213
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0296P)2 + 0.5838P]
where P = (Fo2 + 2Fc2)/3
3569 reflections(Δ/σ)max = 0.003
267 parametersΔρmax = 0.36 e Å3
9 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Ag(C10H14N4)(H2O)](C14H8O4)0.5·2H2Oγ = 74.775 (1)°
Mr = 472.27V = 963.36 (10) Å3
Triclinic, P1Z = 2
a = 9.7685 (6) ÅMo Kα radiation
b = 10.0659 (6) ŵ = 1.08 mm1
c = 10.9224 (7) ÅT = 293 K
α = 80.190 (1)°0.23 × 0.16 × 0.14 mm
β = 68.898 (1)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
3569 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3422 reflections with I > 2σ(I)
Tmin = 0.81, Tmax = 0.86Rint = 0.011
5289 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0239 restraints
wR(F2) = 0.058H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.36 e Å3
3569 reflectionsΔρmin = 0.42 e Å3
267 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.956725 (17)0.248290 (16)0.414393 (15)0.03644 (7)
C11.1776 (2)0.4373 (2)0.3910 (2)0.0390 (5)
H11.17380.41400.47810.047*
C21.2573 (2)0.5253 (2)0.3053 (2)0.0390 (5)
H21.31740.57310.32190.047*
C31.1389 (2)0.4463 (2)0.2074 (2)0.0325 (4)
H31.10420.43150.14310.039*
C41.2955 (2)0.6107 (2)0.0650 (2)0.0372 (5)
H4A1.26050.70830.07850.045*0.855 (8)
H4B1.25930.59330.00140.045*0.855 (8)
H4C1.32030.68960.08320.045*0.145 (8)
H4D1.22210.64280.02090.045*0.145 (8)
C51.4677 (3)0.5751 (3)0.0147 (3)0.0374 (9)0.855 (8)
H5A1.50360.63380.06470.045*0.855 (8)
H5B1.50380.59420.08040.045*0.855 (8)
C5A1.4372 (14)0.5180 (14)0.0276 (12)0.024 (4)*0.145 (8)
H5C1.41220.43410.03720.029*0.145 (8)
H5D1.46860.56690.11410.029*0.145 (8)
C60.5360 (2)0.0327 (2)0.93096 (18)0.0289 (4)
H6A0.45800.08040.89370.035*
H6B0.58760.10040.93700.035*
C70.6471 (2)0.0754 (2)0.84084 (19)0.0305 (4)
H7A0.73070.11570.87310.037*
H7B0.59820.14860.84330.037*
C80.7895 (2)0.0778 (2)0.6596 (2)0.0318 (4)
H80.82110.11760.71270.038*
C90.7547 (2)0.0266 (2)0.4916 (2)0.0357 (5)
H90.75880.02480.40550.043*
C100.6817 (2)0.0505 (2)0.5973 (2)0.0344 (4)
H100.62660.11320.59750.041*
C110.4496 (2)0.46334 (19)0.55623 (18)0.0242 (4)
C120.4568 (2)0.3221 (2)0.5596 (2)0.0327 (4)
H120.52560.27280.48970.039*
C130.3640 (2)0.2543 (2)0.6645 (2)0.0326 (4)
H130.37160.16030.66410.039*
C140.2594 (2)0.32470 (19)0.77048 (18)0.0261 (4)
C150.2498 (2)0.4651 (2)0.7673 (2)0.0321 (4)
H150.17970.51430.83670.038*
C160.3426 (2)0.5328 (2)0.6629 (2)0.0318 (4)
H160.33370.62700.66340.038*
C170.1584 (2)0.2522 (2)0.88668 (19)0.0288 (4)
N11.10255 (19)0.38726 (19)0.32976 (17)0.0341 (4)
N21.23205 (18)0.53009 (17)0.18881 (17)0.0315 (4)
N30.82188 (19)0.10780 (18)0.53071 (16)0.0323 (4)
N40.70506 (18)0.01762 (17)0.70361 (15)0.0286 (3)
O10.17403 (16)0.12310 (14)0.88583 (15)0.0355 (3)
O20.06563 (18)0.32386 (16)0.97662 (15)0.0418 (4)
O2W0.08819 (17)0.93824 (16)0.11184 (15)0.0354 (3)
O3W0.64273 (19)0.13798 (18)0.20741 (18)0.0471 (4)
O1W0.91632 (17)0.19506 (16)0.20090 (14)0.0353 (3)
H2A0.128 (3)0.984 (3)0.040 (2)0.053*
H2B0.014 (2)0.908 (3)0.115 (3)0.053*
H3A0.715 (3)0.175 (2)0.202 (3)0.053*
H3B0.677 (3)0.0563 (19)0.180 (3)0.053*
H1B0.957 (3)0.243 (2)0.130 (2)0.053*
H1A0.958 (3)0.1105 (17)0.201 (3)0.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.03500 (10)0.03866 (11)0.03170 (10)0.01681 (7)0.00289 (7)0.00291 (7)
C10.0356 (11)0.0507 (13)0.0313 (11)0.0134 (10)0.0098 (9)0.0015 (9)
C20.0344 (11)0.0456 (12)0.0412 (12)0.0159 (9)0.0118 (9)0.0049 (10)
C30.0277 (10)0.0364 (11)0.0306 (10)0.0102 (8)0.0044 (8)0.0021 (8)
C40.0315 (11)0.0308 (11)0.0403 (12)0.0079 (9)0.0050 (9)0.0070 (9)
C50.0313 (14)0.0285 (15)0.0442 (15)0.0113 (10)0.0033 (11)0.0055 (11)
C60.0295 (10)0.0319 (10)0.0240 (10)0.0112 (8)0.0062 (8)0.0027 (8)
C70.0319 (10)0.0327 (10)0.0246 (9)0.0115 (8)0.0073 (8)0.0056 (8)
C80.0316 (10)0.0382 (11)0.0260 (9)0.0151 (9)0.0069 (8)0.0019 (8)
C90.0406 (12)0.0438 (12)0.0240 (10)0.0168 (10)0.0085 (8)0.0003 (8)
C100.0391 (11)0.0371 (11)0.0292 (10)0.0153 (9)0.0101 (9)0.0008 (8)
C110.0232 (9)0.0249 (9)0.0243 (9)0.0071 (7)0.0078 (7)0.0009 (7)
C120.0358 (11)0.0256 (10)0.0285 (10)0.0083 (8)0.0004 (8)0.0030 (8)
C130.0384 (11)0.0230 (9)0.0322 (10)0.0106 (8)0.0050 (9)0.0003 (8)
C140.0241 (9)0.0294 (10)0.0258 (9)0.0093 (7)0.0094 (7)0.0031 (7)
C150.0302 (10)0.0300 (10)0.0299 (10)0.0076 (8)0.0011 (8)0.0046 (8)
C160.0331 (10)0.0228 (9)0.0336 (10)0.0090 (8)0.0016 (8)0.0036 (8)
C170.0274 (9)0.0318 (10)0.0291 (10)0.0123 (8)0.0097 (8)0.0017 (8)
N10.0312 (9)0.0382 (10)0.0312 (9)0.0133 (8)0.0053 (7)0.0005 (7)
N20.0249 (8)0.0299 (9)0.0352 (9)0.0075 (7)0.0049 (7)0.0002 (7)
N30.0327 (9)0.0370 (9)0.0256 (8)0.0137 (7)0.0062 (7)0.0032 (7)
N40.0294 (8)0.0310 (8)0.0237 (8)0.0104 (7)0.0062 (6)0.0020 (6)
O10.0360 (8)0.0283 (7)0.0378 (8)0.0146 (6)0.0038 (6)0.0019 (6)
O20.0445 (9)0.0343 (8)0.0333 (8)0.0135 (7)0.0052 (7)0.0010 (6)
O2W0.0375 (8)0.0371 (8)0.0352 (8)0.0129 (6)0.0157 (7)0.0029 (6)
O3W0.0394 (9)0.0453 (10)0.0573 (10)0.0110 (8)0.0152 (8)0.0052 (8)
O1W0.0397 (8)0.0319 (8)0.0295 (7)0.0129 (6)0.0030 (6)0.0007 (6)
Geometric parameters (Å, º) top
Ag1—N12.1209 (17)C7—H7B0.97
Ag1—N32.1237 (16)C8—N31.326 (3)
Ag1—O1W2.6611 (12)C8—N41.344 (3)
C1—C21.350 (3)C8—H80.93
C1—N11.378 (3)C9—C101.355 (3)
C1—H10.93C9—N31.372 (3)
C2—N21.371 (3)C9—H90.93
C2—H20.93C10—N41.368 (3)
C3—N11.328 (3)C10—H100.93
C3—N21.338 (3)C11—C161.399 (3)
C3—H30.93C11—C121.400 (3)
C4—N21.469 (3)C11—C11iii1.492 (4)
C4—C51.531 (3)C12—C131.382 (3)
C4—C5A1.564 (13)C12—H120.93
C4—H4A0.97C13—C141.391 (3)
C4—H4B0.97C13—H130.93
C4—H4C0.96C14—C151.387 (3)
C4—H4D0.96C14—C171.509 (3)
C5—C5i1.518 (5)C15—C161.379 (3)
C5—H5A0.97C15—H150.93
C5—H5B0.97C16—H160.93
C5A—C5Ai1.49 (3)C17—O21.251 (2)
C5A—H5C0.97C17—O11.269 (2)
C5A—H5D0.97O2W—H2A0.857 (16)
C6—C71.519 (3)O2W—H2B0.842 (16)
C6—C6ii1.531 (4)O3W—H3A0.865 (16)
C6—H6A0.97O3W—H3B0.864 (16)
C6—H6B0.97O1W—H1B0.863 (16)
C7—N41.473 (2)O1W—H1A0.842 (16)
C7—H7A0.97
N1—Ag1—N3169.34 (7)N4—C7—H7B109.1
C2—C1—N1109.61 (19)C6—C7—H7B109.1
C2—C1—H1125.2H7A—C7—H7B107.8
N1—C1—H1125.2N3—C8—N4111.21 (18)
C1—C2—N2106.38 (19)N3—C8—H8124.4
C1—C2—H2126.8N4—C8—H8124.4
N2—C2—H2126.8C10—C9—N3109.77 (18)
N1—C3—N2111.13 (19)C10—C9—H9125.1
N1—C3—H3124.4N3—C9—H9125.1
N2—C3—H3124.4C9—C10—N4106.30 (18)
N2—C4—C5112.46 (18)C9—C10—H10126.9
N2—C4—C5A110.1 (5)N4—C10—H10126.9
N2—C4—H4A109.1C16—C11—C12116.87 (17)
C5—C4—H4A109.1C16—C11—C11iii121.5 (2)
C5A—C4—H4A136.1C12—C11—C11iii121.6 (2)
N2—C4—H4B109.1C13—C12—C11121.43 (18)
C5—C4—H4B109.1C13—C12—H12119.3
C5A—C4—H4B76.9C11—C12—H12119.3
H4A—C4—H4B107.8C12—C13—C14120.93 (18)
N2—C4—H4C109.8C12—C13—H13119.5
C5—C4—H4C77.1C14—C13—H13119.5
C5A—C4—H4C110.9C15—C14—C13118.11 (17)
H4B—C4—H4C134.0C15—C14—C17120.18 (17)
N2—C4—H4D109.4C13—C14—C17121.72 (17)
C5—C4—H4D132.7C16—C15—C14121.05 (18)
C5A—C4—H4D108.3C16—C15—H15119.5
H4A—C4—H4D75.9C14—C15—H15119.5
H4C—C4—H4D108.3C15—C16—C11121.60 (18)
C5i—C5—C4112.6 (3)C15—C16—H16119.2
C5i—C5—H5A109.1C11—C16—H16119.2
C4—C5—H5A109.1O2—C17—O1124.92 (18)
C5i—C5—H5B109.1O2—C17—C14117.50 (17)
C4—C5—H5B109.1O1—C17—C14117.59 (17)
H5A—C5—H5B107.8C3—N1—C1105.41 (17)
C5Ai—C5A—C4110.4 (13)C3—N1—Ag1127.40 (15)
C5Ai—C5A—H5C109.6C1—N1—Ag1127.18 (15)
C4—C5A—H5C109.6C3—N2—C2107.47 (17)
C5Ai—C5A—H5D109.6C3—N2—C4125.54 (19)
C4—C5A—H5D109.6C2—N2—C4126.99 (18)
H5C—C5A—H5D108.1C8—N3—C9105.46 (17)
C7—C6—C6ii111.4 (2)C8—N3—Ag1125.56 (14)
C7—C6—H6A109.4C9—N3—Ag1128.95 (14)
C6ii—C6—H6A109.4C8—N4—C10107.26 (16)
C7—C6—H6B109.4C8—N4—C7126.55 (17)
C6ii—C6—H6B109.4C10—N4—C7126.19 (17)
H6A—C6—H6B108.0H2A—O2W—H2B116 (2)
N4—C7—C6112.45 (16)H3A—O3W—H3B111 (2)
N4—C7—H7A109.1H1B—O1W—H1A114 (2)
C6—C7—H7A109.1
N1—C1—C2—N20.1 (3)C2—C1—N1—Ag1178.88 (15)
N2—C4—C5—C5i61.3 (4)N3—Ag1—N1—C3177.4 (3)
C5A—C4—C5—C5i32.3 (8)N3—Ag1—N1—C13.9 (5)
N2—C4—C5A—C5Ai68.5 (14)N1—C3—N2—C20.1 (2)
C5—C4—C5A—C5Ai32.3 (9)N1—C3—N2—C4179.42 (18)
C6ii—C6—C7—N4173.50 (19)C1—C2—N2—C30.1 (2)
N3—C9—C10—N40.6 (3)C1—C2—N2—C4179.36 (19)
C16—C11—C12—C131.0 (3)C5—C4—N2—C3121.4 (2)
C11iii—C11—C12—C13179.5 (2)C5A—C4—N2—C382.8 (6)
C11—C12—C13—C140.2 (3)C5—C4—N2—C258.1 (3)
C12—C13—C14—C150.7 (3)C5A—C4—N2—C296.6 (6)
C12—C13—C14—C17179.23 (19)N4—C8—N3—C90.2 (2)
C13—C14—C15—C160.8 (3)N4—C8—N3—Ag1178.33 (13)
C17—C14—C15—C16179.08 (19)C10—C9—N3—C80.5 (3)
C14—C15—C16—C110.1 (3)C10—C9—N3—Ag1178.52 (15)
C12—C11—C16—C150.8 (3)N1—Ag1—N3—C812.2 (5)
C11iii—C11—C16—C15179.6 (2)N1—Ag1—N3—C9165.4 (3)
C15—C14—C17—O21.4 (3)N3—C8—N4—C100.1 (2)
C13—C14—C17—O2178.69 (19)N3—C8—N4—C7179.62 (18)
C15—C14—C17—O1178.55 (18)C9—C10—N4—C80.4 (2)
C13—C14—C17—O11.3 (3)C9—C10—N4—C7179.93 (19)
N2—C3—N1—C10.0 (2)C6—C7—N4—C864.4 (3)
N2—C3—N1—Ag1178.97 (13)C6—C7—N4—C10115.0 (2)
C2—C1—N1—C30.1 (3)
Symmetry codes: (i) x+3, y+1, z; (ii) x+1, y, z+2; (iii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2A···O1iv0.86 (2)1.99 (2)2.833 (2)166 (3)
O2W—H2B···O1v0.84 (2)1.95 (2)2.779 (2)169 (3)
O3W—H3B···O1vi0.86 (2)2.05 (2)2.877 (2)160 (2)
O3W—H3A···O1W0.86 (2)2.02 (2)2.852 (2)161 (2)
O1W—H1A···O2Wvii0.84 (2)2.03 (2)2.802 (2)153 (2)
Symmetry codes: (iv) x, y+1, z1; (v) x, y+1, z+1; (vi) x+1, y, z+1; (vii) x+1, y1, z.

Experimental details

Crystal data
Chemical formula[Ag(C10H14N4)(H2O)](C14H8O4)0.5·2H2O
Mr472.27
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.7685 (6), 10.0659 (6), 10.9224 (7)
α, β, γ (°)80.190 (1), 68.898 (1), 74.775 (1)
V3)963.36 (10)
Z2
Radiation typeMo Kα
µ (mm1)1.08
Crystal size (mm)0.23 × 0.16 × 0.14
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.81, 0.86
No. of measured, independent and
observed [I > 2σ(I)] reflections
5289, 3569, 3422
Rint0.011
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.058, 1.06
No. of reflections3569
No. of parameters267
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.42

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ag1—N12.1209 (17)Ag1—O1W2.6611 (12)
Ag1—N32.1237 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2A···O1i0.86 (2)1.99 (2)2.833 (2)166 (3)
O2W—H2B···O1ii0.84 (2)1.95 (2)2.779 (2)169 (3)
O3W—H3B···O1iii0.86 (2)2.05 (2)2.877 (2)160 (2)
O3W—H3A···O1W0.86 (2)2.02 (2)2.852 (2)161 (2)
O1W—H1A···O2Wiv0.84 (2)2.03 (2)2.802 (2)153 (2)
Symmetry codes: (i) x, y+1, z1; (ii) x, y+1, z+1; (iii) x+1, y, z+1; (iv) x+1, y1, z.
 

Acknowledgements

The author thanks Baicheng Normal College for supporting this work.

References

First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationLi, F. F., Ma, J. F., Song, S. Y., Yang, J., Liu, Y. Y. & Su, Z. M. (2005). Inorg. Chem. 44, 9374–9383.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMa, L. F., Wang, Y. Y., Liu, J. Q., Yang, G. P., Du, M. & Wang, L. Y. (2009). Eur. J. Inorg. Chem. pp. 147–254.  CAS Google Scholar
First citationMa, J. F., Yang, J., Li, S. L. & Song, S. Y. (2005). Cryst. Growth Des. 5, 807–812.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1519-m1520
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds