metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Butyl-3-(1-naphthyl­meth­yl)benzimidazolium hemi{di-μ-iodido-bis­­[di­iodidomercurate(II)]} di­methyl sulfoxide monosolvate

aTianjin Key Laboratory of Structure and Performance of Functional Molecules, College of Chemistry and Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China, and bState Key Laboratory of Element-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
*Correspondence e-mail: qxliu@eyou.com

(Received 19 October 2009; accepted 4 November 2009; online 21 November 2009)

In the title compound, (C22H23N2)[Hg2I6]0.5·(CH3)2SO, the 1-butyl-3-(1-naphthyl­meth­yl)benzimidazolium anion lies across a centre of inversion. The dihedral angle between the benzimidazolium and naphthalene ring systems is 81.9 (3)°. In the crystal structure, ππ stacking inter­actions are observed between the imidazolium ring and the unsubstituted benzene ring of the naphthalene ring system, with a centroid–centroid separation of 3.510 (5) Å. In the centrosymmetric anion, the Hg(II) atoms are in a distorted tetrahedral coordination. The dimethyl sulfoxide solvent mol­ecule is disordered over two sites with occupancies of 0.615 (9) and 0.385 (9).

Related literature

For background to the chemistry of imidazolium compounds, see: Arduengo et al. (1991[Arduengo, A. J. III, Harlow, R. L. & Kline, M. (1991). J. Am. Chem. Soc. 113, 361-363.]); Garrison & Youngs (2005[Garrison, J. C. & Youngs, W. J. (2005). Chem. Rev. 105, 3978-4008.]). For a related structure, see: Liu et al. (2003[Liu, Q. X., Xu, F. B., Li, Q. S., Zeng, X. S., Leng, X. B., Chou, Y. L. & Zhang, Z. Z. (2003). Organometallics, 22, 309-314.]).

[Scheme 1]

Experimental

Crystal data
  • (C22H23N2)[Hg2I6]0.5·C2H6OS

  • Mr = 974.85

  • Monoclinic, P 21 /c

  • a = 12.0565 (13) Å

  • b = 13.7312 (16) Å

  • c = 18.378 (2) Å

  • β = 102.089 (2)°

  • V = 2975.0 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 8.38 mm−1

  • T = 296 K

  • 0.28 × 0.26 × 0.22 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.110, Tmax = 0.158

  • 14876 measured reflections

  • 5253 independent reflections

  • 3641 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.111

  • S = 1.03

  • 5253 reflections

  • 327 parameters

  • 60 restraints

  • H-atom parameters constrained

  • Δρmax = 1.16 e Å−3

  • Δρmin = −1.71 e Å−3

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Since the discovery of free stable N-heterocyclic carbene (NHC) (Arduengo et al., 1991), the carbene chemistry based on imidazol-2-ylidene (imy) or benzimidazol-2-ylidene (bimy) have been receiving considerable attention, owing to their inherent stability, their interesting characteristics of structure and bonding, and their potential for synthesis and as catalysts in organic reactions (Garrison & Youngs, 2005). We report here the synthesis and crystal structure of the title compound (Fig. 1).

The dihedral angle between benzimidazolium and naphthalene ring systems is 81.9 (3)°. The butyl group and 1-naphthylmethyl group lie on the same side of benzimidazole ring system. The N—C and C—N—C angles agree with those observed in 1-(9-anthracenylmethyl)-3-ethylimidazolium iodide (Liu et al., 2003).

The [Hg2I6]2- anionic unit lies across a centre of inversion, in which atoms Hg1, I2, Hg1A and I2A are coplanar, with I2—Hg1—I2A and Hg1—I2—Hg1A angles of 94.29 (2)° and 85.71 (2)°, respectively. All Hg—I bond distances fall in the regular range of 2.6792 (9)–2.8943 (4) Å.

Related literature top

For background to the chemistry of imidazolium compounds, see: Arduengo et al. (1991); Garrison & Youngs (2005). For a related structure, see: Liu et al. (2003).

Experimental top

A solution of 1-iodobutane (1.583 g, 8.6 mmol) and 1-(1-naphthylmethyl)benzimidazole (1.860 g, 7.2 mmol) in THF (100 ml) was stirred for five days under refluxing, and a pale yellow precipitate was formed. The product was filtred and washed with THF. The powder of benzimidazolium iodide are obtained by recrystallization from methanol/diethyl ether [3.5 g (91%), m.p 188–190°C]. A mixture of benzimidazolium iodide (0.199 g, 0.45 mmol) and mercury(II) iodide (0.245 g, 0.54 mmol) in THF (20 ml) and dichloromethane (20 ml) was refluxed for 24 h. A brown solution was formed and the solvent was removed with a rotary evaporator. Water (30 ml) was added to the residue and the solution was extracted with CH2Cl2 (30 ml). The extracting solution was dried with anhydrate MgSO4, then the solution was concentrated to 10 ml and diethyl ether (5 ml) was added. A pale yellow powder was obtained, and isolation by filtration yielded the title compound [yield 0.401 g (83%), m.p 235–237°C). 1H NMR (300 MHZ, DMSO-d6): 0.97 (t, J = 5.4, 3H, CH3), 1.46 (m, 2H, CH2), 2.03 (m, 2H, CH2), 4.55 (t, J = 7.2, 2H, CH2), 6.31 (s, 2H, CH2), 7.43 (t, J = 6.0, 1H, PhH), 7.55 (d, J = 6.0, 2H, PhH), 7.63 (d, J = 6.3, 4H, PhH), 7.65 (t, J = 8.8, 1H, PhH), 7.91 (d, J = 8.4, 2H, PhH), 8.13 (d, J = 8.4, 1H, PhH), 11.23 (s, 1H, bimiH) (bimi: benzimidazole). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an CH2Cl2 solution at room temperature.

Refinement top

The dimethyl sulfoxide solvent molecule is disordered over two sites with occupancies of 0.615 (9) and 0.385 (9). Uij and distance restraints were applied. All H atoms were initially located in a difference Fourier map. They were then placed in geometrically idealized positions and constrained to ride on their parent atoms, with Csp3–H = 0.97 Å, Csp2–H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The highest residual density peak is located 0.95 Å from atom I1 and the deepest hole is located 0.79 Å from atom I2.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, with displacement ellipsoids drawn at the 30% probability level. H atoms have been omitted for clarity. Only the major component of the disordered DMSO molecule is shown.
1-Butyl-3-(1-naphthylmethyl)benzimidazolium hemi{di-µ-iodido-bis[diiodidomercurate(II)]} dimethyl sulfoxide monosolvate top
Crystal data top
(C22H23N2)[Hg2I6]0.5·C2H6OSF(000) = 1800
Mr = 974.85Dx = 2.177 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3658 reflections
a = 12.0565 (13) Åθ = 2.3–23.9°
b = 13.7312 (16) ŵ = 8.38 mm1
c = 18.378 (2) ÅT = 296 K
β = 102.089 (2)°Block, yellow
V = 2975.0 (6) Å30.28 × 0.26 × 0.22 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
5253 independent reflections
Radiation source: fine-focus sealed tube3641 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.110, Tmax = 0.158k = 1611
14876 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0474P)2 + 6.0193P]
where P = (Fo2 + 2Fc2)/3
5253 reflections(Δ/σ)max = 0.001
327 parametersΔρmax = 1.16 e Å3
60 restraintsΔρmin = 1.71 e Å3
Crystal data top
(C22H23N2)[Hg2I6]0.5·C2H6OSV = 2975.0 (6) Å3
Mr = 974.85Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.0565 (13) ŵ = 8.38 mm1
b = 13.7312 (16) ÅT = 296 K
c = 18.378 (2) Å0.28 × 0.26 × 0.22 mm
β = 102.089 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5253 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3641 reflections with I > 2σ(I)
Tmin = 0.110, Tmax = 0.158Rint = 0.044
14876 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04360 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.03Δρmax = 1.16 e Å3
5253 reflectionsΔρmin = 1.71 e Å3
327 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Hg10.61164 (3)0.57544 (3)0.95810 (2)0.07147 (16)
I10.83044 (5)0.51958 (4)0.98219 (4)0.06220 (19)
I20.47338 (6)0.40737 (6)0.90484 (4)0.0883 (3)
I30.53530 (6)0.73713 (6)0.88235 (5)0.0985 (3)
N10.0121 (6)0.4144 (4)0.2680 (3)0.0446 (15)
N20.0684 (5)0.3180 (4)0.3578 (3)0.0433 (15)
C10.1740 (8)0.6136 (6)0.2289 (5)0.059 (2)
H10.22230.57830.19220.071*
C20.2176 (9)0.6929 (7)0.2618 (6)0.071 (3)
H20.29380.70920.24680.085*
C30.1503 (9)0.7452 (7)0.3148 (5)0.065 (3)
H30.18040.79690.33700.078*
C40.0332 (8)0.7225 (6)0.3373 (4)0.051 (2)
C50.0393 (9)0.7759 (6)0.3924 (5)0.063 (2)
H50.00990.82690.41580.076*
C60.1503 (10)0.7553 (7)0.4125 (5)0.071 (3)
H60.19660.79160.44950.085*
C70.1962 (9)0.6798 (7)0.3781 (5)0.071 (3)
H70.27320.66580.39220.085*
C80.1289 (7)0.6259 (6)0.3235 (5)0.057 (2)
H80.16140.57690.29990.068*
C90.0119 (7)0.6431 (5)0.3025 (4)0.0476 (19)
C100.0635 (7)0.5867 (5)0.2488 (4)0.0460 (19)
C110.0249 (7)0.4955 (6)0.2146 (4)0.052 (2)
H11A0.08010.47820.17000.063*
H11B0.04700.50780.20050.063*
C120.0855 (7)0.3871 (5)0.3116 (4)0.0431 (18)
H120.15600.41310.30960.052*
C130.0978 (6)0.3588 (5)0.2866 (4)0.0412 (17)
C140.2127 (8)0.3544 (6)0.2578 (5)0.058 (2)
H140.24780.39430.21890.069*
C150.2726 (8)0.2872 (8)0.2901 (6)0.069 (3)
H150.35060.28230.27280.083*
C160.2195 (9)0.2262 (7)0.3481 (6)0.070 (3)
H160.26320.18130.36770.084*
C170.1077 (8)0.2305 (6)0.3763 (5)0.057 (2)
H170.07290.19020.41510.068*
C180.0465 (7)0.2981 (5)0.3446 (4)0.0445 (18)
C190.1555 (8)0.2795 (6)0.4189 (4)0.058 (2)
H19A0.22990.28930.40780.070*
H19B0.14420.21010.42390.070*
C200.1505 (8)0.3299 (6)0.4918 (5)0.059 (2)
H20A0.07520.32070.50160.071*
H20B0.20390.29810.53150.071*
C210.1762 (9)0.4371 (7)0.4943 (5)0.072 (3)
H21A0.25270.44600.48670.086*
H21B0.12500.46840.45320.086*
C220.1665 (9)0.4881 (8)0.5648 (5)0.084 (3)
H22A0.08980.48370.57150.126*
H22B0.18700.55530.56190.126*
H22C0.21650.45790.60620.126*
S10.5566 (4)0.8983 (4)0.1687 (3)0.0831 (19)0.615 (9)
O10.6734 (8)0.9226 (16)0.1578 (11)0.132 (10)0.615 (9)
C230.5144 (19)0.9966 (15)0.2185 (12)0.127 (11)0.615 (9)
H23A0.55670.99530.26890.191*0.615 (9)
H23B0.43490.99120.21810.191*0.615 (9)
H23C0.52851.05680.19540.191*0.615 (9)
C240.4652 (16)0.921 (2)0.0812 (8)0.160 (13)0.615 (9)
H24A0.47950.87360.04570.241*0.615 (9)
H24B0.47900.98500.06450.241*0.615 (9)
H24C0.38770.91570.08610.241*0.615 (9)
S1'0.5614 (7)0.9773 (6)0.1314 (4)0.089 (3)0.385 (9)
O1'0.6753 (11)0.943 (2)0.1700 (14)0.100 (11)0.385 (9)
C23'0.481 (2)0.995 (2)0.2005 (13)0.077 (9)0.385 (9)
H23D0.51451.04550.23390.116*0.385 (9)
H23E0.47890.93550.22780.116*0.385 (9)
H23F0.40461.01330.17720.116*0.385 (9)
C24'0.485 (2)0.8777 (19)0.0855 (15)0.112 (12)0.385 (9)
H24D0.51970.85690.04540.168*0.385 (9)
H24E0.40830.89680.06590.168*0.385 (9)
H24F0.48660.82500.12000.168*0.385 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.0457 (2)0.0806 (3)0.0874 (3)0.00266 (18)0.01229 (19)0.0094 (2)
I10.0479 (3)0.0505 (3)0.0878 (4)0.0062 (3)0.0134 (3)0.0007 (3)
I20.0773 (5)0.1162 (6)0.0770 (5)0.0384 (4)0.0289 (4)0.0373 (4)
I30.0758 (5)0.1001 (6)0.1121 (6)0.0222 (4)0.0029 (4)0.0270 (5)
N10.060 (4)0.042 (4)0.034 (3)0.004 (3)0.015 (3)0.001 (3)
N20.051 (4)0.041 (3)0.041 (4)0.007 (3)0.014 (3)0.001 (3)
C10.075 (6)0.050 (5)0.053 (5)0.005 (4)0.013 (5)0.016 (4)
C20.085 (7)0.057 (6)0.076 (7)0.021 (5)0.027 (6)0.018 (5)
C30.099 (8)0.047 (5)0.060 (6)0.015 (5)0.039 (6)0.002 (5)
C40.075 (6)0.039 (4)0.046 (5)0.001 (4)0.029 (4)0.012 (4)
C50.091 (8)0.048 (5)0.059 (6)0.007 (5)0.035 (5)0.002 (4)
C60.108 (9)0.053 (6)0.057 (6)0.018 (6)0.025 (6)0.002 (5)
C70.073 (6)0.057 (6)0.080 (7)0.015 (5)0.012 (5)0.009 (5)
C80.068 (6)0.043 (5)0.068 (6)0.002 (4)0.036 (5)0.010 (4)
C90.065 (5)0.038 (4)0.046 (5)0.002 (4)0.026 (4)0.016 (4)
C100.070 (6)0.043 (4)0.028 (4)0.008 (4)0.014 (4)0.009 (3)
C110.068 (5)0.052 (5)0.038 (4)0.005 (4)0.012 (4)0.004 (4)
C120.047 (5)0.044 (4)0.038 (4)0.000 (3)0.009 (4)0.003 (4)
C130.046 (4)0.042 (4)0.039 (4)0.003 (3)0.016 (4)0.008 (4)
C140.069 (6)0.055 (5)0.050 (5)0.009 (5)0.014 (4)0.009 (4)
C150.047 (5)0.086 (7)0.075 (7)0.012 (5)0.015 (5)0.027 (6)
C160.076 (7)0.069 (6)0.071 (6)0.017 (5)0.029 (6)0.004 (5)
C170.071 (6)0.055 (5)0.049 (5)0.008 (4)0.024 (5)0.002 (4)
C180.057 (5)0.042 (4)0.038 (4)0.003 (4)0.017 (4)0.006 (4)
C190.064 (5)0.053 (5)0.056 (5)0.006 (4)0.008 (4)0.007 (4)
C200.062 (5)0.063 (6)0.048 (5)0.004 (4)0.002 (4)0.010 (4)
C210.079 (7)0.080 (7)0.058 (6)0.003 (5)0.018 (5)0.004 (5)
C220.099 (8)0.098 (8)0.058 (6)0.015 (7)0.022 (6)0.016 (6)
S10.078 (3)0.085 (3)0.094 (3)0.016 (2)0.036 (2)0.019 (2)
O10.119 (11)0.140 (11)0.139 (11)0.006 (5)0.033 (5)0.008 (5)
C230.128 (12)0.129 (12)0.127 (12)0.003 (5)0.030 (5)0.004 (5)
C240.159 (13)0.161 (13)0.161 (13)0.004 (5)0.033 (6)0.001 (5)
S1'0.093 (4)0.086 (5)0.098 (5)0.007 (3)0.043 (3)0.009 (3)
O1'0.090 (12)0.107 (12)0.108 (12)0.004 (5)0.028 (5)0.008 (5)
C23'0.077 (10)0.079 (10)0.077 (10)0.002 (5)0.019 (5)0.004 (5)
C24'0.110 (13)0.111 (13)0.114 (13)0.002 (5)0.024 (6)0.003 (5)
Geometric parameters (Å, º) top
Hg1—I32.6792 (9)C15—C161.402 (13)
Hg1—I12.6933 (7)C15—H150.93
Hg1—I22.8943 (5)C16—C171.341 (12)
Hg1—I22.8943 (4)C16—H160.93
I2—Hg12.8943 (4)C17—C181.387 (11)
N1—C121.331 (9)C17—H170.93
N1—C131.384 (9)C19—C201.519 (12)
N1—C111.472 (9)C19—H19A0.97
N2—C121.318 (9)C19—H19B0.97
N2—C181.383 (9)C20—C211.503 (12)
N2—C191.466 (10)C20—H20A0.97
C1—C101.357 (11)C20—H20B0.97
C1—C21.400 (13)C21—C221.498 (13)
C1—H10.93C21—H21A0.97
C2—C31.339 (13)C21—H21B0.97
C2—H20.93C22—H22A0.96
C3—C41.420 (13)C22—H22B0.96
C3—H30.93C22—H22C0.96
C4—C51.400 (12)S1—O11.5010 (9)
C4—C91.428 (11)S1—C231.7650 (9)
C5—C61.342 (14)S1—C241.7750 (9)
C5—H50.93C23—H23A0.96
C6—C71.387 (14)C23—H23B0.96
C6—H60.93C23—H23C0.96
C7—C81.368 (12)C24—H24A0.96
C7—H70.93C24—H24B0.96
C8—C91.403 (11)C24—H24C0.96
C8—H80.93S1'—O1'1.484 (10)
C9—C101.423 (11)S1'—C24'1.761 (10)
C10—C111.518 (11)S1'—C23'1.771 (9)
C11—H11A0.97C23'—H23D0.96
C11—H11B0.97C23'—H23E0.96
C12—H120.9300C23'—H23F0.96
C13—C141.376 (11)C24'—H24D0.96
C13—C181.392 (10)C24'—H24E0.96
C14—C151.380 (13)C24'—H24F0.96
C14—H140.93
I3—Hg1—I1122.65 (3)C17—C16—H16119.0
I3—Hg1—I2111.97 (3)C15—C16—H16119.0
I1—Hg1—I2107.66 (3)C16—C17—C18116.6 (9)
I3—Hg1—I2i103.69 (3)C16—C17—H17121.7
I1—Hg1—I2i112.94 (3)C18—C17—H17121.7
I2—Hg1—I2i94.29 (2)N2—C18—C17131.3 (8)
Hg1—I2—Hg1i85.71 (2)N2—C18—C13106.5 (6)
C12—N1—C13108.0 (6)C17—C18—C13122.1 (8)
C12—N1—C11124.8 (7)N2—C19—C20110.9 (7)
C13—N1—C11127.1 (7)N2—C19—H19A109.5
C12—N2—C18108.4 (6)C20—C19—H19A109.5
C12—N2—C19124.8 (7)N2—C19—H19B109.5
C18—N2—C19126.4 (7)C20—C19—H19B109.5
C10—C1—C2122.1 (9)H19A—C19—H19B108.0
C10—C1—H1118.9C21—C20—C19115.3 (8)
C2—C1—H1118.9C21—C20—H20A108.4
C3—C2—C1120.4 (9)C19—C20—H20A108.4
C3—C2—H2119.8C21—C20—H20B108.4
C1—C2—H2119.8C19—C20—H20B108.4
C2—C3—C4120.6 (8)H20A—C20—H20B107.5
C2—C3—H3119.7C22—C21—C20115.6 (9)
C4—C3—H3119.7C22—C21—H21A108.4
C5—C4—C3121.9 (8)C20—C21—H21A108.4
C5—C4—C9119.0 (8)C22—C21—H21B108.4
C3—C4—C9119.1 (8)C20—C21—H21B108.4
C6—C5—C4121.6 (9)H21A—C21—H21B107.4
C6—C5—H5119.2C21—C22—H22A109.5
C4—C5—H5119.2C21—C22—H22B109.5
C5—C6—C7120.1 (10)H22A—C22—H22B109.5
C5—C6—H6119.9C21—C22—H22C109.5
C7—C6—H6119.9H22A—C22—H22C109.5
C8—C7—C6120.5 (10)H22B—C22—H22C109.5
C8—C7—H7119.8O1—S1—C23106.2 (8)
C6—C7—H7119.8O1—S1—C24105.2 (7)
C7—C8—C9121.2 (9)C23—S1—C2498.3 (6)
C7—C8—H8119.4S1—C23—H23A109.5
C9—C8—H8119.4S1—C23—H23B109.5
C8—C9—C10124.0 (7)H23A—C23—H23B109.5
C8—C9—C4117.5 (8)S1—C23—H23C109.5
C10—C9—C4118.6 (8)H23A—C23—H23C109.5
C1—C10—C9119.2 (7)H23B—C23—H23C109.5
C1—C10—C11118.8 (8)S1—C24—H24A109.5
C9—C10—C11122.0 (7)S1—C24—H24B109.5
N1—C11—C10110.3 (6)H24A—C24—H24B109.5
N1—C11—H11A109.6S1—C24—H24C109.5
C10—C11—H11A109.6H24A—C24—H24C109.5
N1—C11—H11B109.6H24B—C24—H24C109.5
C10—C11—H11B109.6O1'—S1'—C24'108.6 (8)
H11A—C11—H11B108.1O1'—S1'—C23'107.1 (8)
N2—C12—N1110.6 (7)C24'—S1'—C23'98.1 (7)
N2—C12—H12124.7S1'—C23'—H23D109.5
N1—C12—H12124.7S1'—C23'—H23E109.5
C14—C13—N1132.3 (8)H23D—C23'—H23E109.5
C14—C13—C18121.2 (8)S1'—C23'—H23F109.5
N1—C13—C18106.5 (6)H23D—C23'—H23F109.5
C13—C14—C15116.1 (8)H23E—C23'—H23F109.5
C13—C14—H14122.0S1'—C24'—H24D109.5
C15—C14—H14122.0S1'—C24'—H24E109.5
C14—C15—C16122.0 (8)H24D—C24'—H24E109.5
C14—C15—H15119.0S1'—C24'—H24F109.5
C16—C15—H15119.0H24D—C24'—H24F109.5
C17—C16—C15121.9 (9)H24E—C24'—H24F109.5
I3—Hg1—I2—Hg1i106.63 (3)C18—N2—C12—N10.0 (8)
I1—Hg1—I2—Hg1i115.73 (3)C19—N2—C12—N1172.5 (6)
I2i—Hg1—I2—Hg1i0.0C13—N1—C12—N20.7 (8)
C10—C1—C2—C30.0 (13)C11—N1—C12—N2174.5 (6)
C1—C2—C3—C41.3 (13)C12—N1—C13—C14177.3 (8)
C2—C3—C4—C5180.0 (8)C11—N1—C13—C147.7 (12)
C2—C3—C4—C90.2 (12)C12—N1—C13—C181.1 (8)
C3—C4—C5—C6178.7 (8)C11—N1—C13—C18174.0 (6)
C9—C4—C5—C61.1 (12)N1—C13—C14—C15178.6 (7)
C4—C5—C6—C70.4 (13)C18—C13—C14—C150.4 (11)
C5—C6—C7—C80.1 (14)C13—C14—C15—C160.8 (13)
C6—C7—C8—C92.0 (13)C14—C15—C16—C170.9 (14)
C7—C8—C9—C10176.8 (7)C15—C16—C17—C180.6 (13)
C7—C8—C9—C43.4 (11)C12—N2—C18—C17177.9 (8)
C5—C4—C9—C82.9 (10)C19—N2—C18—C179.7 (13)
C3—C4—C9—C8176.9 (7)C12—N2—C18—C130.7 (8)
C5—C4—C9—C10177.3 (7)C19—N2—C18—C13173.1 (7)
C3—C4—C9—C102.9 (10)C16—C17—C18—N2176.7 (8)
C2—C1—C10—C92.8 (12)C16—C17—C18—C130.1 (12)
C2—C1—C10—C11175.5 (7)C14—C13—C18—N2177.5 (7)
C8—C9—C10—C1175.6 (7)N1—C13—C18—N21.1 (7)
C4—C9—C10—C14.2 (10)C14—C13—C18—C170.1 (11)
C8—C9—C10—C116.1 (11)N1—C13—C18—C17178.7 (7)
C4—C9—C10—C11174.1 (6)C12—N2—C19—C2095.8 (9)
C12—N1—C11—C1097.1 (9)C18—N2—C19—C2075.3 (9)
C13—N1—C11—C1077.2 (9)N2—C19—C20—C2163.9 (10)
C1—C10—C11—N1102.6 (8)C19—C20—C21—C22177.5 (8)
C9—C10—C11—N175.7 (9)
Symmetry code: (i) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula(C22H23N2)[Hg2I6]0.5·C2H6OS
Mr974.85
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.0565 (13), 13.7312 (16), 18.378 (2)
β (°) 102.089 (2)
V3)2975.0 (6)
Z4
Radiation typeMo Kα
µ (mm1)8.38
Crystal size (mm)0.28 × 0.26 × 0.22
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.110, 0.158
No. of measured, independent and
observed [I > 2σ(I)] reflections
14876, 5253, 3641
Rint0.044
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.111, 1.03
No. of reflections5253
No. of parameters327
No. of restraints60
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.16, 1.71

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This project was supported by the National Science Foundation of China (grant No. 20872111) and the Natural Science Foundation of Tianjin (grant No. 07JCYBJC00300).

References

First citationArduengo, A. J. III, Harlow, R. L. & Kline, M. (1991). J. Am. Chem. Soc. 113, 361–363.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGarrison, J. C. & Youngs, W. J. (2005). Chem. Rev. 105, 3978–4008.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, Q. X., Xu, F. B., Li, Q. S., Zeng, X. S., Leng, X. B., Chou, Y. L. & Zhang, Z. Z. (2003). Organometallics, 22, 309–314.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds