organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-(3-benzoyl­thio­ureido)acetate

aSchool of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM 43600 Bangi Selangor, Malaysia
*Correspondence e-mail: mbkassim@ukm.my

(Received 22 October 2009; accepted 3 November 2009; online 14 November 2009)

In the title compound, C11H12N2O3S, the methyl acetate and benzoyl groups adopt a cis-trans configuration with respect to the thiono S atom across the C—N bonds. An intra­molecular N—H⋯O hydrogen bond is observed. In the crystal packing, mol­ecules are linked by inter­molecular N—H⋯S and C—H⋯O hydrogen bonds to form a two-dimensional network lying parallel to (101).

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Hassan et al. (2008a[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008a). Acta Cryst. E64, o1727.],b[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008b). Acta Cryst. E64, o2083.],c[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008c). Acta Cryst. E64, o2167.]); Yamin & Hassan (2004[Yamin, B. M. & Hassan, I. N. (2004). Acta Cryst. E60, o2513-o2514.]). For the preparation, see: Hassan et al. (2008a[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008a). Acta Cryst. E64, o1727.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12N2O3S

  • Mr = 252.29

  • Monoclinic, P 21 /n

  • a = 14.5804 (15) Å

  • b = 4.9740 (5) Å

  • c = 16.9133 (16) Å

  • β = 96.210 (2)°

  • V = 1219.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 298 K

  • 0.48 × 0.14 × 0.06 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.884, Tmax = 0.984

  • 6881 measured reflections

  • 2264 independent reflections

  • 1600 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.089

  • wR(F2) = 0.172

  • S = 1.24

  • 2264 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1 0.86 2.02 2.676 (4) 132
N1—H1A⋯S1i 0.86 2.77 3.547 (3) 151
C9—H9A⋯O2ii 0.97 2.54 3.358 (6) 142
C9—H9A⋯O2iii 0.97 2.58 3.211 (5) 123
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x, y+1, z; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound, (I), is a methyl ester derivative of glycine thiourea analogous to our previously reported ethyl-2-(3-benzoylthioureido)acetate (II) (Hassan et al., 2008a), propyl-2-(3-benzoylthioureido)acetate (III) (Hassan et al., 2008b) and butyl-2-(3-benzoylthioureido)acetate (IV) (Hassan et al., 2008c). The methyl acetate fragment and the benzoyl group adopt a cis-trans configuration, respectively, with respect to the thiono S atom across the C—N bonds (Fig 1). The dihedral angle between the phenyl ring (C1–C6) and the central fragment (S1/N1/N2/C8/C9) is 20.12 (19)°. The bond lengths (Allen et al., 1987) and angles in the molecule are in normal ranges and comparable to those of (II), (III) and (IV). The methyl acetate group (O2/O3/C9/C10/C11) is planar, with a maximum deviation of 0.023 (3) Å for atom O3. The dihedral angle between the phenyl ring and the methyl acetate group is 73.4 (2)°. An intramolecular N2—H2A···O1 hydrogen bond (Table 1) forms a pseudo-five-membered N2/H2A/O1/C7/N1/C8 ring.

Intermolecular N1—H1A···S1 and C9—H9A···O2 hydrogen bonds (Table 1) link the molecules into a two-dimensional network parallel to the (101) (Fig 2).

Related literature top

For bond-length data, see: Allen et al. (1987). For related structures, see: Hassan et al. (2008a,b,c); Yamin & Hassan (2004). For the preparation, see: Hassan et al. (2008a).

Experimental top

The title compound was synthesized according to a previously reported method (Hassan et al., 2008a). Yellowish crystals, suitable for X-ray analysis, were obtained by slow evaporation of a CH2Cl2 solution at room temperature (yield 73%).

Refinement top

H atoms were positioned geometrically [N-H = 0.86 Å and C-H = 0.93-0.97 Å] and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq (C,N) and 1.5Ueq(Cmethyl).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids are drawn at the 50% probability level. The dashed line indicates a hydrogen bond.
[Figure 2] Fig. 2. Crystal packing of the title compound, viewed normal to the (101). Hydrogen bonds are shown as dashed lines.
Methyl 2-(3-benzoylthioureido)acetate top
Crystal data top
C11H12N2O3SF(000) = 528
Mr = 252.29Dx = 1.374 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 871 reflections
a = 14.5804 (15) Åθ = 1.8–25.5°
b = 4.9740 (5) ŵ = 0.26 mm1
c = 16.9133 (16) ÅT = 298 K
β = 96.210 (2)°Needle, colourless
V = 1219.4 (2) Å30.48 × 0.14 × 0.06 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2264 independent reflections
Radiation source: fine-focus sealed tube1600 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ω scansθmax = 25.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1717
Tmin = 0.884, Tmax = 0.984k = 56
6881 measured reflectionsl = 1720
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.089Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H-atom parameters constrained
S = 1.24 w = 1/[σ2(Fo2) + (0.0474P)2 + 0.746P]
where P = (Fo2 + 2Fc2)/3
2264 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C11H12N2O3SV = 1219.4 (2) Å3
Mr = 252.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.5804 (15) ŵ = 0.26 mm1
b = 4.9740 (5) ÅT = 298 K
c = 16.9133 (16) Å0.48 × 0.14 × 0.06 mm
β = 96.210 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2264 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1600 reflections with I > 2σ(I)
Tmin = 0.884, Tmax = 0.984Rint = 0.048
6881 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0890 restraints
wR(F2) = 0.172H-atom parameters constrained
S = 1.24Δρmax = 0.26 e Å3
2264 reflectionsΔρmin = 0.18 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.50901 (8)0.0880 (3)0.62465 (7)0.0818 (5)
O10.2035 (2)0.1002 (7)0.53998 (17)0.0725 (10)
N10.3541 (2)0.0034 (7)0.53458 (18)0.0545 (9)
H1A0.39090.08220.50550.065*
C90.3780 (3)0.4046 (9)0.7161 (2)0.0610 (12)
H9A0.33800.55430.72570.073*
H9B0.43880.47630.71050.073*
C60.2391 (3)0.2034 (9)0.4391 (2)0.0494 (10)
N20.3429 (2)0.2733 (8)0.64340 (18)0.0576 (10)
H2A0.28540.29060.62650.069*
O30.4423 (2)0.3093 (7)0.84511 (17)0.0740 (10)
C70.2621 (3)0.0237 (9)0.5083 (2)0.0535 (11)
C10.2954 (3)0.4110 (9)0.4191 (2)0.0555 (11)
H1B0.35090.44350.45010.067*
O20.3394 (2)0.0172 (7)0.7891 (2)0.0812 (10)
C100.3840 (3)0.2182 (10)0.7862 (2)0.0553 (11)
C80.3961 (3)0.1265 (9)0.6015 (2)0.0542 (11)
C50.1559 (3)0.1619 (9)0.3927 (2)0.0602 (12)
H5A0.11680.02500.40560.072*
C40.1308 (3)0.3236 (10)0.3269 (3)0.0654 (13)
H4A0.07530.29380.29560.078*
C30.1877 (4)0.5258 (11)0.3085 (3)0.0704 (14)
H3A0.17070.63520.26470.084*
C20.2700 (3)0.5688 (10)0.3542 (3)0.0640 (13)
H2B0.30880.70620.34090.077*
C110.4497 (4)0.1530 (13)0.9180 (3)0.0918 (19)
H11A0.49370.23620.95680.138*
H11B0.46980.02590.90740.138*
H11C0.39060.14540.93810.138*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0492 (7)0.1335 (14)0.0612 (8)0.0052 (8)0.0012 (5)0.0188 (8)
O10.0499 (18)0.093 (3)0.075 (2)0.0001 (17)0.0082 (15)0.0248 (19)
N10.0436 (19)0.070 (3)0.049 (2)0.0069 (17)0.0017 (15)0.0076 (18)
C90.065 (3)0.059 (3)0.058 (3)0.006 (2)0.006 (2)0.009 (2)
C60.049 (2)0.055 (3)0.045 (2)0.014 (2)0.0068 (19)0.003 (2)
N20.052 (2)0.066 (3)0.054 (2)0.0030 (19)0.0007 (17)0.0090 (19)
O30.073 (2)0.095 (3)0.0531 (18)0.0153 (19)0.0021 (15)0.0035 (18)
C70.048 (2)0.058 (3)0.055 (3)0.002 (2)0.008 (2)0.002 (2)
C10.062 (3)0.051 (3)0.054 (3)0.004 (2)0.005 (2)0.001 (2)
O20.092 (2)0.065 (2)0.086 (2)0.017 (2)0.0060 (18)0.0004 (19)
C100.051 (3)0.056 (3)0.060 (3)0.001 (2)0.014 (2)0.009 (2)
C80.054 (3)0.062 (3)0.045 (2)0.001 (2)0.0012 (19)0.001 (2)
C50.058 (3)0.060 (3)0.063 (3)0.007 (2)0.008 (2)0.003 (2)
C40.059 (3)0.075 (4)0.059 (3)0.016 (3)0.006 (2)0.006 (3)
C30.093 (4)0.063 (3)0.054 (3)0.018 (3)0.005 (3)0.004 (3)
C20.080 (3)0.051 (3)0.062 (3)0.000 (2)0.011 (2)0.005 (2)
C110.098 (4)0.123 (5)0.055 (3)0.017 (4)0.008 (3)0.011 (3)
Geometric parameters (Å, º) top
S1—C81.661 (4)O3—C111.452 (5)
O1—C71.223 (5)C1—C21.368 (6)
N1—C71.371 (5)C1—H1B0.93
N1—C81.387 (5)O2—C101.197 (5)
N1—H1A0.86C5—C41.389 (6)
C9—N21.437 (5)C5—H5A0.93
C9—C101.499 (6)C4—C31.361 (6)
C9—H9A0.97C4—H4A0.93
C9—H9B0.97C3—C21.372 (6)
C6—C11.384 (6)C3—H3A0.93
C6—C51.386 (5)C2—H2B0.93
C6—C71.482 (6)C11—H11A0.96
N2—C81.326 (5)C11—H11B0.96
N2—H2A0.86C11—H11C0.96
O3—C101.318 (5)
C7—N1—C8129.0 (3)O2—C10—C9124.3 (4)
C7—N1—H1A115.5O3—C10—C9111.3 (4)
C8—N1—H1A115.5N2—C8—N1117.4 (4)
N2—C9—C10112.4 (4)N2—C8—S1124.0 (3)
N2—C9—H9A109.1N1—C8—S1118.6 (3)
C10—C9—H9A109.1C6—C5—C4120.4 (4)
N2—C9—H9B109.1C6—C5—H5A119.8
C10—C9—H9B109.1C4—C5—H5A119.8
H9A—C9—H9B107.9C3—C4—C5119.8 (4)
C1—C6—C5118.6 (4)C3—C4—H4A120.1
C1—C6—C7123.6 (4)C5—C4—H4A120.1
C5—C6—C7117.9 (4)C4—C3—C2120.2 (5)
C8—N2—C9122.3 (4)C4—C3—H3A119.9
C8—N2—H2A118.9C2—C3—H3A119.9
C9—N2—H2A118.9C1—C2—C3120.5 (5)
C10—O3—C11116.2 (4)C1—C2—H2B119.8
O1—C7—N1121.8 (4)C3—C2—H2B119.8
O1—C7—C6122.7 (4)O3—C11—H11A109.5
N1—C7—C6115.5 (4)O3—C11—H11B109.5
C2—C1—C6120.5 (4)H11A—C11—H11B109.5
C2—C1—H1B119.7O3—C11—H11C109.5
C6—C1—H1B119.7H11A—C11—H11C109.5
O2—C10—O3124.4 (4)H11B—C11—H11C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.862.022.676 (4)132
C9—H9B···S10.972.683.027 (4)101
N1—H1A···S1i0.862.773.547 (3)151
C9—H9A···O2ii0.972.543.358 (6)142
C9—H9A···O2iii0.972.583.211 (5)123
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z; (iii) x+1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC11H12N2O3S
Mr252.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)14.5804 (15), 4.9740 (5), 16.9133 (16)
β (°) 96.210 (2)
V3)1219.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.48 × 0.14 × 0.06
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.884, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
6881, 2264, 1600
Rint0.048
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.089, 0.172, 1.24
No. of reflections2264
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.18

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.862.022.676 (4)132
N1—H1A···S1i0.862.773.547 (3)151
C9—H9A···O2ii0.972.543.358 (6)142
C9—H9A···O2iii0.972.583.211 (5)123
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z; (iii) x+1/2, y+1/2, z+3/2.
 

Acknowledgements

The authors thank Universiti Kebangsaan Malaysia for providing the facilities and the Ministry of Science, Technology and Innovation for the research fund (Nos. UKM-ST-01FRGS0016–2006, UKM-GUP-BTT-07-30-190 and UKM-OUP-TK-16-73/2009).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHassan, I. N., Yamin, B. M. & Kassim, M. B. (2008a). Acta Cryst. E64, o1727.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHassan, I. N., Yamin, B. M. & Kassim, M. B. (2008b). Acta Cryst. E64, o2083.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHassan, I. N., Yamin, B. M. & Kassim, M. B. (2008c). Acta Cryst. E64, o2167.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamin, B. M. & Hassan, I. N. (2004). Acta Cryst. E60, o2513–o2514.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds