organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Hydr­­oxy-3,5-di­meth­oxy­phen­yl)ethanone

aDepartment of Pharmacognosy, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China, and bDepartment of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
*Correspondence e-mail: netkiller119@gmail.com

(Received 30 October 2009; accepted 3 November 2009; online 7 November 2009)

In the title mol­ecule, C10H12O4, the non-H atoms are essentially coplanar (r.m.s. deviation = 0.033 Å). In the crystal, mol­ecules are linked into chains along [001] by O—H⋯O hydrogen bonds.

Related literature

For the use of the title compound to promote genetic transformation in plant tissue culture and genetic engineering, see: Mathews et al. (1990[Mathews, H., Bharathan, N., Litz, R. E., Narayanan, K. R., Rao, P. S. & Bhatia, C. R. (1990). J. Plant Physiol. 136, 404-409.]); Sheikholeslam & Weeks (1987[Sheikholeslam, S. N. & Weeks, D. P. (1987). Plant Mol. Biol. 8, 291-298.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12O4

  • Mr = 196.20

  • Tetragonal, I 41 c d

  • a = 14.977 (2) Å

  • c = 17.142 (3) Å

  • V = 3845.5 (11) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 113 K

  • 0.32 × 0.26 × 0.21 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.967, Tmax = 0.978

  • 14812 measured reflections

  • 1178 independent reflections

  • 1157 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.077

  • S = 1.16

  • 1178 reflections

  • 132 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4i 0.84 1.96 2.7210 (17) 151
Symmetry code: (i) [-x+1, y, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound is an important plant phenolic used in bioresearch. In plant tissue culture and genetic engineering, it is used to promote genetic transformation (Sheikholeslam & Weeks, 1987; Mathews et al., 1990). We herein report its crystal structure.

All of the non-H atoms of the title molecule (Fig.1) are essentially coplanar. In the crystal structure, adjacent molecules are linked into chains along the [001] by O—H···.O hydrogen bonds.

Related literature top

For the use of the title compound to promote genetic transformation in plant tissue culture and genetic engineering, see: Mathews et al. (1990); Sheikholeslam & Weeks (1987).

Experimental top

Single crystals suitable for X-ray analysis were grown by slow evaporation at room temperature of an acetone solution of commerical 1-(4-hydroxy-3,5-dimethoxyphenyl)ethanone.

Refinement top

H atoms were placed in calculated positions and refined in the riding model approximation, with O-H = 0.84 Å, C-H = 0.95 (aromatic) and 0.98 Å (methyl), and with Uiso(H) = 1.2Ueq(Caromatic) and 1.5Ueq(Cmethyl,O). In the absence of significant anomalous scattering, Friedel pairs were merged prior to the final refinement.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
1-(4-Hydroxy-3,5-dimethoxyphenyl)ethanone top
Crystal data top
C10H12O4Dx = 1.356 Mg m3
Mr = 196.20Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41cdCell parameters from 6429 reflections
Hall symbol: I 4bw -2cθ = 3.0–27.9°
a = 14.977 (2) ŵ = 0.11 mm1
c = 17.142 (3) ÅT = 113 K
V = 3845.5 (11) Å3Block, colourless
Z = 160.32 × 0.26 × 0.21 mm
F(000) = 1664
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
1178 independent reflections
Radiation source: rotating anode1157 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.031
Detector resolution: 7.31 pixels mm-1θmax = 27.9°, θmin = 3.1°
ω and ϕ scansh = 1919
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1519
Tmin = 0.967, Tmax = 0.978l = 2222
14812 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0561P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max = 0.001
1178 reflectionsΔρmax = 0.17 e Å3
132 parametersΔρmin = 0.16 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0083 (13)
Crystal data top
C10H12O4Z = 16
Mr = 196.20Mo Kα radiation
Tetragonal, I41cdµ = 0.11 mm1
a = 14.977 (2) ÅT = 113 K
c = 17.142 (3) Å0.32 × 0.26 × 0.21 mm
V = 3845.5 (11) Å3
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
1178 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1157 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.978Rint = 0.031
14812 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0281 restraint
wR(F2) = 0.077H-atom parameters constrained
S = 1.16Δρmax = 0.17 e Å3
1178 reflectionsΔρmin = 0.16 e Å3
132 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.58678 (8)0.08820 (8)0.37342 (8)0.0259 (3)
O10.42294 (7)0.15165 (9)0.39717 (6)0.0245 (3)
H10.46210.13420.42880.037*
O30.31210 (7)0.18800 (7)0.28362 (6)0.0231 (3)
C50.56661 (11)0.09497 (10)0.23142 (9)0.0198 (3)
H50.62500.07330.22100.024*
O40.48863 (8)0.12870 (8)0.03437 (7)0.0285 (3)
C30.42301 (10)0.14750 (10)0.18508 (9)0.0199 (3)
H30.38420.16170.14300.024*
C40.50917 (11)0.11554 (10)0.17016 (9)0.0193 (3)
C20.39445 (10)0.15836 (10)0.26140 (9)0.0190 (3)
C60.53803 (10)0.10625 (10)0.30770 (9)0.0195 (3)
C80.53803 (11)0.10552 (10)0.08750 (9)0.0215 (3)
C10.45208 (11)0.13863 (10)0.32347 (9)0.0190 (3)
C90.62896 (12)0.06734 (13)0.07049 (11)0.0279 (4)
H9A0.63860.06600.01400.042*
H9B0.63270.00660.09140.042*
H9C0.67480.10470.09510.042*
C70.67612 (11)0.05852 (12)0.36300 (10)0.0267 (4)
H7A0.67620.00260.33330.040*
H7B0.70380.04850.41410.040*
H7C0.71000.10400.33450.040*
C100.25044 (11)0.20807 (13)0.22248 (11)0.0308 (4)
H10A0.27600.25390.18830.046*
H10B0.19450.23020.24510.046*
H10C0.23850.15390.19210.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0226 (6)0.0370 (7)0.0181 (5)0.0070 (5)0.0037 (4)0.0010 (5)
O10.0238 (6)0.0353 (7)0.0143 (5)0.0054 (5)0.0008 (5)0.0001 (5)
O30.0180 (5)0.0319 (6)0.0194 (5)0.0033 (4)0.0006 (4)0.0006 (5)
C50.0195 (7)0.0195 (7)0.0204 (7)0.0004 (5)0.0021 (6)0.0002 (6)
O40.0277 (6)0.0412 (7)0.0166 (5)0.0004 (5)0.0010 (5)0.0004 (5)
C30.0217 (7)0.0200 (7)0.0179 (7)0.0021 (5)0.0026 (6)0.0005 (6)
C40.0224 (8)0.0186 (7)0.0169 (7)0.0032 (6)0.0012 (6)0.0010 (6)
C20.0190 (7)0.0185 (7)0.0195 (7)0.0000 (5)0.0007 (6)0.0012 (6)
C60.0208 (8)0.0205 (7)0.0172 (7)0.0004 (5)0.0038 (6)0.0001 (5)
C80.0244 (8)0.0214 (7)0.0187 (7)0.0053 (6)0.0029 (6)0.0004 (6)
C10.0205 (7)0.0202 (7)0.0163 (7)0.0009 (6)0.0006 (6)0.0003 (6)
C90.0279 (8)0.0357 (9)0.0201 (7)0.0022 (7)0.0058 (7)0.0009 (7)
C70.0206 (7)0.0305 (8)0.0290 (8)0.0050 (6)0.0041 (7)0.0018 (7)
C100.0220 (8)0.0439 (10)0.0264 (8)0.0054 (7)0.0049 (7)0.0022 (8)
Geometric parameters (Å, º) top
O2—C61.3695 (19)C4—C81.489 (2)
O2—C71.421 (2)C2—C11.402 (2)
O1—C11.3508 (19)C6—C11.402 (2)
O1—H10.84C8—C91.506 (2)
O3—C21.3650 (18)C9—H9A0.98
O3—C101.429 (2)C9—H9B0.98
C5—C61.386 (2)C9—H9C0.98
C5—C41.392 (2)C7—H7A0.98
C5—H50.95C7—H7B0.98
O4—C81.224 (2)C7—H7C0.98
C3—C21.386 (2)C10—H10A0.98
C3—C41.400 (2)C10—H10B0.98
C3—H30.95C10—H10C0.98
C6—O2—C7117.41 (13)O1—C1—C6121.81 (13)
C1—O1—H1109.5O1—C1—C2118.72 (13)
C2—O3—C10116.60 (12)C6—C1—C2119.47 (14)
C6—C5—C4119.59 (14)C8—C9—H9A109.5
C6—C5—H5120.2C8—C9—H9B109.5
C4—C5—H5120.2H9A—C9—H9B109.5
C2—C3—C4119.80 (14)C8—C9—H9C109.5
C2—C3—H3120.1H9A—C9—H9C109.5
C4—C3—H3120.1H9B—C9—H9C109.5
C5—C4—C3120.50 (14)O2—C7—H7A109.5
C5—C4—C8121.08 (14)O2—C7—H7B109.5
C3—C4—C8118.41 (14)H7A—C7—H7B109.5
O3—C2—C3125.47 (13)O2—C7—H7C109.5
O3—C2—C1114.41 (13)H7A—C7—H7C109.5
C3—C2—C1120.12 (13)H7B—C7—H7C109.5
O2—C6—C5125.96 (14)O3—C10—H10A109.5
O2—C6—C1113.53 (13)O3—C10—H10B109.5
C5—C6—C1120.51 (14)H10A—C10—H10B109.5
O4—C8—C4120.27 (14)O3—C10—H10C109.5
O4—C8—C9120.71 (15)H10A—C10—H10C109.5
C4—C8—C9119.02 (15)H10B—C10—H10C109.5
C6—C5—C4—C30.0 (2)C5—C4—C8—O4175.79 (15)
C6—C5—C4—C8179.10 (14)C3—C4—C8—O43.3 (2)
C2—C3—C4—C50.3 (2)C5—C4—C8—C93.6 (2)
C2—C3—C4—C8179.40 (14)C3—C4—C8—C9177.28 (14)
C10—O3—C2—C30.9 (2)O2—C6—C1—O11.2 (2)
C10—O3—C2—C1179.30 (13)C5—C6—C1—O1178.92 (15)
C4—C3—C2—O3179.32 (14)O2—C6—C1—C2178.90 (14)
C4—C3—C2—C10.9 (2)C5—C6—C1—C21.0 (2)
C7—O2—C6—C52.7 (2)O3—C2—C1—O11.1 (2)
C7—O2—C6—C1177.48 (13)C3—C2—C1—O1178.65 (15)
C4—C5—C6—O2179.47 (15)O3—C2—C1—C6178.98 (13)
C4—C5—C6—C10.4 (2)C3—C2—C1—C61.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.841.962.7210 (17)151
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H12O4
Mr196.20
Crystal system, space groupTetragonal, I41cd
Temperature (K)113
a, c (Å)14.977 (2), 17.142 (3)
V3)3845.5 (11)
Z16
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.32 × 0.26 × 0.21
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.967, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
14812, 1178, 1157
Rint0.031
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.077, 1.16
No. of reflections1178
No. of parameters132
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.16

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.841.962.7210 (17)151
Symmetry code: (i) x+1, y, z+1/2.
 

Acknowledgements

The authors thank Mr Zhi-Hua Mao of Sichuan University for his help with the X-ray data collection.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMathews, H., Bharathan, N., Litz, R. E., Narayanan, K. R., Rao, P. S. & Bhatia, C. R. (1990). J. Plant Physiol. 136, 404–409.  CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheikholeslam, S. N. & Weeks, D. P. (1987). Plant Mol. Biol. 8, 291–298.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds