metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ2-bromido-bis­­[bromido(η6-1,2,4,5-tetra­methyl­benzene)ruthenium(II)]

aInstituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México 04510, Mexico
*Correspondence e-mail: simonho@unam.mx

(Received 19 October 2009; accepted 19 November 2009; online 28 November 2009)

The asymmetric unit of the title compound, [Ru2Br4(C10H14)2], contains one half of the centrosymmetric mol­ecule. Each Ru center is coordinated by tetra­methyl­benzene ring in a η6-coordination mode, and one terminal and two bridging bromine atoms. The aromatic rings and the Ru2Br2 four-membered ring form a dihedral angle of 55.99 (8)°. In the crystal structure, weak inter­molecular C—H⋯Br inter­actions link mol­ecules into chains propagated in [001].

Related literature

For our work on the synthesis and catalytic applications of ruthenium–arene complexes, see: Cerón-Camacho et al. (2006[Cerón-Camacho, R., Gómez-Benítez, V., Le Lagadec, R., Morales-Morales, D. & Toscano, R. A. (2006). J. Mol. Catal. A, 247, 124-129.]); Díaz Camacho et al. (2008[Díaz Camacho, F., Le Lagadec, R., Ryabov, A. D. & Alexandrova, L. (2008). J. Polym. Sci.: Part A: Polym. Chem. 46, 4193-4204.]). For related structures, see: González-Torres et al. (2009[González-Torres, Y., Espinosa-Jalapa, N., Hernández-Ortega, S., Le Lagadec, R. & Morales-Morales, D. (2009). Acta Cryst. E65, m1369.]) and references therein. For details of the synthesis, see: Bennett et al. (1982[Bennett, M. A., Huang, T. N., Matheson, T. W. & Smith, A. K. (1982). Inorg. Synth. 21, 74-78.]).

[Scheme 1]

Experimental

Crystal data
  • [Ru2Br4(C10H14)2]

  • Mr = 790.20

  • Triclinic, [P \overline 1]

  • a = 7.8866 (13) Å

  • b = 8.2873 (14) Å

  • c = 9.8627 (17) Å

  • α = 88.335 (2)°

  • β = 74.508 (2)°

  • γ = 69.648 (2)°

  • V = 580.96 (17) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 8.18 mm−1

  • T = 298 K

  • 0.35 × 0.15 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: face indexed-numerical (SHELXTL>; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.139, Tmax = 0.478

  • 4786 measured reflections

  • 2108 independent reflections

  • 1878 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.060

  • S = 1.00

  • 2108 reflections

  • 122 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯Br2i 0.93 2.86 3.739 (4) 158
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In continuation of our studies of ruthenium arene complexes (Díaz Camacho et al. 2008; Cerón-Camacho et al. 2006; González-Torres, et al. 2009), we present here the title compound (I).

The asymmetric unit of (I) consists of a half molecule, which is completed with a symmetry operation of 1 - x, 1 - y, 1 - z (Fig. 1). The bond lengths and angles in η6 - tetramethylbenzene fragment are in accordance with those observed in similar structures (González-Torres et al., 2009 and references therein). Complex (I) exhibits a typical η6 - arene coordination of the tetramethylbenzene fragment to the ruthenium dinuclear structure bridged by two bromines and completing the coordination sphere two bromines one for each ruthenium atom arranged in a trans geometry. The η6 - arene fragment and the metal coordination center bridge (Br2—Ru—Br2 symmetry related) form a dihedral angle of 55.99 (8)°.

In the crystal structure, the molecules are linked by weak C—H···Br interaction (Table 1) into chains along direction [001].

Related literature top

For our work on the synthesis and catalytic applications of ruthenium–arene complexes, see: Cerón-Camacho et al. (2006); Díaz Camacho et al. (2008). For related structures, see: González-Torres et al. (2009) and references therein. For details of the synthesis, see: Bennett et al. (1982).

Experimental top

The title compound was prepared according to the procedure reported by Bennett et al. (1982). Spectroscopic analysis agreed with that reported in the same reference.

Refinement top

C-bound H atoms were placed in geometrically idealized positions (C—H 0.93-0.96 Å), and refined as riding, with Uiso(H) = 1.2-1.5 Ueq (C).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing the atomic numbering and 40% probability displacement ellipsoids [symmetry code: (A) 1 - x, 1 - y, 1 - z].
Di-µ2-bromido-bis[bromido(η6-1,2,4,5-tetramethylbenzene)ruthenium(II)] top
Crystal data top
[Ru2Br4(C10H14)2]Z = 1
Mr = 790.20F(000) = 376
Triclinic, P1Dx = 2.259 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8866 (13) ÅCell parameters from 3668 reflections
b = 8.2873 (14) Åθ = 2.6–25.4°
c = 9.8627 (17) ŵ = 8.18 mm1
α = 88.335 (2)°T = 298 K
β = 74.508 (2)°Prism, red
γ = 69.648 (2)°0.35 × 0.15 × 0.12 mm
V = 580.96 (17) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2108 independent reflections
Radiation source: fine-focus sealed tube1878 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
Detector resolution: 0.83 pixels mm-1θmax = 25.4°, θmin = 2.2°
ω scansh = 99
Absorption correction: face indexed-numerical
(SHELXTL; Sheldrick, 2008)
k = 99
Tmin = 0.139, Tmax = 0.478l = 1111
4786 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.060H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0227P)2]
where P = (Fo2 + 2Fc2)/3
2108 reflections(Δ/σ)max = 0.001
122 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.65 e Å3
Crystal data top
[Ru2Br4(C10H14)2]γ = 69.648 (2)°
Mr = 790.20V = 580.96 (17) Å3
Triclinic, P1Z = 1
a = 7.8866 (13) ÅMo Kα radiation
b = 8.2873 (14) ŵ = 8.18 mm1
c = 9.8627 (17) ÅT = 298 K
α = 88.335 (2)°0.35 × 0.15 × 0.12 mm
β = 74.508 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2108 independent reflections
Absorption correction: face indexed-numerical
(SHELXTL; Sheldrick, 2008)
1878 reflections with I > 2σ(I)
Tmin = 0.139, Tmax = 0.478Rint = 0.063
4786 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.060H-atom parameters constrained
S = 1.00Δρmax = 0.52 e Å3
2108 reflectionsΔρmin = 0.65 e Å3
122 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru0.63750 (4)0.49125 (3)0.30491 (3)0.02810 (10)
Br10.64758 (5)0.29795 (4)0.51434 (4)0.04089 (12)
Br20.41130 (6)0.36687 (6)0.24801 (4)0.05137 (14)
C10.8371 (5)0.3925 (4)0.0980 (4)0.0367 (8)
C20.9352 (5)0.3568 (4)0.2017 (4)0.0379 (8)
C30.9134 (5)0.4943 (4)0.2952 (4)0.0377 (8)
H30.97890.46990.36340.045*
C40.7972 (5)0.6654 (4)0.2891 (4)0.0407 (9)
C50.6944 (5)0.7014 (4)0.1860 (4)0.0396 (9)
C60.7172 (5)0.5650 (5)0.0931 (4)0.0389 (8)
H60.65070.58880.02550.047*
C70.8478 (6)0.2543 (5)0.0040 (4)0.0546 (11)
H7A0.77340.30620.06720.082*
H7B0.80060.17170.04750.082*
H7C0.97620.19740.05720.082*
C81.0565 (6)0.1754 (5)0.2196 (5)0.0557 (11)
H8A1.17640.14500.15050.084*
H8B0.99590.09670.20730.084*
H8C1.07440.16920.31240.084*
C90.7843 (7)0.8028 (5)0.3909 (5)0.0620 (12)
H9A0.85140.75060.45840.093*
H9B0.65470.86390.43920.093*
H9C0.83850.88180.34050.093*
C100.5588 (7)0.8778 (5)0.1774 (5)0.0629 (13)
H10A0.48300.87070.11760.094*
H10B0.62710.95200.13890.094*
H10C0.47920.92360.27000.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru0.02570 (16)0.02940 (16)0.02784 (16)0.01036 (12)0.00439 (11)0.00292 (10)
Br10.0380 (2)0.0341 (2)0.0370 (2)0.00366 (16)0.00100 (16)0.00683 (15)
Br20.0483 (3)0.0736 (3)0.0462 (2)0.0382 (2)0.0134 (2)0.00497 (19)
C10.0333 (19)0.0419 (19)0.0313 (18)0.0173 (16)0.0031 (15)0.0009 (15)
C20.0252 (17)0.0367 (19)0.045 (2)0.0104 (15)0.0003 (15)0.0011 (15)
C30.0300 (19)0.045 (2)0.042 (2)0.0177 (16)0.0095 (16)0.0051 (16)
C40.045 (2)0.0378 (19)0.040 (2)0.0241 (17)0.0011 (17)0.0014 (15)
C50.039 (2)0.0362 (18)0.040 (2)0.0169 (17)0.0010 (16)0.0090 (15)
C60.041 (2)0.049 (2)0.0294 (17)0.0213 (18)0.0081 (16)0.0099 (15)
C70.056 (3)0.060 (3)0.047 (2)0.029 (2)0.001 (2)0.013 (2)
C80.038 (2)0.046 (2)0.069 (3)0.0035 (19)0.007 (2)0.002 (2)
C90.084 (3)0.057 (2)0.056 (3)0.045 (3)0.008 (2)0.006 (2)
C100.066 (3)0.043 (2)0.065 (3)0.013 (2)0.006 (2)0.021 (2)
Geometric parameters (Å, º) top
Ru—C62.150 (3)C4—C51.427 (5)
Ru—C32.161 (4)C4—C91.498 (5)
Ru—C52.180 (4)C5—C61.408 (5)
Ru—C22.182 (3)C5—C101.497 (5)
Ru—C12.191 (3)C6—H60.9300
Ru—C42.200 (4)C7—H7A0.9600
Ru—Br22.5313 (6)C7—H7B0.9600
Ru—Br1i2.5676 (5)C7—H7C0.9600
Ru—Br12.5780 (5)C8—H8A0.9600
Br1—Rui2.5676 (5)C8—H8B0.9600
C1—C21.407 (5)C8—H8C0.9600
C1—C61.421 (5)C9—H9A0.9600
C1—C71.511 (5)C9—H9B0.9600
C2—C31.421 (5)C9—H9C0.9600
C2—C81.510 (5)C10—H10A0.9600
C3—C41.406 (5)C10—H10B0.9600
C3—H30.9300C10—H10C0.9600
C6—Ru—C379.89 (15)C4—C3—C2122.8 (3)
C6—Ru—C537.93 (13)C4—C3—Ru72.7 (2)
C3—Ru—C568.14 (14)C2—C3—Ru71.7 (2)
C6—Ru—C268.16 (14)C4—C3—H3118.6
C3—Ru—C238.18 (13)C2—C3—H3118.6
C5—Ru—C281.73 (14)Ru—C3—H3129.7
C6—Ru—C138.21 (14)C3—C4—C5118.3 (3)
C3—Ru—C168.06 (13)C3—C4—C9119.3 (4)
C5—Ru—C169.31 (13)C5—C4—C9122.4 (3)
C2—Ru—C137.53 (14)C3—C4—Ru69.7 (2)
C6—Ru—C468.13 (14)C5—C4—Ru70.2 (2)
C3—Ru—C437.60 (13)C9—C4—Ru131.5 (3)
C5—Ru—C438.01 (14)C6—C5—C4118.6 (3)
C2—Ru—C469.00 (13)C6—C5—C10119.3 (4)
C1—Ru—C481.45 (13)C4—C5—C10122.0 (4)
C6—Ru—Br292.41 (11)C6—C5—Ru69.9 (2)
C3—Ru—Br2154.25 (9)C4—C5—Ru71.7 (2)
C5—Ru—Br2119.06 (11)C10—C5—Ru128.2 (3)
C2—Ru—Br2116.19 (10)C5—C6—C1122.9 (3)
C1—Ru—Br290.67 (10)C5—C6—Ru72.2 (2)
C4—Ru—Br2157.03 (10)C1—C6—Ru72.4 (2)
C6—Ru—Br1i119.11 (10)C5—C6—H6118.5
C3—Ru—Br1i118.25 (9)C1—C6—H6118.5
C5—Ru—Br1i92.02 (9)Ru—C6—H6129.5
C2—Ru—Br1i156.13 (10)C1—C7—H7A109.5
C1—Ru—Br1i157.12 (10)C1—C7—H7B109.5
C4—Ru—Br1i91.93 (9)H7A—C7—H7B109.5
Br2—Ru—Br1i87.02 (2)C1—C7—H7C109.5
C6—Ru—Br1158.03 (10)H7A—C7—H7C109.5
C3—Ru—Br190.73 (10)H7B—C7—H7C109.5
C5—Ru—Br1152.74 (10)C2—C8—H8A109.5
C2—Ru—Br192.20 (10)C2—C8—H8B109.5
C1—Ru—Br1119.82 (10)H8A—C8—H8B109.5
C4—Ru—Br1115.15 (10)C2—C8—H8C109.5
Br2—Ru—Br187.508 (18)H8A—C8—H8C109.5
Br1i—Ru—Br182.838 (17)H8B—C8—H8C109.5
Rui—Br1—Ru97.162 (17)C4—C9—H9A109.5
C2—C1—C6118.3 (3)C4—C9—H9B109.5
C2—C1—C7122.8 (3)H9A—C9—H9B109.5
C6—C1—C7118.8 (3)C4—C9—H9C109.5
C2—C1—Ru70.89 (19)H9A—C9—H9C109.5
C6—C1—Ru69.36 (18)H9B—C9—H9C109.5
C7—C1—Ru129.3 (3)C5—C10—H10A109.5
C1—C2—C3119.0 (3)C5—C10—H10B109.5
C1—C2—C8121.6 (3)H10A—C10—H10B109.5
C3—C2—C8119.3 (3)C5—C10—H10C109.5
C1—C2—Ru71.58 (19)H10A—C10—H10C109.5
C3—C2—Ru70.13 (19)H10B—C10—H10C109.5
C8—C2—Ru128.1 (3)
C6—Ru—Br1—Rui177.6 (3)Ru—C3—C4—C552.5 (3)
C3—Ru—Br1—Rui118.39 (9)C2—C3—C4—C9179.3 (4)
C5—Ru—Br1—Rui80.4 (2)Ru—C3—C4—C9127.1 (4)
C2—Ru—Br1—Rui156.56 (10)C2—C3—C4—Ru53.6 (3)
C1—Ru—Br1—Rui176.65 (12)C6—Ru—C4—C3102.2 (2)
C4—Ru—Br1—Rui88.77 (10)C5—Ru—C4—C3132.1 (3)
Br2—Ru—Br1—Rui87.31 (2)C2—Ru—C4—C328.2 (2)
Br1i—Ru—Br1—Rui0.0C1—Ru—C4—C364.9 (2)
C6—Ru—C1—C2131.8 (3)Br2—Ru—C4—C3136.0 (2)
C3—Ru—C1—C229.9 (2)Br1i—Ru—C4—C3137.1 (2)
C5—Ru—C1—C2103.8 (2)Br1—Ru—C4—C354.1 (2)
C4—Ru—C1—C266.5 (2)C6—Ru—C4—C529.92 (19)
Br2—Ru—C1—C2135.2 (2)C3—Ru—C4—C5132.1 (3)
Br1i—Ru—C1—C2140.9 (2)C2—Ru—C4—C5103.9 (2)
Br1—Ru—C1—C247.7 (2)C1—Ru—C4—C567.2 (2)
C3—Ru—C1—C6101.9 (2)Br2—Ru—C4—C53.9 (4)
C5—Ru—C1—C627.9 (2)Br1i—Ru—C4—C590.81 (19)
C2—Ru—C1—C6131.8 (3)Br1—Ru—C4—C5173.80 (16)
C4—Ru—C1—C665.3 (2)C6—Ru—C4—C9146.2 (4)
Br2—Ru—C1—C693.0 (2)C3—Ru—C4—C9111.6 (5)
Br1i—Ru—C1—C69.1 (4)C5—Ru—C4—C9116.3 (5)
Br1—Ru—C1—C6179.45 (18)C2—Ru—C4—C9139.8 (4)
C6—Ru—C1—C7111.0 (4)C1—Ru—C4—C9176.5 (4)
C3—Ru—C1—C7147.2 (4)Br2—Ru—C4—C9112.4 (4)
C5—Ru—C1—C7138.9 (4)Br1i—Ru—C4—C925.5 (4)
C2—Ru—C1—C7117.2 (4)Br1—Ru—C4—C957.5 (4)
C4—Ru—C1—C7176.3 (4)C3—C4—C5—C61.4 (5)
Br2—Ru—C1—C717.9 (3)C9—C4—C5—C6179.0 (3)
Br1i—Ru—C1—C7101.9 (4)Ru—C4—C5—C653.7 (3)
Br1—Ru—C1—C769.6 (4)C3—C4—C5—C10176.4 (4)
C6—C1—C2—C31.2 (5)C9—C4—C5—C103.2 (6)
C7—C1—C2—C3178.6 (3)Ru—C4—C5—C10124.1 (4)
Ru—C1—C2—C353.6 (3)C3—C4—C5—Ru52.3 (3)
C6—C1—C2—C8176.3 (4)C9—C4—C5—Ru127.3 (4)
C7—C1—C2—C81.1 (6)C3—Ru—C5—C6102.0 (2)
Ru—C1—C2—C8123.9 (4)C2—Ru—C5—C664.8 (2)
C6—C1—C2—Ru52.4 (3)C1—Ru—C5—C628.1 (2)
C7—C1—C2—Ru125.0 (4)C4—Ru—C5—C6131.1 (3)
C6—Ru—C2—C129.8 (2)Br2—Ru—C5—C650.6 (2)
C3—Ru—C2—C1131.6 (3)Br1i—Ru—C5—C6138.3 (2)
C5—Ru—C2—C166.6 (2)Br1—Ru—C5—C6143.5 (2)
C4—Ru—C2—C1103.8 (2)C6—Ru—C5—C4131.1 (3)
Br2—Ru—C2—C151.8 (2)C3—Ru—C5—C429.2 (2)
Br1i—Ru—C2—C1142.7 (2)C2—Ru—C5—C466.3 (2)
Br1—Ru—C2—C1140.1 (2)C1—Ru—C5—C4103.0 (2)
C6—Ru—C2—C3101.8 (2)Br2—Ru—C5—C4178.27 (16)
C5—Ru—C2—C364.9 (2)Br1i—Ru—C5—C490.55 (19)
C1—Ru—C2—C3131.6 (3)Br1—Ru—C5—C412.3 (3)
C4—Ru—C2—C327.8 (2)C6—Ru—C5—C10112.1 (5)
Br2—Ru—C2—C3176.69 (17)C3—Ru—C5—C10146.0 (4)
Br1i—Ru—C2—C311.2 (4)C2—Ru—C5—C10176.9 (4)
Br1—Ru—C2—C388.4 (2)C1—Ru—C5—C10140.2 (4)
C6—Ru—C2—C8146.0 (4)C4—Ru—C5—C10116.8 (4)
C3—Ru—C2—C8112.3 (4)Br2—Ru—C5—C1061.5 (4)
C5—Ru—C2—C8177.2 (4)Br1i—Ru—C5—C1026.2 (4)
C1—Ru—C2—C8116.2 (4)Br1—Ru—C5—C10104.5 (4)
C4—Ru—C2—C8140.0 (4)C4—C5—C6—C10.4 (5)
Br2—Ru—C2—C864.4 (4)C10—C5—C6—C1177.4 (4)
Br1i—Ru—C2—C8101.1 (4)Ru—C5—C6—C154.1 (3)
Br1—Ru—C2—C823.9 (3)C4—C5—C6—Ru54.6 (3)
C1—C2—C3—C40.2 (5)C10—C5—C6—Ru123.3 (4)
C8—C2—C3—C4177.4 (4)C2—C1—C6—C50.9 (5)
Ru—C2—C3—C454.1 (3)C7—C1—C6—C5178.4 (3)
C1—C2—C3—Ru54.3 (3)Ru—C1—C6—C554.0 (3)
C8—C2—C3—Ru123.3 (3)C2—C1—C6—Ru53.1 (3)
C6—Ru—C3—C467.1 (2)C7—C1—C6—Ru124.4 (3)
C5—Ru—C3—C429.5 (2)C3—Ru—C6—C567.3 (2)
C2—Ru—C3—C4134.5 (3)C2—Ru—C6—C5105.2 (2)
C1—Ru—C3—C4105.1 (2)C1—Ru—C6—C5134.5 (3)
Br2—Ru—C3—C4141.4 (2)C4—Ru—C6—C530.0 (2)
Br1i—Ru—C3—C450.6 (2)Br2—Ru—C6—C5137.5 (2)
Br1—Ru—C3—C4132.8 (2)Br1i—Ru—C6—C549.5 (2)
C6—Ru—C3—C267.4 (2)Br1—Ru—C6—C5133.2 (2)
C5—Ru—C3—C2105.0 (2)C3—Ru—C6—C167.2 (2)
C1—Ru—C3—C229.4 (2)C5—Ru—C6—C1134.5 (3)
C4—Ru—C3—C2134.5 (3)C2—Ru—C6—C129.3 (2)
Br2—Ru—C3—C26.9 (4)C4—Ru—C6—C1104.5 (2)
Br1i—Ru—C3—C2174.90 (17)Br2—Ru—C6—C188.0 (2)
Br1—Ru—C3—C292.6 (2)Br1i—Ru—C6—C1175.95 (18)
C2—C3—C4—C51.1 (5)Br1—Ru—C6—C11.3 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···Br2ii0.932.863.739 (4)158
Symmetry code: (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Ru2Br4(C10H14)2]
Mr790.20
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.8866 (13), 8.2873 (14), 9.8627 (17)
α, β, γ (°)88.335 (2), 74.508 (2), 69.648 (2)
V3)580.96 (17)
Z1
Radiation typeMo Kα
µ (mm1)8.18
Crystal size (mm)0.35 × 0.15 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionFace indexed-numerical
(SHELXTL; Sheldrick, 2008)
Tmin, Tmax0.139, 0.478
No. of measured, independent and
observed [I > 2σ(I)] reflections
4786, 2108, 1878
Rint0.063
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.060, 1.00
No. of reflections2108
No. of parameters122
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.65

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···Br2i0.932.8593.739 (4)158.2
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

The financial support of this research by the Consejo Nacional de Ciencia y Tecnologia [CONACYT, grant Nos. F58692 & F57556] and the Dirección General de Asuntos del Personal Académico [DGAPA-UNAM, grant Nos. IN227008 & IN205209] is gratefully acknowledged.

References

First citationBennett, M. A., Huang, T. N., Matheson, T. W. & Smith, A. K. (1982). Inorg. Synth. 21, 74–78.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCerón-Camacho, R., Gómez-Benítez, V., Le Lagadec, R., Morales-Morales, D. & Toscano, R. A. (2006). J. Mol. Catal. A, 247, 124–129.  Google Scholar
First citationDíaz Camacho, F., Le Lagadec, R., Ryabov, A. D. & Alexandrova, L. (2008). J. Polym. Sci.: Part A: Polym. Chem. 46, 4193–4204.  Google Scholar
First citationGonzález-Torres, Y., Espinosa-Jalapa, N., Hernández-Ortega, S., Le Lagadec, R. & Morales-Morales, D. (2009). Acta Cryst. E65, m1369.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds